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Dodecahedra basics

Ddodecahedron adjacency graph

A dodecahedron has nv = 20 vertexes, ne = 30 edges and nf = 12 faces.
Indeed, since Euclidean sphere has Euler characteristic 2:

2 = nv − ne + nf .

Let GD = (V ,E) be the dodecahedron adjacency graph.

GD is a regular graph, in which each vertex has degree 3.
Distance between two points: Number of edges in the shortest path
connecting those points. Then each vertex has

1 node at distance 0,
3 nodes at distance 1,
6 nodes at distance 2,
6 nodes at distance 3,
3 nodes at distance 4,
1 node at distance 5.
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GD = (V ,E)
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∀v ∈ V :

Opposite vertex of v: v ∈ V be the unique vertex at distance 5 to v.

Set of neighbors of v: N(v) = {w ∈ V |{v ,w} ∈ E}. It has three
elements.

Next-to-adjacent pairs of v:
M(v) = {{v1, v2} ∈ V (2)|∃w ∈ N(v) : {v , v1, v2} = N(w)}.
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Enumeration of the dodecahedron adjacency graph:
vj = vk ⇔ k = 1 + (j + 10) mod 20
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Quintaessential Trinkets (QT)

The Game

Alice lives Here and Bob lives FarAway (thousands light years from here).
They receive two identical dodecahedra from QT, each having a button at
each vertex, as well as precise instructions to align the dodecahedra
perfectly parallel.
When they push buttons, either nothing happens or a bell rings and the
dodecahedron fires a set fireworks.
The game is the following:
At each step, Alice and Bob select vertexes at their dodecahedra. They do
not press the selected buttons. They press the neighbor buttons:

I. If the selected vertexes are opposite then a neighbor button
rings if and only if its opposite in other dodecahedron rings.

II. If the selected vertexes are corresponding then one of the
six neighbor buttons should ring.
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Vertex colorings

How to color

Let us color each vertex with the color white if it rings and with the color
black otherwise.

Conditions to succed

A. No pair next-to-adjacent to any vertex can have the same
color.

B. No set of the form N(v) ∪ N(v) can be black.
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Theorem

No coloring does exist satisfying both conditions A. and B.

Theorem

State entanglement does allow to build such magic dodecahedra.

R. Penrose. Shadows of the Mind. Vintage. London, 1995.
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Self-adjoint operators

An observable in a space Hn is a self-adjoint linear operator U : Hn → Hn,
i.e. UH = U.

If U,V : Hn → Hn are observables, U + V is also an observable, but the
product UV will be if, for instance, U and V conmute. UV + VU and
i(UV − VU) always are observables.
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For an observable U : Hn → Hn there exists an ON basis of Hn consisting
of eigenvectors of U. Hence, if λ0, . . . , λk−1 are the eigenvalues of U and
L0, . . . , Lk are the corresponding eigenspaces

x ∈ Lκ =⇒ U(x) = λκx.

Consequently, U is represented as

U =
k−1∑
κ=0

λκπLκ ,

where for each space L < Hn, πL : Hn → L is the orthogonal projection
over L .
If {v0, . . . , vm−1} is an ON basis of L and L is the matrix whose columns
are these vectors then πL is represented by L · LH.
Since πLκ is an orthogonal projection, ∀x ∈ Hn, 〈x−πLκ(x)|πLκ(x)〉 = 0, thus

〈x|πLκ(x)〉 = 〈πLκ(x)|πLκ(x)〉 = ‖πLκ(x)‖2.
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Extended measurement principle

For any observable U, whenmeasuring an n-register x ∈ Hn, the output is
an eigenvalue λκ and the current state will be the normalized projection
πLκ (x)
‖πLκ (x)‖

. For each eigenvalue λκ, the probability that it is the output isa

Pr(λκ) = 〈x|πLκ(x)〉. (1)

aevidently,
∑k−1
κ=0 Pr(λκ) =

∑k−1
κ=0 ‖πLκ(x)‖2 = ‖x‖2 = 1.
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Spin measurements

Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(2)

For any real vector v ∈ R3, let

Vv = v1σ1 + v2σ2 + v3σ3 =

(
v3 v1 − i v2

v1 + i v2 −v3

)
. (3)
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Whenever v is an unit vector, Vv is an observable and it is called the
measurement of spin along vector v. The eigenvalues of Vv are
−‖v‖2, ‖v‖2, i.e. they are −1, 1 with corresponding eigenvectors

uv0 =

[
v3 − ‖v‖2
v1 + i v2

]
=

[
v3 − 1

v1 + i v2

]
, uv1 =

[
v3 + ‖v‖2
v1 + i v2

]
=

[
v3 + 1

v1 + i v2

]
.

For any x = [x0 x1]
T ∈ H1 we have

〈x|Vvx〉 = (2x0x1) v1 +
(
x2

0 − x2
1

)
v3

thus the expectation of Vv at state x is a rotation depending on x.

Morales-Luna (CINVESTAV) QC based on Tensor Products 5-th Int. WS App. Cat. Th. 17 / 32



Agenda

1 Dodecahedra basics

2 Quintaessential Trinkets (QT)

3 Observables
Self-adjoint operators
Spin measurements

4 Entangled states
Bell’s inequality

A thought experiment
Einstein-Podolski-Rossen paradox

Superdense encoding

5 Density operators
Space of two qubits
Multidimensional quregisters

Morales-Luna (CINVESTAV) QC based on Tensor Products 5-th Int. WS App. Cat. Th. 18 / 32



Bell’s inequality

In 1964 John Bell showed that no physical theory “realistic” and “local”,
with well defined notions of those terms, can explain all statistical
implications of Quantum Mechanics. Thus, any quantum state is
“incomplete” when predicting all its physical attributes.

Morales-Luna (CINVESTAV) QC based on Tensor Products 5-th Int. WS App. Cat. Th. 19 / 32



A thought experiment

Let us assume

Charly prepares two particles.

He gives one to Alice and the other to Bob.

Alice is able to perform measurements on her particle about two
properties, W and X , to obtain ±1 values PW or PX . She selects
randomly W or X .

Bob as well is able to perform measurements of two properties, Y and
Z , to obtain ±1 values PY or PZ . He selects also randomly Y or Z .

Let
F = WY + XY + XZ −WZ . (4)
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We have F = ±2, and half of the combinations give the negative value:

W X Y Z
−1 −1 1 −1
−1 −1 1 1
−1 1 −1 −1
−1 1 1 −1

1 −1 −1 1
1 −1 1 1
1 1 −1 −1
1 1 −1 1

W X Y Z
−1 −1 −1 −1
−1 −1 −1 1
−1 1 −1 1
−1 1 1 1

1 −1 −1 −1
1 −1 1 −1
1 1 1 −1
1 1 1 1

F = −2 F = 2
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Clearly, the expected value satisfies E(F) ≤ 2, and by linearity we get

Bell’s inequality

E(WY) + E(XY) + E(XZ) − E(WZ) ≤ 2 (5)

Here, from a classical point of view, we may assume

reality: the values PW , PX , PY , PZ are intrinsic to the particles, Alice
and Bob just discover them,

locality: Alice measurement is independent of Bob’s, and conversely.
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EPR paradox

Let us assume that in the above thought experiment Charly prepares both
particles in the entangled state b3 = 1√

2
(e01 − e10) and that the

observables are given as

W = σ3 Y = 1√
2
(σ1 + σ3)

X = σ1 Z = 1√
2
(σ1 − σ3)

(6)

Then,
1
√

2
= E(WY) = E(XY) = E(XZ) = −E(WZ) (7)

and E(F) = 4√
2

= 2
√

2, which contradicts (5).
In order to avoid the paradox, neither realisticity nor locality can be
assumed.
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Superdense encoding

Bell basis

In H2 = H1 ⊗ H1, let {e00, e01, e10, e11} be the canonical basis and let

b0 = 1√
2
(e00 + e11) b1 = 1√

2
(e00 − e11)

b2 = 1√
2
(e01 + e10) b3 = 1√

2
(e01 − e10)

(8)

The collection B = {b0,b1,b2,b3} is an ON basis of H2, it is the so called
Bell basis.
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Alice wants to transmit to Bob a pair of classical bits, say ε = ε1ε0, by
transmitting just one qubit.

They agree initially in the entangled state x = b0.
1 Alice calculates y = bε as follows:

ε = 00 =⇒ y = (11 ⊗ 11)(x) = b0

ε = 01 =⇒ y = (σ3 ⊗ 11)(x) = b1

ε = 10 =⇒ y = (σ1 ⊗ 11)(x) = b2

ε = 11 =⇒ y = ((i σ2) ⊗ 11)(x) = b3

2 Alice sends y to Bob.
3 Bob measures y with respect to the Bell basis,
4 and he recovers ε = ε1ε0.
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Space of two qubits

In H1 = C2, let us consider two ON basis {e0
0, e

0
1} and {e1

0, e
1
1} and the

quregister x ∈ H2 of two qubits,

x = x00e0
0 ⊗ e1

0 + x11e0
1 ⊗ e1

1, with x00, x11 ∈ C & |x00|
2 + |x11|

2 = 1.

If a measurement of the first qubit of x is performed, with respect to the
first basis {e0

0, e
0
1}, then with a probability |x00|

2 its current state will be e0
0

and the register will transit into e0
0 ⊗ e1

0. Similarly, with a probability |x11|
2

the current state of the first qubit is e0
1 and the register will transit into

e0
1 ⊗ e1

1. Thus, if e0
i is assumed by the first qubit then e1

i will be assumed by
the second qubit. Both outputs are correlated.
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An observable over the first qubit acting on 2-quregisters in H2 is of the
form U ⊗ 12, where U ∈ C2×2 is a self-adjoint matrix, and 12 is the identity
matrix of order 2 × 2. The expected value of the observable is

〈x|(U ⊗ 12)x〉 = 〈x00e0
0 ⊗ e1

0 + x11e0
1 ⊗ e1

1|

(U ⊗ 12)(x00e0
0 ⊗ e1

0 + x11e0
1 ⊗ e1

1)〉

= 〈x00e0
0 ⊗ e1

0 + x11e0
1 ⊗ e1

1|x00Ue0
0 ⊗ e1

0 + x11Ue0
1 ⊗ e1

1〉

= |x00|
2〈e0

0 ⊗ e1
0|Ue0

0 ⊗ e1
0〉+ x00x11〈e0

0 ⊗ e1
0|Ue0

1 ⊗ e1
1〉

+x11x00〈e0
1 ⊗ e1

1|Ue0
0 ⊗ e1

0〉+ |x11|
2〈e0

1 ⊗ e1
1|Ue0

1 ⊗ e1
1〉

= |x00|
2〈e0

0|Ue0
0〉+ |x11|

2〈e0
1|Ue0

1〉 (9)

since, being {e1
0, e

1
1} ON, for all z0, z1, 〈z0 ⊗ e1

i |z1 ⊗ e1
j 〉 = 〈z0|z1〉δij where

δij is Kroenecker’s delta.
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Then

〈x|(U ⊗ 12)x〉 = tr(Uρx) where ρx =

[
|x00|

2 0
0 |x11|

2

]
. (10)

The map ρx is the density of x, it is positive, self-adjoint, and its trace is 1.
Eq. (9) is valid for any observable, in particular for the orthogonal
projection U = πL , where L is the eigenspace corresponding to an
eigenvalue λ of an observable V . From eq’s. (9) and (1),

〈x|(πL ⊗ 12)x〉 = |x00|
2〈e0

0|πL e0
0〉+ |x11|

2〈e0
1|πL e0

1〉

= |x00|
2Pr(λ|e0

0) + |x11|
2Pr(λ|e0

1), (11)

where Pr(λ|e0
j ) is the probability to output eigenvalue λ at a measurement

in the state e0
j , j = 0, 1.
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Eq. (11) may be written as

Pr(λ) = p00〈e0
0|πL e0

0〉+ p10〈e0
1|πL e0

1〉, (12)

where pj0 = |xjj |
2 is the probability that the measurement is performed at

state e0
j , j = 0, 1. Each possible result in the observable V , from the

quregister x, occurs with a probability which is a linear combination of the
probabilities to get that result from each of the states e0

j , j = 0, 1. The
operator ρx is realized as an ensemble of the states e0

j , j = 0, 1: the
probability of being in any of the e0

j is pj0 = |xjj |
2.
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Multidimensional quregisters

Similarly, for n-registers in the space Hn, with basis
(
e(n)

i

)2n−1

i=0
, any

2n-register is expressed as x =
∑

0≤i,j≤2n−1 aije
(n)
i ⊗ e(n)

j , with∑
0≤i,j≤2n−1 |aij |

2 = 1. An observable at the first n-register is of the form
U2n ⊗ 12n and its expected value is

〈x|(U2n ⊗ 12n)x〉 =
∑

0≤i0,i1,j≤2n−1

ai0jai1j〈e
(n)
i0
|U2n e(n)

i1
〉

=
2n−1∑
j=0

 ∑
0≤i0,i1≤2n−1

ai0jai1j〈e
(n)
i0
|U2n e(n)

i1
〉


= tr(U2nρ

(n)
x ).

where

ρ
(n)
x = tr

(
x · xT

)
=

∑
0≤i0,i1,j≤2n−1

ai0jai1j

(
e(n)

i0

)
·

(
e(n)

i1

)T
=

2n−1∑
j=0

ai0jai1j


0≤i0,i1≤2n−1

.

Morales-Luna (CINVESTAV) QC based on Tensor Products 5-th Int. WS App. Cat. Th. 31 / 32



The operator ρ(n)
x is the density of x. It can be seen that ρ(n)

x is positive,
self-adjoint, and its trace is 1.
Consequently, ρ(n)

x is similar to a diagonal matrix whose entries are its
eigenvalues, they are indeed real and positive, and sum up to 1.
If (fi)

2n−1
i=0 is a basis representing ρ(n)

x by a diagonal matrix,

ρ
(n)
x =

∑2n−1
i=0 fi

[
fi · fT

i

]
, with 0 ≤ fi ≤ 1 and

∑2n−1
i=0 fi = 1, then ρ(n)

x can be

considered as an ensemble of the quregisters {fi}
2n−1
i=0 .

If just one of the values fi has absolute value 1 and the others are cero, the
ensemble is called pure, otherwise it is mixed. The ensemble is puro if and

only if
(
ρ
(n)
x

)2
= ρ

(n)
x , and it is mixed if and only if

(
ρ
(n)
x

)2
, ρ

(n)
x .
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