
Software for a X Ray Tomograph

Rosario Mart́ınez Gómez, Israel Vite Silva, and Luis G. de la Fraga

Cinvestav, Department of Computing.
Av. Instituto Politécnico Nacional 2508. 07360 México D.F., México

Phone (+52) 55 50613755, E-mail: fraga@cs.cinvestav.mx

Abstract A software tool-box has been developed, which allows, not
only the volume reconstruction from X ray tomography images, but also
the visualization of reconstructed isosurfaces. Although it may be con-
sidered that the software needed is tightly linked to the hardware, we’ll
prove that we need five different (hardware independent) software com-
ponents for the whole process: (1) acquisition, (2) projection’s centering,
(3) reconstruction, (4) isosurfaces segmentation and (5) visualization.
The reconstruction component was taken from Xmipp, an old software
for 3D reconstruction of biological macromolecules, segmentation was
developed using k-means algorithm and the visualization was built using
the splatting technique. In addition we compare splatting with another
two surface visualization techniques such as simple voxels and deformable
simplex meshes. The most of the software components were developed
in C, C++ and perl. The graphical user interface for the visualization
component was developed in C++ using Qt and OpenGL libraries.

Keywords: 3D visualization, splatting algorithm, tomography.

1 Introduction

The objective of a three-dimensional reconstruction is to obtain information
about nature and structure of materials that conform the inside of an object.
The are several applications, for example data from electron microscopes are
used to reconstruct the molecular structure of proteins or to reconstruct the x-
ray structure of an astronomical object such as supernova remnant, however one
of the most important applications has been in medicine to obtain the density
distribution within the human body from multiple x-ray projections [1]. This
process is referred to as computerized tomography and is a widely used technique,
which enables the reconstruction from projections and the visualization of the
internal structure of objects.

A tomograph generates images, named projections, of cross sections of the
scanned object, from data obtained by measuring the attenuation of x rays along
a large number of lines throughout specimen under study. Despite the fact that
acquisition part, in a process of computerized tomography, is tightly linked to
the hardware, another components of software are needed in order to solve the

whole problem of visualizing reconstructions. Thus, we have analyzed five main
parts of software:

1) projection’s acquisition, 2) projection’s centering, 3) specimen’s recon-
struction, 4) segment the different densities of the reconstructed object, and
the last, 5) visualization of the surface for each segmented density. Every part
is independent of the others and consists of one or several programs, but all
parts must be used to resolve the whole problem of visualizing a tomographic
reconstruction.

This paper is organized as follow: in section 2 are described part (1) to (4)
of the developed software. In section 3 is described the visualization part devel-
oped with splatting technique and it is compared with others two visualization
techniques, one with voxels faces, and the other one with deformable simplex
meshes. Finally the conclusions are presented.

2 Software Parts

2.1 Acquisition

In this part we acquire projections of the specimen under study. In Fig. 1 is shown
a photograph of the tomograph for which we developed the software described in
this work. The X ray source generates radiation that goes throughout the speci-
men. X rays are invisible to human eye, therefore to detect them, their photons
must hit a phosphorescent screen, by this way the intensity of the light viewed
on the screen is proportional to the density and composition of the scanned ob-
ject. In order to obtain several specimen’s projection views, the revolving plate
rotates the specimen around a fixed axis. The projections are collected with a
CCD camera, it uses an optical device to get the views on the phosphorescent
screen. The process geometry depends on a single rotation angle, it is known as
single axis geometry [1,2].

All tomograph’s devices are controlled by an old PC with ISA slots and
Windows 98 operating system. The card’s drivers to transfer the CCD’s images
to the PC, and to shut the X ray beam, only work in that operating system.
There is not enough information about the PC’s cards, therefore we were unable
to migrate this program to the GNU/Linux operating system.

2.2 Reconstruction

We built a synthetic volume of mathematically described objects (it is called
phantom), placed at desired positions, at desired orientations and of desired
size and density, in order to separate possible problems which can not be sep-
arated physically such as acquisition’s noise. In addition we tested two recon-
struction methods: weighted backprojection and ART (Algebraic Reconstruction
Technique), both were adapted from Xmipp collection [3], which is an old free-
software for reconstructing biological macromolecules. Since backprojection’s al-
gorithm calculates the inverse process for generating a projection the result is

Figure 1: A tomograph’s photograph.

blurred, because the most of information is concentrated in the low frequen-
cies. Then a filter must be applied to correct this problem. We implemented
the Wiener and Ramp filters and these are applied to each projection in the
reciprocal space. Ramp-filter is typically used in weighted backprojection hence
it produces more weight to high frequencies. On the other hand, Wiener-filter
has the aim of filtering noise which it is tightly linked to the acquisition process.

Ramp-filter is very simple, in two dimensions it is specified as in Eq. 1. Where
r is equal to the circle’s radius i.e.

√
x2 + y2, and k is a constant proportional

to the Nyquist frequency [4].
Although the reconstruction weighted by Ramp-filter is acceptable, it become

worse when noise is present since this filter amplifies high frequencies. In order
to solve it Wiener-filter could be used.

q(r) =
{ |r|, if r ≤ k

0, if r > k
(1)

To design the Wiener-filter, we require knowledge about noise and object
statistics. Eq. 2 express the Wiener-filter, where f =

√
(x2 + y2), and typical

used values are α = 0.5 and SNR = 60; the noise commonly is modeled as white
additive noise [5].

A(f, θ) =
|f |2πα(SNR)

2πα(SNR) + |f |(α2 + 4π2f2)
3
2

(2)

To test the developed programs we generated seventy two phantom’s pro-
jections (taken every 5 degrees on the tilt angle), then we performed three
reconstructions using the reconstruction algorithms: backprojection, weighted
backprojection, and ART. To compare the reconstructions, we drew the changes
in the density along the 15th row on the 30th slice as is shown in Fig. ref-
fig:eficiencia. The simple line represents the values of the original phantom’s
densities, the backprojection-reconstruction is represented by the square-line, it

is improved when Ramp-filter is used (asterisk-line), however this filter decrease
the dynamic amplitude, thus the best reconstruction is developed by ART, which
it is represented by the cross-line.

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60 70

original
art

bp_rampa
bp

Figure 2: Graph of voxels’ density values along the 15th row and 30th slice of the recon-
structed volumes. The best reconstruction is performed by ART, which it is represented

by the green line.

2.3 Projections centering

Before performing a 3D reconstruction, all projections must be located in a
coordinate system fixed to the object, because if we take projections without
being aligned, we will reconstruct a distorted volume [1,2]. It is possible to set
experimentally the coordinate system origin, first we need to put the specimen
on the revolving plate, after rotating the specimen we are able to verify if the
still-specimen is in the plate’s center. This is a boring trial-error process, which
could be solved by software, then we going to show how we solved this problem.

The centering problem can be divided in two cases: (a) when object is small,
and (b) when object is big. Fig. 3 shows the (a) case, a noncentered small object,
the object’s center is a l distance from the revolving plate center.

To solve the second case, noncentered projections of a small object, we can
assumed that the coordinate system origin was in the object’s center of mass,
hence we could estimate it with great accuracy from the projection’s centroid
because these are free of noise.

The projection’s center is a good reference when we can calculate it, that is,
when each projection shows the whole object, however we can not calculate the
centroid when the object is bigger and their projections do not show the whole
object. Fig.4 is a diagram of this case: a big object is not in the revolving plate’s
center and the object’s center is at a l distance of the plate’s center. As we know

Phosphorescent
Screen

CCD
Camera

l

X Ray Source Revolving Plate

Figure 3: The object is not in the plate’s center. There is a distance l from the plate’s
center to the specimen’s coordinates origin.

the tilt angle for each projection, the displaced distance for each projections is
l cos φ, where φ is the projection’s tilt angle.

�������
�������
�������
�������

�������
�������
�������
�������

Phosphorescent
Screen

CCD
Camera

l

X Ray Source Revolving Plate

Figure 4: A projection does not show the complete object’s information when the object
is bigger that the width of the X ray beam.

To center the big object projections we assume not only that their projections
are taken with a small increment in the tilt angle but also the displacement is
only on the x axis, therefore the projection taken at 90 degrees must have a
displacement of value zero, and that projection can be used as a reference to
centering the others projections. Besides, we calculate, using cross-correlation,
the relative displacement between consecutive projections (so they have a small
displacement in the tilt angle). The increment in the tilt angle must be less than
5 degrees to get an error in the calculation of the displacement less than 1 pixel.

To automatically to know which is the reference projection from the displace-
ment data, we need to apply the Eq. (3). In Eq. (3) x is the relative displacement
between two projections, j is a index to the reference projection, d is the absolute
displacement for the k projection.

dk =





−∑j−1
i=k xi if k < j,

0 if k = j,∑k
i=j+1 xi if k > j,

(3)

In order to apply Eq. (3), we suppose that we have all projections in the same
order as were acquired and we have calculated the x values, the displacement

between a projections with respect to the previous projection. The reference
projection is the corresponding to the minimum value of function s in Eq. (4),
that represent the sum of all absolute displacements for n projections and dk

calculated as Eq. (3).

si =
n−1∑

k=0

dk (4)

2.4 Segmentation

The reconstruction stage produces a three-dimensional matrix with a density
value for each of its elements. To separate the different volumes with the same
densities, we decide using the k-means algorithm as a clustering kernel, since
it classifies n objects into k disjointed groups, based in some object’s features.
Thus, we use the cluster-minimal distance between a density value and a group’s
center. Note that we need only separate the different densities, or to separate
the objects composed by the different densities; to separate the objects by their
structural components it is necessary to use a clustering algorithm that takes
into account the spatial coordinate (x, y, z) for each voxel.

The k-means algorithm perform the following steps:

– Step 1: Initialize the group’s centers
– Step 2: Each element is assigned to a group according to the minimal distance

between a group and the element.
– Step 3: For each group the center is recalculated with the new assigned

elements.
– Step 4: While there are changes in the group’s elements, go the step 2.

In the developed program, the number of clusters and the groups centers
must be initialized by hand from the density-histogram information. The number
of clusters is equal to the number of peaks. Each group’s center is defined by
two threshold values around the histogram peaks. The segmentation program
produces binary volumes as number of groups were specified.

3 Surface Visualization Using Splatting

Splatting is a novel technique for rendering a volume based in points, it is used
to render surfaces or volumes in its surface representation, that is, a 3D object
is represented as a collection of samples, which they are lying over its surface
[6,7]. Each sample point has position, normal, color and some others parameters,
which allow to know the distance among sample points and their neighbors. The
projection of a point (and its contribution around) is known as the rendering
primitive splat. In order to represent the splats we used triangles, squares, and
circles (actually a circle is a polygon of twelve sides). Each one of them seems

a small planar patch, which are assigned to a point oriented along the object’s
surface.

The aim of our software component is to visualize the surface of the recon-
structed volumes using the splatting technique. So as to perform this part the
following steps were made:

– Step 1: Extract the surface for each segmented volume using mathematical
morphology. The center of each voxel will be the coordinates of the point and
this point will be used to represent the surface.

– Step 2: Calculate the normal to each point over the surface.

– Step 3: Associate a splat to each surface point and set its position according with
its normal.

By subtracting an eroded volume (it built with a structural element which
consists of a voxel and its six neighbors), to the original volume we performed
step 1, the extraction of the voxels in the binary volume surface; so that we
developed an program which receives a binary volume and produces another
binary volume only with the surface voxels set to 1.

The step 2 is solved in very simple way: A plane is fitted to a point and
its neighborhood, then the point’s normal is obtained. The plane’s equation is
given by Ax + By + Cz + D = 0, in addition if we divide this equation by D,
we will obtain A′x + B′y + C ′z = −1, that is, we only need three points for
obtaining the values of the three unknowns, however we could have 27 points in
the neighborhood; therefore we decide to use the SVD method (Singular Value
Decomposition) to solve the overdetermined system, moreover by using SVD we
assure that we have gotten the best plane fitted in the least squares sense. Once
we calculated the plane we know that the point’s normal is (A,B, C). Now we
need the correct normal direction, so we checked the values of the two neighbors
voxels in the normal’s position of the original volume; the correct direction is
where the neighbor voxel has the value of 0 (outside the volume no density
exists).

Finally, to perform the step 3, a splat is represented using OpenGL-primitives;
for that reason we designed and programed an graphical user interface (GUI)
made in Qt [8] and OpenGL [9] to visualize the volumes. Qt is a library to
rapid prototyping developed in C++, it has an excellent documentation, and it
allows to assign an OpenGL-widget to the GUI. As input to the GUI we have
a file with the format: a number in a single row that represents the maximum
distance between two voxels, 6 numbers per row of the three coordinates values
to every point and three of their normal’s values. Coordinates-values must be
normalized between −0.5 and 0.5. The splat-rendering primitive was performed
when the visualization is made, that is, a splat is assigned to every point, located
according to its normal, and with a size of the maximum distance of two voxels
in order to avoid holes in the visualization. Furthermore, we represented splats
as triangles, squares, and circles, besides it allows the visualization of points as
a quick visualization help.

3.1 Results

The visualization of the trial-phantom and its ART-reconstruction are presented
respectively in Fig. 5 and Fig.6. The first row shows the visualization with points;
we can watch splat’s representations with triangles, squares, and circles corre-
sponding to the second, third, and fourth row. In spite of rendering with triangles
should be the cheapest, in the sense of computational resources, we weren’t able
to notice that, since we tested a relatively small phantom; in other words, we
didn’t felt a loss of performance with any splat primitive. However, the best
splat is represented with circles, because we can see holes on images on second
and third row, which they correspond to the triangle and square splat imple-
mentations.

The reconstruction’s visualization is good as we can see in Fig. 6, also the
phantom’s size was lightly increased since we performed a morphological closing
operation in order cover holes in the reconstructed surface.

We also made a comparison of the phantom’s visualization between splatting,
simple voxels (using Scubes program [10]) and a deformed simplex mesh [11]. As
we can see in Fig. 7 the visualization with simple voxels is not good because the
normals are calculated to every voxel face. The visualization with the deformable
simplex mesh is not good, because it is unable to represent an object with genus
grater than 0 (with one o more holes), in addition is not a simple task to assign
initial values to the mesh and the deformation’s program is not easy to use. The
visualization with splats not only is easy to use and fast to calculate but also
produces the best quality; however it is necessary for splatting that the surface
is covered with a enough number of points to avoid holes in the visualization.

4 Conclusions

We developed the software for working with a x-ray tomograph. We proposed a
software made of five components: acquisition, projection’s centering, 3D recon-
struction, isosurface’s segmentation and visualization. We designed and built
four of the five parts. The 3D reconstruction component was adapted from
Xmipp, we used weighted backprojection and ART algorithms of this collec-
tion. In our test, ART algorithm is better than weighted backprojection: the
former produces not only a better quality but also a better dynamic amplitude.
We solved by software the problem of projection’s centering.

For the segmentation part, we use the k-means algorithm so as to cluster
the density values of the voxels around k densities. The number of densities
and the initial values for the groups centers are given by hand from the 3D-
reconstruction’s densities-histogram.

To visualize the isosurfaces on the reconstructed volumes we designed a sim-
ple algorithm to calculate the surface’s normals: a plane is fitted using SVD to
the neighborhood to each surface voxel. We used the voxel’s center as the point
that sampling the surface. In addition, we used OpenGL primitives to represent

a splat, we tested the primitives of triangles, squares, and circles. The best visu-
alization in provided by the circles (actually a circle is a polygon of twelve sides).
We show that splatting is easy to use give us the best quality visualization.

We think that all the programs developed must be tunned according to a
specific application, therefore they must be changed to adjust the visualization
to an specific reconstruction application task.

References

1. Gabor T. Herman. Image Reconstruction From Projections. ACADEMIC
PRESS,INC, Orlando, Florida 32887, 1980.

2. John C. Russ. The Image Processing Handbook, chapter 9, 10. CRC PRESS &
IEEE PRESS, 3. edition, 1999.

3. R. Marabini, I.M. Masegosa, M. C. San Martin, S. Marco, J.J. Fernandez, L.G.
de la Fraga, C. Vaquerizo, and J. M. Carazo. Xmipp: An image processing package
for electron microscopy. Journal of Structural Biology, pages 237–240, 1996.

4. Edwin L. Dove. Notes on computerized tomography. In Bioimaging Fundamentals.
Dove Â Physics of Medical Imaging, 2001.

5. Image projections and the radon transform.
http://www.owlnet.rice.edu/ elec539/Projects97/cult/node4.html.

6. Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus Gross. Sur-
face splatting. In Eugene Fiume, editor, SIGGRAPH 2001, Computer Graphics
Proceedings, pages 371–378. ACM Press / ACM SIGGRAPH, 2001.

7. Christopher S. Co, Bernd Hamann, and Kenneth I. Joy. Iso-splatting: A point-
based alternative to isosurface visualization. In Proceedings of the 11th Pacific
Conference on Computer Graphics and Applications. Computer Society, 2003.

8. Qt. http://doc.trolltech.com/3.0/index.html.
9. Opengl. http://www.opengl.org/.

10. Luis Gerardo de la Fraga and Feliú Sagols Troncoso. Scubes: A program to visualize
vox-solids. In VII Conferencia de Ingenieŕıa Eléctrica. CINVESTAV, 2001.

11. Jorge Eduardo Ramı́rez Flores and Luis Gerardo de la Fraga. Basic three-
dimensional objects constructed with simplex meshes. In Electrical and Electronics
Engineering, 2004. (ICEEE). 1st International Conference. CINVESTAV, 2004.

Frontal view using points Lateral view using points General view using points

Frontal view using triangle
primitive

Lateral view using triangle
primitive

General view using triangle
primitive

Frontal view using square
primitive

Lateral view using square
primitive

General view using square
primitive

Frontal view using circle
primitive

Lateral view using circle
primitive

General view using circle
primitive

Figure 5: Comparison of the visualization with points and three primitives, triangle,
square and circle, to render the splats.

Frontal view using points Lateral view using points General view using points

Frontal view using triangles Lateral view using trianglesGeneral view using triangles

Frontal view using squares Lateral view using squares General view using squares

Frontal view using circles Lateral view using circles General view using circles

Figure 6: Visualization using different splats of the reconstructed phantom.

Frontal view using simple
voxels

Lateral view using simple
voxels

General view using simple
voxels

Frontal view using a
deformable simplex mesh

Lateral view using a
deformable simplex mesh

General view using a
deformable simplex mesh

Figure 7: Comparison of the visualization with other two techniques: using simple vox-
els and a simplex mesh deformed to cover the phantom surface.

