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Abstract—We investigate the projective properties of the feature consisting of two

concentric circles. We demonstrate there exist geometric and algebraic constraints

on its projection. We show how these constraints greatly simplify the recoveries of

the affine and Euclidean structures of a 3D plane. As an application, we assess the

performances of two camera calibration algorithms.

Index Terms—Imaging geometry, concentric circles, projective plane, circular

points, camera calibration.

�

1 INTRODUCTION

THE issue of inferring metric properties about the camera and the
scene from projections of conic features has been intensively
investigated in the computer vision literature, e.g., regarding
calibration or structure from/and motion problems [1], [11], [12],
[14], [16]. Conic features are arguably popular for one main reason:
treated as targets, they can be easily detected and robustly estimated
e.g., using the method of [4]. Quadrics and conics play a central role
in projective geometry [17], which, for its part, has revealed to be an
essential theory in designing unified frameworks for solving
problems. For instance, [16] elegantly uses properties of quadric
pencils to reconstruct the 3D planes of noncoplanar ellipses, from
known projection matrices. In fact, the importance of conics and, in
particular, of circles, is quite clear in the case of a plane-basedworld.
The important following results include projective properties
which, if satisfied for some planar entities, also hold for the imaged
entities under any homography. 1) The affine structure (AS) of a
3D plane is given by its vanishing line, i.e., its imaged line at infinity,
whereas the line at infinity is in pole-polar relation [17, p. 119] with
the center of any conic. 2) The Euclidean structure (ES) is given by the
imaged circular points (ICPs), whereas the circular points are, by
definition [8, pp. 52-53], two complex conjugate points at infinity,
common to all circles, including the absolute conic [8, pp. 81-83]. As
a direct result of 2), thanks to [21], the plane-based calibration
problem can be stated as that of fitting the imaged absolute conic
(IAC) to N � 3 ICP-pairs, providing a closed-form solution for the
intrinsic parameters [19], [25].

In computer vision, circular features are widely used, in

particular, for calibration purpose. On this matter, one might
criticize calibration algorithms to not entirely profit from the

underlying projective properties of such features. For instance, in

[9], [20], the centers of projected circles are generally treated as the
projected centers of these circles, which is improper under general

perspective projection. In search of a closed-form solution, this
introduces a bias, which is removed later using iterative techniques.

From our previous work [13], we know that, by replacing a circle by

a pair of concentric circles, the projected center can be recovered
very accurately. In plane-based calibration [19], [25], the ICPs are
extracted from world-to-image homographies, themselves esti-
mated from point correspondences, using corners as features, not
circular features. So, why not recover the ICPs directly, using circles
instead of points? This idea is tackled in recent works [15], [23], [24]
which describe so-called new calibration techniques. The term
“new” probably refers to the way the ICPs are recovered since the
calibration itself is strictly based on the samewell-known algorithms
as in [19], [25]. In [24], no less than three projected coplanar
concentric circles of known radii are required to compute the ICPs.
Whereas [15] is discussed later in this section, [23] is worth dwelling
on: The ICP-pair can be identified among the two intersection point-
pairs of two projected unknown (arbitrary) circles, by distinguish-
ing the two “associated lines” spanned by these pairs. Unfortu-
nately, no technical aspect is discussed; without any other
consideration, the prerequisite is to find the complex roots of a
quartic equation, which may cause numerical instability. Other
conic feature-based calibration techniques have been reported: In
[10], ellipse correspondences are used for a camera undergoing pure
rotational motion. In [2], [5], [13], the aim is to recover simulta-
neously the intrinsic and extrinsic parameters (the focal length is the
only unknown in [2], [5]). Even if [2] deals with two arbitrary circles,
all three minimization criteria are similar, based on the pose
estimation problem as stated in [12]. By assuming known radii, only
[5] is able to describe a linear solution. On the whole, these general
techniques lead to rather complicated algorithms, if not nonlinear.1

The basic idea of this work is to treat a pair of concentric circles,
with unknown center and radii, as a new artificial visual feature.
The novelty is to provide new insights about the geometric
structures it naturally encodes and to deal with the technical
aspects of their recoveries. An application to plane-based camera
calibration is described in Section 3.2.

Our starting point is [13], in which it is shown that the AS of the
3D plane is recovered, by imposing a rank-1 constraint on the linear
combination of the two projected circle matrices. Our contributions
in this paper aremultiple. First, we show that it is possible to recover
the ES, in terms of ICPs, in a way similar to [13], by imposing a
rank-2 constraint. In particular, this leads us to explain why
concentric circles require a special treatment by operating in the
dual projective plane. The foundation of our reasoning is the
geometry of linear systems of concentric circle envelopes, called
ranges of concentric circles [17, pp. 156-158], in which the AS and the
ES of the plane are simply encoded by degenerate members. Within
this framework, we are able to state a theorem that restricts the locus
of the centers of projected concentric circles to a line through the
horizon point and the projected center. We are convinced that
existing techniques could profit from our compact and efficient
algorithms (e.g., cf. Table I). For instance, in [15], where the
calibration pattern is made up of a circle and a set of lines through
its center, we point out that the circle and its center, if treated as
rank-3 and rank-1 envelopes, respectively (cf. Section 2.2.1),
determine a range of concentric circles. As a result, two steps of
their algorithm, namely, the computation of the vanishing line and
its intersection with the projected circle, are no longer required.

2 PROPERTIES OF CONCENTRIC CIRCLES

2.1 Projections of 3D Circles

Let eXX ¼ ðX;Y ; Z; 1Þ> be the 3D homogeneous coordinates of a
world point and x ¼ ðu; v; 1Þ> be the 2D homogeneous coordinates
of its projection in the image plane. Points eXX and x are related by
the projection equation:
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1. Plane-based calibration has a linear formulation once the ES of the
plane is recovered, so a standard algorithm is: 1) recover the ES, 2) compute
the internal parameters, 3) determine the pose, 4) refine estimates if
necessary.
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sx ¼ K R j t½ �eXX; ð1Þ

where s 2 IRnf0g; R and t are, respectively, the rotation matrix and
translation vector relating the camera and world coordinate
systems; K is the intrinsic calibration matrix of the form:

K ¼4
�u � u0
0 �v v0
0 0 1

2
4

3
5;

where �u, �v represent the focal length in terms of pixel
dimensions in the u, v direction, respectively, ðu0; v0Þ are the
principal point pixel coordinates, and � is the skew factor.

Without loss of generality, we will assume that the world space
is restricted to one plane �, with equation Z ¼ 0 with respect to
the world coordinate system. The projection equation (1) then
simplifies to:

sx ¼ K r1 r2 t½ �X ¼4 HX; ð2Þ

where X ¼4 X;Y ; 1ð Þ> and r1, r2 are the first two columns of R. We
will refer to H as the world-to-image homography.

In the world plane �, the equation of a circle of radius �,
centered at ðX0; Y0Þ, is of the form:

X>QX ¼ 0; Q ¼4
1 0 �X0

0 1 �Y0

�X0 �Y0 X2
0 þ Y 2

0 � �2

2
4

3
5; ð3Þ

while, in the image plane, points of the projected circle satisfy the
conic equation:

x>Ax ¼ 0; �A ¼4 H�>QH�1; ð4Þ

for � 2 IRnf0g. We will refer to Q and A as the circle and projected

circle, and to Q�1 and A�1 as the circle and projected circle

envelopes,2 respectively.

The center of Q is, by definition [17, p. 119], the pole of the

line at infinity L1 ¼4 0; 0; 1ð Þ> with respect to Q�1, i.e.,

X0; Y0; 1ð Þ>� Q�1L1. In the image, the projected center is the

pole of the vanishing line v ¼4 H�> 0; 0; 1ð Þ> with respect to A�1,

i.e., H X0; Y0; 1ð Þ>� A�1v. In other words, the projected center,

associated with A, also specifies the AS of �.

2.2 Algebraic Constraints: Rank Deficiency

According to (4), two concentric circles Qj (j 2 1; 2f g), project under
H to conics Aj satisfying:

�jAj ¼ H�>QjH
�1: ð5Þ

Dually, the circle envelope Q�1
j projects to the conic envelope:

ð1=�jÞA�1
j ¼ HQ�1

j H>: ð6Þ

We assume that the circles are centered at the origin. Thus,
referring to (3), Qj and Q�1

j are simply the diagonal matrices:

Qj ¼ diagð1; 1;��2j Þ and Q�1
j ¼ diagð1; 1;�1=�2j Þ:

Now, let us consider a linear combination of the form:

� ¼4 �1A
�1
1 � �2A

�1
2 satisfying det � ¼ 0; ð7Þ

for some �1, �2 2 IRnf0g. The constraint in (7) is a degree-3
polynomial equation in � ¼4 �1=�2 with real factors, whose real
roots are also those of:

detð�Q�1
1 � �2=�1Q

�1
2 Þ ¼ 0: ð8Þ

With no difficulty, it can be shown that these roots are:

�1 ¼ �2=�1 ðwith multiplicity 2Þ; �2 ¼ �2=�1ð�1=�2Þ2: ð9Þ

Since it is singular, � is the matrix of a degenerate conic envelope
which consists of either two points or a repeated point [17, pp. 117-
118]. As there is a double root, there are only two � as defined in (7),
which are those determined by �1, �2 in (9). Let us find out what are
these two associated degenerate conics by analyzing their matrices.

2.2.1 Rank-1 Constraint and AS

If we substitute �1=�2 for �1 in (7), we get the rank-1 matrix:

�1 ¼4 �1A
�1
1 � A�1

2 � H diagð0; 0; 1ÞH> ¼ cc>; ð10Þ

where c ¼4 H 0; 0; 1ð Þ>.
The center of the concentric circles coincides with the origin of�,

so it is clear that c is its projection. Hence, �1 can be seen as the
degenerate conic envelope consisting of the projected center taken
twice, that we call the projected conic dual to the circle center (CDCC).

Note that, since c is the pole of the vanishing line, with respect to
A�1
1 and A�1

2 , the projected CDCC �1 encodes the AS of �.

2.2.2 Rank-2 Constraint and ES

If we substitute �1=�2 for �2 in (7), we get the rank-2 matrix:

�2 ¼4 �2A
�1
1 � A�1

2 � H diagð1; 1; 0ÞH>: ð11Þ

Using (6), we note that �2 is the projection of the rank-2
conic envelope C�1 ¼4 diagð1; 1; 0Þ of �. It can easily be stated
that C�1 consists of the two circular points I ¼4 ð1; i; 0Þ>,
J ¼4 ð1;�i; 0Þ>, i2 ¼ �1, on L1, i.e.,

C�1 � IJ> þ JI>:

C�1 is known as the conic dual to the circular points (CDCP) [8, pp. 53-

56]. As an important result, �2 encodes the ES of �. It is worth

mentioning that the ICPs are in the form of x1 � ix2, where x1, x2 are

the first two columns of X 2 IR3�3 resulting from the singular

value decomposition (SVD) of �2, providing it is written as

�2 ¼ X diagð1; 1; 0ÞX>. The only line of �2 that contains both ICPs is

the vanishing line v, so �2v ¼ 0, i.e., v spans the null space of �2.

2.3 Geometric Constraint: Locus of Centers of Projected
Circles

The algebraic constraints about rank deficiency, established in
Section 2.2, can be interpreted in terms of the projective geometry of
a range of concentric circles [17, pp. 156-158], i.e., a (simply infinite)
linear system of concentric circle envelopes, that includes the CDCC
and CDCP as degenerate members, as illustrated in Fig. 1. A pure
geometric constraint, by means of a theorem, will be now inferred
using this framework but, first, we have to state some preliminary
results.

Call pole of a line L with respect to the CDCP C�1 the point at
infinity C�1L which is the direction of all parallel lines perpendi-
cular to L. The pole of the projected line l ¼ H�>L with respect to
the projected CDCP �2 is the vanishing point �2l ¼ HC�1L.

Define the horizon point pv as the point intersecting the vanishing
line v and the line, perpendicular to v and containing the principal
point, called principal line [7],3 cf. Fig. 2. The principal line is in the
principal plane, containing the camera center andperpendicular to the
intersection ð� \ FÞ of � and the focal plane4 F . Albeit little-
mentioned in computer vision textbooks, these are familiar notions
in photogrammetry [18, pp. 41-42] and considered as orientation
elements.
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2. As a conic is the assemblage of its points, a conic envelope is the
assemblage of its (tangent) lines.

3. To avoid confusion with the center of a circle, we rename the center line
and plane of [7], as principal line and plane, in accordance with [18].

4. Containing the camera center and parallel to the image plane [3, p. 35].
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Lemma 1. The horizon point pv is the pole of the image plane’s line at

infinity l1 with respect to the projected CDCP �2; its vector is the

third column of �2.

Proof. We want to show that pv � �2l1 in the image, i.e., H�1pv �
C�1H>l1 in �. In other words, since H>l1 is the preimage of l1,

that is the line ð� \ FÞ, it suffices to show this point: Any line

with direction H�1pv in � (they are all parallel) is perpendicular

to ð� \ FÞ. The principal line contains pv so its preimage in� is a

candidate. By definition, the principal plane is perpendicular to

ð� \ FÞ. Since it contains the principal line and its preimage, this

point holds. The fact that l1 ¼ ð0; 0; 1Þ> completes the proof. tu
Note that, we implicitly excluded that H is a 2D affinity5 or else

�2l1 ¼ 0; the horizon point would not be defined.

Theorem 1. In the world plane, let Qj denote a variable circle concentric

with a fixed circle Q. The locus L of the center of the projection of Qj is a

point or a line through the projected center of Q and the horizon point;

the only degree of freedom of the center with respect to this line is the

radius of Qj.

Proof. Define the line at infinity l1 ¼4 ð0; 0; 1Þ>. Let A, Aj denote the

projections of Q, Qj, according to (5). Since it is common to all Qj,

let us call the center C of Q the defining center. As an immediate

result of (10), we have:

�1l1 ¼ �1A
�1l1 � A�1

j l1 ¼4 sc; ð12Þ

where s 2 IRnf0g. This means that the projection c of the

defining center C is on the line L spanned by the two centers of

the projected circles, which are the poles of l1 with respect to

A�1 and A�1
j . Similarly, as an immediate result of (11), we have:

�2l1 ¼ �2A
�1l1 � A�1

j l1 ¼4 ����: ð13Þ

Thanks to the lemma, this means that, providing ���� 6¼ 0, ���� is the

horizon point and is also on L. Now, subtract (12) from (13) in

order to eliminate A�1l1. As a result, there necessarily exist a1,

a2 2 IR n f0g such that:

A�1
j l1 ¼ a1cþ a2����: ð14Þ

First, consider the case where the horizon point is not defined,

i.e., ���� ¼ 0. This happens if and only if l1 � v, i.e., H is a

2D affinity (the world plane is then parallel to the image plane).
It follows that A�1

j l1 � c; hence, the center of Aj coincides
with the projected center of Qj. In other cases, (14) tells us that
the center of the projected circle number j is on the line L,
passing through the projected defining center and the horizon
point. Finally, note that, using (6), we get:

A�1
j l1 ¼ H diagð1; 1;�1=�2j Þ H31; H32; H33ð Þ>; ð15Þ

so the center of the projected circle number j is the projection of
a point controlled by its radius �j, with pixel inhomogeneous
coordinates ��2j H31=H33; H32=H33ð Þ in �. tu
Two remarks can be made. On the one hand, the advised reader

will note that the theorem could have been formulated in a more

general way since the locus of poles of a line with respect to a range of

concentric circles is a second line, as established in [17, pp. 168-169].

Regarding our problem, this had to be considered in the special

case of l1. On the other hand, the locus of centers of multiple pairs

of projected concentric circles is a linear system of lines, whose

vertex (i.e., common point) is the horizon point. This pencil has for

preimage in the world plane � a set of all (parallel) lines

perpendicular to ð� \ FÞ, cf. Fig. 2.
Whatever the recovery is about, either the projected center or

the ICPs, the issue to be tackled next is how to determine �1 and �2
that solve (8), while keeping in mind that �1 is a double root. In

practice, using result (9) is not possible since the ratio of scale

factors �2=�1 is unknown and the ratio of radii �1=�2 is not always

given. There are various ways to determine �1 and �2, without

knowing �2=�1 and �1=�2. One can compute them as the general-

ized eigenvalues [6, p. 375] of the pair fA1; A2g or, equivalently, as

the eigenvalues of A1A
�1
2 , or simply by solving the cubic equation

(8). Since �1 is a root of multiplicity two, it suffices to distinguish it

from �2 (for instance, refer to the MATLAB code given in Table 1).
Thanks to our theorem, there is an alternate way of computing

c. Denoting by aj, bj the two points at which L meets6 the

projected circle Aj (cf. Fig. 3), it is based on the harmonic relation

[17, p. 48] between the two pairs of collinear points faj;bjg and

fc; ����g, i.e., the invariance of cross ratios:

crossðaj;bj; c; ����Þ ¼ crossðAj;Bj;C;����1Þ ¼ �1; ð16Þ

where A, B, C, ����1 are the respective preimages of a, b, c, ���� in the

world plane (����1 is at infinity). Given j 2 1; 2f g, we obtain a unique

solution for c such that c is on both segments ðaj;bjÞ. Fig. 3 shows

the estimated projected center using this geometric property.

3 APPLICATION: CAMERA CALIBRATION

3.1 Recovering the Projected Circular Points

On the basis of the constraints described in Sections 2.2 and 2.3, we

design two algorithms for recovering the ES of the world plane,

i.e., its ICPs, from a single view.
The first (ALG-CDCP) is a direct application of the rank-2

constraint given in Section 2.2.2, it recovers the projected CDCP

from the pair of projected concentric circles fA1; A2g.

. Given fA1; A2g, compute �2 from the rank-2 constraint
described in (11).
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Fig. 1. (a) The (rank-3) circle envelope Q�1. (b) The (rank-2) envelope C�1, consisting of the circular points I;J (on the line at infinity L1). (c) The (rank-1) envelope CC>,
consisting of the circle center C (taken twice). Conics (b) and (c) are degenerate members of the range of circles centered at C.

5. Such that the third row of H is ð0; 0; 1Þ and the third column of �2 is 0.
6. There exists a very elegant way of finding aj and bj by solving a

Joachimsthal equation [17, p. 107].
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. Recover the ICPs in the form of
ffiffiffiffiffi
s1

p
u1 � i

ffiffiffiffiffi
s2

p
u2, where u1

and u2 are the first two columns of U resulting from the
SVD �2 ¼ U diagðs1; s2; 0ÞU>; UU> ¼ I.

Table 1 illustrates the compactness of the implementation of
this algorithm in MATLAB.

The second (ALG-CC) recovers the ICPs from P � 4 pairs of

projected concentric circles. It is assumed that the circle centers
have known Euclidean coordinates in the world plane �, with no

degenerate configuration.

. Given A1p; A2p
� �

, p 2 f1; ::; Pg, compute the projected
center cp by solving (16).

. Compute the world-to-image homography H, e.g., using
the normalized DLT algorithm, as detailed in [8, p. 109].

. Recover the ICPs in the form of h1 � ih2, where h1 and h2

are the first two columns of H.

Regarding ALG-CC, from Sections 2.2 and 2.3, we actually have
at our disposal several ways of determining cp; the choice of the
method here is somewhat arbitrary since, practically, all of these

yield highly similar results.

3.2 Computing the Internal Parameters

Like there is an Euclidean specialization of the (dual) projective

plane once the CDCP is identified, there is an Euclidean

specialization of the (dual) projective 3D space, once the dual

absolute quadric (DAQ) [8, pp. 462-463] is identified. The DAQ

projects to the dual IAC, whose matrix !!!!� encodes the intrinsic

properties of the camera, via the Cholesky factorization !!!!� ¼ KK>

involving the calibration matrix K. For some practical reasons, the

plane-based calibration of the camera, i.e., the determination of K, is

performed in the regular plane, by estimating the IAC !!!! � ð!!!!�Þ�1 as

the locus of all ICPs, through a linear formulation of the problem

[19], [21], [25]. Each view contributes two equations linear in the

elements of the unknown 6-vector x, xk k2¼ 1, corresponding to the

upper diagonal of !!!!; so, providing K is constant, three views are

necessary to obtain a solution.
Since plane-based calibration and its implementation has been

widely outlined in [19], [25], we will not give more details here; Let
us just mention the exhaustive study of degenerate configurations
in [19].

4 EXPERIMENTS

4.1 Synthetic Data

Experiments are conducted using synthetic data to assess the

performances of our algorithms in presence of noise. The scene

consists of a planar patch, with size 500mm� 500mm, called

1-pattern or n� n-pattern, depending on whether it is covered

with a single pair or n2 equally spaced identical pairs of concentric

circles. The camera is at a distance of 1; 800mm. The inclination

angle between world and image planes, as well as the angles of

azimuth and rotation around the optical axis, vary within the

range ½�60�; 60��. The simulated camera has a 512� 512 pixel

resolution and constant internal parameters u0 ¼ 255, v0 ¼ 255,

�u ¼ 1; 200, �u ¼ 1; 080, and � ¼ 0. Each circle of the pattern projects

to an ellipse, which is digitized at pixel resolution, yielding

S sampled pixels. Gaussian noise of zero mean and standard

deviation � is added to the pixel (integer) coordinates. The tests in

the following Sections 4.1.1 and 4.1.2 are repeated 500 times each.

4.1.1 Estimation of the Projected Centers

Using kS randomly selected points per ellipse, k 2 0:25; ::; 1f g, we

investigate the influence of simulation parameters in determining

theprojected center, by solving (16).We conduct a first series of three

tests, by computing and plotting the average distances between true

and estimated projected centers. Results are shown in Fig. 5, where

the numbers of sampled points for the inner ellipses are plotted

vertically. In tests (a) and (b), we deal with a 1-pattern. For � ¼ 1,

Fig. 5a shows the influence of the radius ratio r 2 0:1; ::; 0:9f g. For
r ¼ 0:5, Fig. 5b shows the influence of � 2 0; ::; 3f g. In Fig. 5c,we deal

with a n� n-pattern, n 2 1; ::; 7f g. For � ¼ 1 and r ¼ 0:5, it shows

how the error varies if we replace the 1-pattern by a n� n-pattern

(i.e., with smaller radii), by computing the average error for the

n2 pairs. These results highlight a number of interesting character-

istics. The “ideal” radius ratio seems to be around 0:5, while

degeneracies predictably occurwhen it tends to 1. Using a 1-pattern,
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Fig. 2. The locus of the center of the projection of a variable circle, having a fixed
center (and, so, a varying radius), is a line L (shown in dashed) through the
horizon point and the projected center of the circle.

Fig. 3. (a) Projected circles and line L of centers of projected circles. (b) Centers of
projected circles (black crosses) and estimated circle projected center (white
cross) using the method given in Section 2.3.

TABLE 1
Computing the ICPs from Matrices A1, A2 of Projected

Concentric Circles in Four MATLAB Instructions

Fig. 4. Examples of generated occluding images.
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we can reasonably expect to estimate the projected center with a

precision of	 0:2pixel, up to� ¼ 2. At the other extreme, i.e., using a

7� 7-pattern, the precision is	 0:4pixels for� ¼ 1, even if it isworth

noting that, in Fig. 5c, the increase of the error function is at a peak

when changing from a 1-pattern to a 2� 2-pattern.

4.1.2 Plane-Based Calibration

In the second series of three tests, we assess the performance of

camera calibration, using the algorithm of Section 3.2, taking as

input the ICPs computed by ALG-CDCP and ALG-CC, as detailed

in Section 3.1 (cf. Table 1 for ALG-CDCP’s implementation). We

investigate the influence of simulation parameters in estimating the

focal length in terms of �u and �v. All these tests are carried out with

radius ratio r ¼ 0:5; the number of views is 4, except in Fig. 5f. In

Fig. 5d, for � ¼ 1, it is shown how the error varies if we replace the

1-pattern by a n� n-pattern. For ALG-CDCP, n2 ICP-pairs are

computed, although they are all identical in absence of noise. In tests

(e) and (f), we use a 1-pattern for ALG-CDCP and a 5� 5-pattern for

ALG-CC. Fig. 5e shows the influence of � 2 0; ::; 3f g. Fig. 5f shows

the influence of the number of views. The main characteristic of this

series is that calibration performs similarly usingALG-CDCPwith a

1-pattern, or ALG-CDCP with a 5� 5-pattern. Note that ALG-CC

can be seen as the conventional approach of [19], [25], with circle

centers as feature points, with one difference: The standard

deviation (� ¼ 1) of noise perturbing image points is four times

the average error (	 0:25) on the estimated projected centers.

4.2 Real Data

To test the performancewith respect to the partial viewing condition

caused by occlusion or field of view (FOV) limitation, we calibrated

cameras under various occluding conditions. Fig. 4 shows some

images of concentric circle patterns with intentional occlusions. The

imageswere captured using a SONYF-828 (640� 480) camera.After

edge detection using Canny operator [3, pp. 98-101], projected circle

fitting and IAC fitting were achieved by direct least square fitting of

ellipses as implemented by Fitzgibbon et al. [4]. Tsai’s calibration

method [22] has been used to obtain the ground truth data. Table 2

shows the error of the estimatedparameters under various occlusion

conditions. Even though the occlusion rate increases up to almost

50 percent, the calibration has been accomplished robustly. To show

the practicality of the proposed algorithm, we applied it to multi-

camera calibration, using 10 SONY DFW-V500 cameras, for the

reconstruction of a 3D scene. In this case, the captured images suffer

from FOV limitation. Table 3 shows an example of edge processing

and the calibration matrix estimated by our algorithm.

5 CONCLUSION

We suggested to treat a pair of projected concentric circles, with

unknown center and radii, as a new artificial visual feature. As

shown throughout the paper, this is motivated by the fact that such

a feature naturally encloses the affine and Euclidean structures of

the supporting 3D plane. These entities are given point-wise in

terms of the circle projected (common center) and projected circular

points, respectively. Geometrically speaking, we operate in the dual

projective plane, by studying the degenerate members of the linear

system of conic envelopes, whose basis are the two projected

concentric circle envelopes. Algebraically, it requires to seek some

linear combinations of the matrices of the base conics that are
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Fig. 5. (a), (b), and (c) Errors on the estimated projected centers, depending on the number of sampled points (i.e., for a varying coefficient k). The number of points

(k ¼ 1) for the inner projected circle is plotted vertically. (d), (e), and (f) Errors on the estimated focal lengths obtained by the proposed algorithms, using four views.

TABLE 2
Relative Error on Focal Length with Respect to Various Occlusion Rates
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rank-deficient. We shown there exist compact and efficient

algorithms that compute very accurate solutions (e.g., cf. Table 1).

Moreover, we described a geometric constraint that restricts the

locus of centers of projected concentric circles to a line through the

projected center and the horizon point on the vanishing line, this

latter being irrespective of the projected circles. Regarding potential

applications, the results of our algorithms can be used as data in

plane-based camera calibration [19], [25]. The fact that the geometric

structures of the 3D plane are described by rank-deficient matrices

greatly simplifies the calibration algorithm. Algorithms have been

tested with both synthetic data sets and real images. Our conic-

based approach shows the superior performance to the conven-

tional point-based ones. It makes the calibration robust even with

partial viewing condition due to occlusion or FOV limitation.
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