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Abstract In this work we address the problem of how to reconstruct the three-
dimensional form of a terrain from its contour map. We present a methodology
that comprises several algorithms able to solve this problem using both the skele-
ton and crust geometrical forms. We have divided this problem into two parts: (1)
processing the scanned images of the topographic map to obtain samples of the
contour lines, and (2) generate the best triangulation from the created sampled
points in (1). Furthermore, we present an application example of our algorithms.
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1 Introduction

The problem to reconstruct a three-dimensional surface from a set of flat contours is an
important problem if different fields. By example, biologists try to understand the form
of microscopic objects through serial sections of the object. In clinic medicine, data
generated by several techniques such as computerized axial tomography, ultrasound,
and nuclear magnetic resonance, supply several cuts through the object under study [1].
In topography, contour line maps are yet the most common form to represent elevation
data of Earth surface, and also they are an aid in quantitative studies in the natural
sciences: weather at local scale, movement and action of the water, and consequently,
numerous biological processes conditioned by them, are closely related to the form and
altitude of the terrain surface where they are developed [2].

Despite the development of systems based in modern spatial satellites, a great deal
of the world’s database of terrain elevation is in the form of contour overlays from
traditional mapping agencies (i.e., INEGI [3]). These maps have the advantage that
they were developed using human understanding of the observed landforms, but the
disadvantage that they can not be easily converted to a useful digital format. Due to the
high cost of direct methods for terrain capture, cartographic documents such as contours
maps are preferred [7].

By the said it before, the project of reconstruct the surface of a terrain represents an
attractive visualization problem.

The problem of terrain reconstruction can be seen as a special case of the general
problem of three-dimensional reconstruction from cross bidimensional sections. Re-
construction in this field means an interpolation problem ofn contours each one with



a specific elevation. The characteristic of these contours is they are not intersected and
they are nested.

Here we proposed that the solution to the problem of the 3D terrain reconstruction
can be divided in to parts: (i) process the scanned topographic map image to obtain the
contour lines, and (ii) generate the best triangulation from the contour map.

Part (i) is a problem of digital image processing. The automatic extraction of both,
the contour lines, and the altitude of them, is a complex task with difficult solution [4].
We simplify this problem: we start with a scanned image of a draw of the contour lines.
Part (ii) has been resolved by several authors in different ways.

In 1998 Amentaet al. [5], in the Texas University, introduced the concepts ofcrust
andβ-skeletonto the reconstruction of curves. These concepts are defined in terms of
two basic geometrical constructions: the Voronoi diagram and its dual, the Delaunay
triangulation. The idea is to construct a graph over a set of bidimensional points, which
capture its form in the following way: if a curve is smooth,F , is sampled with enough
density, the graph over a set of samples,S, is a polygonization, or polygonal reconstruc-
tion, of the curve without superfluous edges. The polygonal reconstruction ofF from
S is a graph that connect every pair of samples adjacent alongF , but not to others.

In 2002, Dakowicz y Gold [6] of the Politechnique University of Hong Kong, take
up again the concept introduced by Amenta and the concept of triangulation methods
(TINs), proposed a methodology to terrain reconstruction from contours, in a way that
inserting some points in the skeleton in a TIM model is guarantee to eliminate theflat
triangles, where the three vertices have the same elevation. One additional supposition
about the local uniformity of the slopes, provide useful information to assign elevation
values to the skeleton’s points. In the paper also are compared several interpolation tech-
niques using the extended set of contours. A previous work closely related is proposed
by Thibault and Gold [7] in 2000.

Finally, in 2003, Hormanet al.[8], of the California Institute of Technology, present
a new contour interpolation method, For a point between two contours, is calculated the
value of its elevation with Hermite interpolation based in the shortest distance to the
contours and its heights. The curves of the generated surfaces arcC1-continuous, ex-
cept in some terrain portions like mountain chains or valleys, which are reconstructed
as closed forms. Their proposed method reconstruct also summits and depressions. Ac-
cording to the authors, their approach allows a efficient numerical implementation.

We going now to develop every part that to solve the problem of 3D terrain recon-
struction.

2 Image Processing

We start the image processing part with a digitalized image and we must obtain a set of
points that sample each contour. From the input image we can extract all pixels shape
the contour. However, it is no necessary to get all the pixels, these can be reduced taking
sampled points where the curves are smooth. To carry out this sampling, we can see the
problem in an inverse way: clearly it is impossible to build an algorithm that reconstruct
any curve from any set of points; it is necessary that the set of points keep some quality
conditions. In [5] resolves the sampling problem is the following way: the density of



the samples required change in accordance with a measure of local size on the curve, so
that the zones with less details can be sampled with a smaller density. A pointp must
be to a distance less thanrLFS(p), wherer ≤ 1, between two samples over a curve.
The LFS is the function of theLocal Feature Size; the LFS of a pointp s the Euclidian
distance fromp to the nearest point to the medial axis.

If we have a binary input image, then to sample the level curves we need follow the
next steps:

1. Thinning the contour lines to a width of one pixel. We have used the thinning algo-
rithm described in [9, Sec. 8.1.5] and programmed in [10]

2. Extract the contour lines
3. Calculate the LFS of the level curves, that is, over the image created before in the

step 2, as follows:

(a) Calculate the distance map using the best approximation with integer opera-
tions, the chamfer [11] of3× 3 size

(b) Extract the highest points from the distance map using the mask showed in Fig.
1. This mask is as well as a detector of maxima (weights sum is zero), it is also
a smoothing submask over the nine central pixels. The result to apply steps 3a
and 3b is themedial axis transformof the contour lines image.

(c) Calculate the distance map to the output image in the last step 3b. This new
image is the LFS of the contour image.

4. Sample the contour lines.
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Figure 1: Used mask to peak detection on the distance map

The step 2 of the methodology presented before can be performed using the algo-
rithm 1.

The algorithm 1 is easy to understand: once a contour pixel is found, it is added
to the list of pixels that belongs to the contour list. After that, the pixel is checked
(using the function checknext point()), if the pixel is terminal (branch= 0), or it has a
neighbor pixel ((branch= 1), or it has several branches (branch> 0). Finally the current
pixel is erased. If the current pixel only has a neighbor, the new pixel simply will be
the one returned by the function goto next point(); to implement this function must be
considered that the thinning algorithm, in the step 1, give the contours in a 4-connected
way, then a 4-neighbor (instead a diagonal neighbor) is preferentially chosen. If the



Algorithm 1 Extraction of the contour lines
Input: Binary image to analyze
Output: A list of the contour lines,Li,j , i lines,j pixels per each one

i ← 0 {Counter of the number of contours}
for each pixelp in the input imagedo

if p is black then {pixel in a line}
j ← 0

else
continue

endcontour← FALSE
flag← TRUE
repeat

branch← checknext point(p )
if flag = TRUE then
Li,j ← Li,j + p
j + +

erasep {Set pixel to white}
if branch= 0 then

if emptystack( ) then
endcontour← TRUE

else
p ← pop( )
flag← FALSE

else if branch= 1 then
p ← go to next point(p )

else
push(p )
p ← go to next point(p )

until endcontour= TRUE
i + +



current pixel has branches, then it is pushed in astackand, how it was added before to
a contour list, a flag is set; so the pixel does not will be added again to the contour list
in the next iteration, but it will be checked.

The sampling of the contour lines was implemented using the algorithm 2.

Algorithm 2 Sampling the contour lines
Input: The list of pixels that shape the contours,Li,j , i contours,j pixels per contour, and the

sampling factorr ≤ 1.
Output: The list of the set of pointsr-sampled,Ri,k, k sampled points per each contouri.

for each contouri do
k ← 0 {Counter of the number of samples}
p ←Li,0 {first points in the contouri}
Ri,k ← Ri,k + p
for each pointp in Fi,j , j > 0 do

pmiddle ← Fi,j

measure← r ∗ LFS(pmiddle)
d ← EuclidianDistance(p, pmiddle )
if d ≥ measurethen

d ← 0
while d ≥measure and there are points in the contourdo

p ← pixelLi,j+1

d ← EuclidianDistanc(pmiddle, p )
k + +
Ri,k ← Ri,k + p

The description of algorithm 2 is as follows: the started pixel in a contour belongs to
its set of sampled points. For the next points, thecharacteristic measureof the current
point (r ∗LFS(p)), and the Euclidian distance between the previous sample and the cur-
rent pixel, are calculated. If the distance is greater or equal to measure of the point, then
we are found a point,pmiddle, located roughly in the middle of two samples; we proceed
to calculate the Euclidian distance betweenpmiddle and the next points. Here, we need
to find a point of which distance to thepmiddle is greater or equal to thecharacteristic
measureof pmiddle. Such point will be the next in the set of sampled points. We iterate
until to finish all contours.

3 Interpolating the contour points

Once we have all the sampled points that shape the contours, the easiest way the obtain a
3D reconstruction is calculating the Delaunay triangulation to all of them, and assigning
altitude values to each contour. However, this results in a bad quality reconstruction,
because of the presence of flat triangles and big triangles among the contours (there are
not smooth changes in the surface).

Here we propose a methodology based in [6], and using the geometrical construc-
tions ofthe crustandthe skeleton:



1. The crust is the sampled points of the contour lines.
2. The skeleton is calculated. All the skeleton’s points are stored in a listLe.
3. The number of skeleton’s points is reduced. This is obtained calculating the average

distance among the nearest points under a threshold (this could be the smallest
characteristic measure).

4. Compute the Delaunay triangulation with the total set of points ( crust’s and skele-
ton’s points).

5. Assign altitudes to each vertex
6. Visualize the reconstructed terrain

The computation of the skeleton, in the step 2, was obtained according to the algo-
rithm described in [6]. In this algorithm are used the Voronoi diagram, the Delaunay
triangulation (both calculated with theqhull program [12]), and the standard testInsid-
eCircle. The testInsideCircleis applied to four different points in the plane, namedA,
B, C andD; it is determined if pointD is outside of the circle drawn through pointsA,
B, andC; it is assumed that the circle is counterclockwise sense.

To obtain the skeleton, it is built using the Voronoi diagram and the Delaunay tri-
angulation, both made with the brush’s points. After that, for each Delaunay edge (A,
C) and its dual Voronoi edge (B, D), the testInsideCircleis computed. If the test is
positive, meaning thatD lie outside of the circle drawn through (A, B, C), then the
Delaunay edge (A, C) is part if the crust. And is the test fail, the Voronoi edge (B, D)
is included in the skeleton.

To assign an altitude to each vertex, we used the algorithm 3. This algorithm is
too easy: all points of a crust contour have the same altitude, it taken directly from the
topographic map. For a skeleton’s point, if it lies between two brush’s points, then it
will be the average of their neighbor points; if the point lies between points of the same
skeleton, it will be a altitude proportional to the smallest distance to their neighbor
points.

Algorithm 3 Assigning altitudes to each vertex
Input: This list of crust’s points,Lc; the list of skeleton’s points,Le; the list of triangulation’s

vertices,Lt.
Output: Altitude of each one of the vertices

for each contour inLc do {crust’s points}
Assign by hand the value of the altitude

for each pointp in Le do {skeleton’s points}
L ← neighborVertices(p, Lt )
if vertices inL belongs to different contours inLc then

altitude ofp ← average ( altitudes inL )
else ifvertices inL belongs to only one contour inLc then

altitude ofp ← proportional to the smaller distance fromp to points inL
for each pointp in Le without assigned altitudedo
L ← neighborVertices(p, Lt )
altitude ofp ← proportional to distances fromp toL



4 Practical example

In the upper part of Fig. 2 we see a binary input image. This image is the thinning
contours of a montain taken from the INEGI’s topographic map E14B47. In the middle
of Fig. 2 we see a image of the contour interpolation, the blue lines are the crust, in red
the skeleton, and in gray the triangulation. In the lower part of Fig. 2 a 3D view of the
obtained 3D reconstruction is shown. Rendering was obtained with OpenGL.

5 Conclusions

We have proposed a methodology to perform the three-dimensional reconstruction of
a terrain, using the geometrical forms of the crust and the skeleton. The problem of
3D reconstruction has been divided in two parts: one is solved using image processing
techniques, and the other one by computational geometry. As input to the first part we
use a scanned image of the contour lines that define a terrain, and as a output we obtain
sampled points per each contour. The sampling density depends of the details in each
curve. The second part use the geometrical constructions of the crust and the skeleton.
The final visualization require to triangulate all points and assign altitudes to every one.

As future work we expect to add a user interaction with the 3D reconstruction:
the user could hide slices, and clicking on the 3D map will supply basic geographic
information.
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Figure 2: Application example images. See details in the text


