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o Tensor Products
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Vector and Space Products

U, V: two vector spaces over C.

£L(U,V): space of linear maps U — V.

U* = £(U, C): Dual space of U. u* € U*, u € U, (u*|uy := u*(u).
|y : U* x U — Cis a bilinear map.

U@V = L(V*,U): Tensor product of U and V.

U x V is identified with a subset of U ® V. \

®:UxV-oUV,Y(u,v) eUxV, d(u,v): [w* > (wviu] € L(V*,TU).
GivenueU,veV,uv :=d(u,v) e L(V*,U): tensor product of uand v.

(zu)ev=2z(uv) (U1+uw)v=(u1V)+(LLev)
u®(zv) =z(u®v) u®(vi+v)=(UuUv)+ (Uudw)

The tensor product is not commutative, nor even for U = V. @
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IfdimU = m anddimV = n thendm(U® V) =

Namely, dim(V*) = n and dim(£(V*,U)) = nm. Thus, if U = C™ and
V=C"then,U®V =C™,

If By = {ug, U1, ...,Un_1} is a basis of U and By = {vg, V4,...,Vn_1} is a

basis of V then (u; ® v,),<m j<n IS @ basis of U® 'V, where for each i, j, ui® v

is the map w* = I~ 0 WiV, = w,u;. This is called the product basis.

PN , . e
If By = {vg. V4, ..., V,_4} is a basis of V*, where (v |v;,) = &j,j,.
The map u; ® v, is represented by Dj = (6, ,-,-),.1<m,].1<n.

m— R o o A x _ yvn—1 ., *
Givenu= Y™ 'aueU,v= Lo bjvieV,and w* = 35, v € V
then

thusu@v ="' 1 ab (u® v)).
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Products of Linear Maps

U,, Us: vector spaces of dimensions my, mo. K : Uy — U> linear.
The dual K* : U; — Uj is defined by

Yuq € U1 , Uo € U2 : (K*(U;)|U1) = <U2|K(U1)>.

If K is represented, with respect to basis By, and By,, by Mk € C™*™
then K* is represented by its Hermitian M,Q’ e CMxmz,

Vi, V: other two vector spaces of dimensions ny, no. L : Vi — Vs linear.
K®L:U® Vi —> U ® Vs is such that

Yug e Uy, vy € Vg : (K®L)(U1 ®V1) = K(U1)®L(V1).

&
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If K is represented, with respect to the basis By, and By,, by the matrix
Mk € C™*™ and L is represented, with respect to the basis By, and By,,
by the matrix M, € C"™*™ then (K ® L) is represented, with respect to the
product basis, by the following tensor product matrix:

Mg ML mg M, my M
(K) (K) (K)'
MK ® ML _ m10. ML m11 ML m1 my 1M’- c Cm2n2><m1 ni
(K ) k)’ W
ML M1 M- M, ~1,m,—1 Mc |
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U: m-dimensional vector space, K : U — U linear: K®! = K,

K®n = k®("-1) @ K: n-th tensorial power.

It My = (m;) 5”)) |
ij<mn

Let’s write each i < m" in base m: i = j”:‘(} EM = (ént - &160) = (E)m-

If & = &not -+ &1, let car(€) = &y and cdr(é) = én—t -+ - &4

represents K, then Myen = ( represents K®".

ij<m

(E)m = m(cdr(£))m + car(§) ,
)

car(¢) = (&)m mod m and

(
(cdr(é))m = ((é)m —car(£))/m.

Then
m(n) — m(n_1) -m : . (1)
£(1).£()) cdr(&(i)).cdr(£(j)) ' car(£(i)).car(£(1))

&
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9 Basic Notions on Quantum Computing

@

Morales-Luna (CINVESTAV) QC based on Tensor Products 5-th Int. WS App. Cat. Th. 9/33



Measurement Principle

Complex matrices. C™: space of (m x n)-matrices with complex entries

Transpose conjugate. M = (m;),; € C™" = MH = (m};’)ﬁ = (my);

Unitary matrix. MM =1,,. Mlg, : En, — En.

Hermitian matrix. MH = M

Set of states. C™1

Unit Euclidean sphere. Ep, = {v € C™1 = vilv =: (v|v)}.

Canonical basis. €j = (6j);.,

Connotation

A state v = (Vvi1),.,, outputs index i with probability
[Viq |2 = Re(v,-1 )2 + Im(v,-1 )2.

gty
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Measurement Principle

Being at v = (Vj1);.,, With probability [vj[?:

i<m>
@ The index i is output and
@ the computing control is transferred to the state e;.

This principle is applied just once at the end of any quantum algorithm, it
ptoduces a halting state.

If mis a power of 2:

Quantum gate. Any square (m x m)-unitary matrix U € C™™,

Quantum algorithm. Composition of a finite number of quantum gates,
followed by a measurement.
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Qubits and Words of Quantum Information

For the particular case of m = 2,

e =[1 0]" and e; = [0 1]": Canonical basis of C2
e is identified with the truth value false, or zero, and
e+ with the truth value true, or one.

qubit: Zgeg + z1e1, with zg, z1 € C, |20)% + 21> = 1
Hy = C?, H, = H,_1 ® Hj.
dim(Hy,) = 2", with basis By, = (€z, y-e1e0)s,_;...c1.00c(04)

&
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Conventional Dirac’s “ket” notation

|3n—1 & 80> = g igg
= e, ,®  -®e, 06,
=: len-1)---le1)leo) (2)

@ [0,2"-1] ~{0,1}", i & e =€n_1 - E180

@ Information word of length n:z € Eon = Z = 3 oc(0.1)n Zc€6

&
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© Quantum Gates
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Quantum Gates

| = [ (1) ? ] | : Hy — Hj is the identity operator.

cos(t) -sin(t)
sin(t)  cos(t)

For t € [-n, x|, Rot; = [ ] ‘Hy — Hjy

Ifx, = Vpeo+ /1 —pe;sthen

Roti(xp) = (cos(t) vVp —sin(t) y1 - p) e + (cos(t) V1 —p+sin(t) \/;_)) er.
For top = cos™"(—+/p), Roty,(X,) = —€o: gives 0 with probability

(-1)?=1.

For ti, = cos™"(4/1 — p), Roty,,(X,) = e1: gives 1 with probability 1. @

A rotation acts as an interference, either constructive or.destructive.
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N — [ 0 1 . Clearly, N : [ o N ] N is unitary and it switches
1 0 Z4 20

signals. Geometrically it is “a reflection along the main diagonal”.

Hadamard

| \

11 z 20+z S ,
= A .| “0 1| 40 1
H= @[1 1 ].CIearIy,H.[z1 ]n—> \/E[ 20— 21 ].Hlsunltaryandlt

“reflects the complex plane with respect to the axis x and then it rotates
counterclockwise an angle of 7 radians”.

&
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N®" . H, — H, acts as the “(2" — 1)-complement”, i.e. when it is evaluated
at the basic vectors

NE" (e8n71“'81 80) = €5,_1-6180 3)

where (8n_1 & '8180)2 aF (6n_1 oo '6150)2 =2"-1.

H®" : H, — H, is such that

1
H®"(eg..0) = —— -
(€0-0) (VB (86%1}ne ] (4)

e.g. acting in the first basic vector ey..q it produces the state that
“averages” all the basic vectors with uniform weights.

v

&3
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Controlled negation

C :H; — Hp, ex ® €y > €x ® exgy (®: xor). The second qubit is the

negation of the first input qubit if the second qubit was “on”. Second input

qubit serves as “control” to negate the first input qubit: “argument”.
C is not the tensor product of two unitary maps over H; .

Commuted controlled negation. D : Hp — Hp, (x,y) — D(x,y) = C(y, x).

W.r.t. canonical basis of Hbo,

o O o =
o o =+ O
- O O O
o =+ O O
o =+ O O
o O =+ O
o O O =
- O O O

v
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C and D generate a subgroup under the “composition” operation:

I C D CD DC CDC
l C D €D DC CDC
C C I CD D CDC DC
D D DC I CDC Cc CD

CD| CD cCDC C DC | D

DC| DC D CDC I CD C
cbc |cDC CD DC C D |

o
|

This group is presented by its unit / (the identity map), two generators C, D
and the relation CDC = DCD. The group is isomorphic to Ss.
Namely, if p = (1,2) is the reflection and ¢ = (1,2, 3) is the order 3 cycle,

then C & p, D & po ¢.
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Reverse
R, = CDC : Ho — Hb. Rg(e,' ®e,-) =ej®e,.

Ry =

o =+ OO
O O = O
- O O O

1
0
0
0

Foreach n > 2:
_ ®n _
Rn = Ry" (€s,_1--e160) = ©epeqtny

The operator reverses the “input word”.
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Pauli matrices

(10 (0 1 (0 i (1 0
7 o 1) l10) 27 i o) 70 -1

@ Hermitian and unitary: for j = 0,1,2,3, ojoj = 12
@ They conform a basis of C2*?;

a a
YA :( aoo :sz01 )e C®2 3¢y, C1,C2,C3 1 A = Cooo+C1071+Co02+C307
10 11
(7)

namely @
(co. €1, C2, C3) = 3 ((@00 + a11). (o1 + @10). i(@01 — a10). (a0o — @11
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@ The following relations hold: for 1 < j, k <3

ojok + oo = 20§k12 (8)
3
ook = Okla+ iZ Ejktoe 9)
=1
where gjx, € {-1,0, 1},
lejkel =1 & {j,k, £} = {1,2,3} and
gike = 1 © (j, k,€) is a clockwise rotation.
@ For a qubit z = zpeg + z1e4, with |9|*> + |12 = 1, we have that
012 = Z1€9 + Zpe1 and 02z = —izy1eq + iZpe are bit-flip errors in z,
while 032 = zpeg — z1e+ is a phase-flip error in z.
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Quantum speed-up

Any state in Hy, 07(2) = X ce(0.11n Zs€5 is determined by 2" coordinates. If
U : H, — Hj, is a quantum operator, the target state o-(Uz) consists also
of 2" coordinates.

A calculus involving an exponential number of terms is performed in just
“one step” of the quantum computation.

&
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0 Observables and the Heisenberg Principle of Uncertainty

@
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Observables

H: finite dimensional Hilbert space over C Eg: unit sphere.

H : H — His selfadjoint if Yx,y € H (x|Hy) = (Hx]y), or FT = H.

A selfadjoint map is also called an observable.

For any observable H, there exists an orthonormal basis of H consisting of
eigenvectors of H. Let (f;); be such a basis.

Then for any z = 3; aif; € Eg, with ;|ail® = 1,

<Z|HZ> = <Z a,'f,'|H[Z ajfj]> = <Z a,-f,-l Z aj/ljfj> = Z /ll-|a’-|2 = E(/li)
i j i j i

(z|Hz) is the expected observed value of z under H.

Standard deviation

AH:H—->R, x> aAH(X) = V(H2X|X) — (HX|X)2.
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Let Hq, H> : H — H be two observables. Then V¥x € H:
(Ha o Hix|x) (X|H2 o HyX) = (Hy o HaX|x) (X|H; o HoX) = [(H1X|HaX)I?,

and, from the Schwartz inequality, it follows [(HyX|HaX)[? < [|[H1 X||?||HaX|[.

Robertson-Schrédinger Inequality

]
2/((HroHa = Hp 0 Hi XX < [IHsxIP(IHax|2. (10)

&
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[Hi, Ho] = Hq o Ho — Ha o Hy: Commutator .
Hy, H> are compatible observables if [Hy, Ho] = 0.

Heisenberg Principle of Uncertainty

For any two observables Hy, H> and any z € Egy,

IaH; (2)RlaHa(2)2 > %|(z| [Hr, Ho] 2)[° . (11)

v

If the observables are incompatible, whenever H; is measured with greater
precision, Hy will be with lesser precision, and conversely.

A state z is decomposable if is of the form z1 ® - - - ® z, = o7(2), with

z; € Hy. A non-decomposable state is an entangled state.

&
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© Evaluation of Boolean Functions
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Evaluation of Boolean Functions

@ V = {0, 1}: set of classical truth values
@ There are 22" Boolean functions V" — V
@ There are 2"" functions V" — V"
@ Each of the 2" assignments ¢ = (ep-1,...,&1,&) € V" corresponds
with an e, € Hj, of the canonical basis of Hj,.
Let f: V" — V be a Boolean function.
o Uy: a permutation 2" x 2" 1-matrix s.t. Ur(e, ® €g) = (es ® €f()).
@ Uf is an unitary matrix

Let Ac V"and a = card(A). lf uy = % Y sca € ® g then
Ur(ua) = % 2iecA € ® €1(¢)-

in A is obtained. A final measurement selects a pair e; ® (., With £ €
each with probability 1.
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e Deutsch-Jozsa’s Algorithm
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Deutsch-Jozsa’s Algorithm

Let V = {0, 1} be the set of classical truth values. Among the 22 = 4
Boolean functions f : V — V, two are constant and two are balanced.

1

f_0|—>0 f_0|—>0 f_O|—>1 f_Oi—>
1 B 0" 1T b, 1% 1 0""% 1 1

v

Deutsch-Jozsa’s problem

Decide, for a given f, whether it is constant or balanced “in just one
computing step”.

v

&
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Let Us be the permutation 22 x 22-matrix s.t.

Ur(ex ® €2) = (ex ® €(211(x)) mod 2)-

Ur is an unitary matrix and is similar to the “controlled negation” gate.
Using Hadamard’s operator H, let H, = H® H.

H(eg) = xo = %(eo + e4) and

H(e) = x4 = %(60 —e4) € Hy hence

Hg(eo ®e1) = H(eo) ® H(e1) =Xo® X1 = %(eoo — €01 + €10 — e11) € Ho.
1
U(xo®x1) = E(eo,f(o) — €70y T €111 ~ & 7))
Xo®Xy iff=f
X1 ®xq1 iff=f
-X1®Xy iff=+0h
—Xo® Xy iff=1f3

&
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H> Ung(eo ® e1) = H> Uf(Xo ® X1) =

Hxy ® Hx4
Hx1 ® Hx4
—Hx1 ® Hx4
—Hxp ® Hx4

if f = f,
if f = f
if f = 1,
if f = 13

e®ey ff=rf
e®e iff="f
-e1Qeq iff=10h
—-eyRey iff=1

The quantum procedure H,UsHs, from the basic vector eg ® e is producing
a vector of the form ces ® e; where € € {—1, 1} is a sign and S is a signal

indicating whether f is balanced or not. S coincides with f(0) & f(1).
The measurement principle outputs es ® e with probability > = 1. It gives
the value S from the first qubit.
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