
POV-Ray Reference

POV-Team

for POV-Ray Version 3.6.1

ii

Contents

1 Introduction 1
1.1 Notation and Basic Assumptions . 2
1.2 Command-line Options . 2

1.2.1 Animation Options . 3
1.2.2 General Output Options . 6
1.2.3 Display Output Options . 9
1.2.4 File Output Options . 12
1.2.5 Scene Parsing Options . 15
1.2.6 Shell-out to Operating System . 18
1.2.7 Text Output . 21
1.2.8 Tracing Options . 25

2 Scene Description Language 31
2.1 Language Basics . 31

2.1.1 Identifiers and Keywords . 32
2.1.2 Comments . 37
2.1.3 Float Expressions . 38
2.1.4 Vector Expressions . 47
2.1.5 Specifying Colors . 52
2.1.6 User-Defined Functions . 57
2.1.7 Strings . 62
2.1.8 Array Identifiers . 65
2.1.9 Spline Identifiers . 66

2.2 Language Directives . 68
2.2.1 Include Files and the #include Directive . 69
2.2.2 The #declare and #local Directives . 70
2.2.3 File I/O Directives . 73
2.2.4 The #default Directive . 75
2.2.5 The #version Directive . 76
2.2.6 Conditional Directives . 77
2.2.7 User Message Directives . 80
2.2.8 User Defined Macros . 82

3 Scene Settings 87
3.1 Camera . 87

3.1.1 Placing the Camera . 88
3.1.2 Types of Projection . 93

iv CONTENTS

3.1.3 Focal Blur . 95
3.1.4 Camera Ray Perturbation . 95
3.1.5 Camera Identifiers . 96

3.2 Atmospheric Effects . 96
3.2.1 Atmospheric Media . 96
3.2.2 Background . 97
3.2.3 Fog . 97
3.2.4 Sky Sphere . 99
3.2.5 Rainbow . 100

3.3 Global Settings . 101
3.3.1 ADCBailout . 102
3.3.2 AmbientLight . 102
3.3.3 AssumedGamma . 103
3.3.4 HFGray 16 . 105
3.3.5 Irid Wavelength . 105
3.3.6 Charset . 106
3.3.7 MaxTraceLevel . 106
3.3.8 MaxIntersections . 107
3.3.9 NumberOf Waves . 107
3.3.10 Noisegenerator . 107
3.3.11 Radiosity Basics . 107

3.4 Radiosity . 108
3.4.1 How Radiosity Works . 108
3.4.2 Adjusting Radiosity . 109
3.4.3 Tips on Radiosity . 112

4 Objects 113
4.1 Finite Solid Primitives . 114

4.1.1 Blob . 114
4.1.2 Box . 117
4.1.3 Cone . 117
4.1.4 Cylinder . 118
4.1.5 Height Field . 119
4.1.6 Julia Fractal . 121
4.1.7 Lathe . 124
4.1.8 Prism . 126
4.1.9 Sphere . 128
4.1.10 Sphere Sweep . 128
4.1.11 Superquadric Ellipsoid . 129
4.1.12 Surface of Revolution . 130
4.1.13 Text . 131
4.1.14 Torus . 133

4.2 Finite Patch Primitives . 134
4.2.1 Bicubic Patch . 134
4.2.2 Disc . 136
4.2.3 Mesh . 136
4.2.4 Mesh2 . 137
4.2.5 Polygon . 139
4.2.6 Triangle and Smooth Triangle . 140

CONTENTS v

4.3 Infinite Solid Primitives . 141
4.3.1 Plane . 141
4.3.2 Poly, Cubic and Quartic . 142
4.3.3 Quadric . 145

4.4 Isosurface Object . 145
4.5 Parametric Object . 147
4.6 Constructive Solid Geometry . 149

4.6.1 Inside and Outside . 149
4.6.2 Union . 150
4.6.3 Intersection . 151
4.6.4 Difference . 152
4.6.5 Merge . 152

4.7 Light Sources . 153
4.7.1 Point Lights . 154
4.7.2 Spotlights . 155
4.7.3 Cylindrical Lights . 157
4.7.4 Parallel Lights . 158
4.7.5 Area Lights . 158
4.7.6 Shadowless Lights . 162
4.7.7 Lookslike . 162
4.7.8 ProjectedThrough . 163
4.7.9 Light Fading . 163
4.7.10 Atmospheric Media Interaction . 163
4.7.11 Atmospheric Attenuation . 164

4.8 Light Groups . 164
4.9 Object Modifiers . 166

4.9.1 ClippedBy . 166
4.9.2 BoundedBy . 167
4.9.3 Material . 168
4.9.4 Inverse . 169
4.9.5 Hollow . 169
4.9.6 NoShadow . 170
4.9.7 NoImage, NoReflection . 170
4.9.8 DoubleIlluminate . 171
4.9.9 Sturm . 171

5 Textures 173
5.1 Pigment . 175

5.1.1 Solid Color Pigments . 176
5.1.2 Color List Pigments . 176
5.1.3 Color Maps . 177
5.1.4 Pigment Maps and Pigment Lists . 179
5.1.5 Image Maps . 180
5.1.6 Quick Color . 182

5.2 Normal . 183
5.2.1 Slope Maps . 184
5.2.2 Normal Maps and Normal Lists . 187
5.2.3 Bump Maps . 188
5.2.4 Scaling normals . 189

vi CONTENTS

5.3 Finish . 190
5.3.1 Ambient . 191
5.3.2 Diffuse Reflection Items . 191
5.3.3 Highlights . 192
5.3.4 Specular Reflection . 194
5.3.5 Conserve Energy for Reflection . 195
5.3.6 Iridescence . 196

5.4 Halo . 196
5.5 Patterned Textures . 197

5.5.1 Texture Maps . 198
5.5.2 Tiles . 199
5.5.3 Material Maps . 199

5.6 Layered Textures . 202
5.7 UV Mapping . 203

5.7.1 Supported Objects . 203
5.7.2 UV Vectors . 204

5.8 Triangle Texture Interpolation . 205
5.9 Interior Texture . 205
5.10 Cutaway Textures . 206
5.11 Patterns . 206

5.11.1 Agate . 207
5.11.2 Average . 208
5.11.3 Boxed . 209
5.11.4 Bozo . 209
5.11.5 Brick . 209
5.11.6 Bumps . 210
5.11.7 Cells . 210
5.11.8 Checker . 210
5.11.9 Crackle Patterns . 211
5.11.10 Cylindrical . 213
5.11.11 DensityFile . 213
5.11.12 Dents . 214
5.11.13 Facets . 214
5.11.14 Fractal Patterns . 215
5.11.15 Function as pattern . 217
5.11.16 Function Image . 218
5.11.17 Gradient . 219
5.11.18 Granite . 219
5.11.19 Hexagon . 220
5.11.20 Image Pattern . 221
5.11.21 Leopard . 222
5.11.22 Marble . 222
5.11.23 Object Pattern . 223
5.11.24 Onion . 223
5.11.25 Pigment Pattern . 223
5.11.26 Planar . 224
5.11.27 Quilted . 225
5.11.28 Radial . 227
5.11.29 Ripples . 227

CONTENTS vii

5.11.30 Slope . 227
5.11.31 Spherical . 229
5.11.32 Spiral1 . 229
5.11.33 Spiral2 . 229
5.11.34 Spotted . 230
5.11.35 Waves . 230
5.11.36 Wood . 231
5.11.37 Wrinkles . 231

5.12 Pattern Modifiers . 231
5.12.1 Transforming Patterns . 233
5.12.2 Frequency and Phase . 233
5.12.3 Waveforms . 234
5.12.4 Noise Generators . 235
5.12.5 Turbulence . 235
5.12.6 Warps . 235
5.12.7 Bitmap Modifiers . 244

6 Interior & Media & Photons 247
6.1 Interior . 247

6.1.1 Why are Interior and Media Necessary? . 248
6.1.2 Empty and Solid Objects . 248
6.1.3 Scaling objects with an interior . 249
6.1.4 Refraction . 251
6.1.5 Dispersion . 251
6.1.6 Attenuation . 252
6.1.7 Simulated Caustics . 252
6.1.8 Object-Media . 253

6.2 Media . 253
6.2.1 Media Types . 255
6.2.2 Sampling Parameters & Methods . 258
6.2.3 Density . 258

6.3 Photons . 262
6.3.1 Overview . 262
6.3.2 Using Photon Mapping in Your Scene . 262
6.3.3 Photons FAQ . 267
6.3.4 Photon Tips . 269
6.3.5 Advanced Techniques . 269

7 Include Files 273
7.1 arrays.inc . 273
7.2 chars.inc . 274
7.3 colors.inc . 275

7.3.1 Predefined colors . 275
7.3.2 Color macros . 275

7.4 consts.inc . 280
7.4.1 Vector constants . 280
7.4.2 Map type constants . 280
7.4.3 Interpolation type constants . 280
7.4.4 Fog type constants . 280

viii CONTENTS

7.4.5 Focal blur hexgrid constants . 281
7.4.6 IORs . 281
7.4.7 Dispersion amounts . 282
7.4.8 Scattering media type constants . 282

7.5 debug.inc . 282
7.6 finish.inc . 283
7.7 functions.inc . 283

7.7.1 Common Parameters . 284
7.7.2 Internal Functions . 285
7.7.3 Pre defined functions . 298

7.8 glass.inc, glassold.inc . 299
7.8.1 Glass colors (with transparency) . 299
7.8.2 Glass colors (without transparency, for fadecolor) . 299
7.8.3 Glass finishes . 299
7.8.4 Glass interiors . 301
7.8.5 Glass interior macros . 301
7.8.6 glassold.inc . 301

7.9 math.inc . 302
7.9.1 Float functions and macros . 302
7.9.2 Vector functions and macros . 304
7.9.3 Vector Analysis . 306

7.10 metals.inc, golds.inc . 308
7.10.1 metals.inc . 308
7.10.2 golds.inc . 309

7.11 rand.inc . 310
7.11.1 Flat Distributions . 310
7.11.2 Other Distributions . 311

7.12 shapes.inc, shapesold.inc, shapes2.inc, shapesq.inc . 313
7.12.1 shapes.inc . 314
7.12.2 shapesold.inc . 320
7.12.3 shapes2.inc . 321
7.12.4 shapesq.inc . 321

7.13 skies.inc, stars.inc . 323
7.13.1 skies.inc . 324
7.13.2 stars.inc . 324

7.14 stones.inc, stones1.inc, stones2.inc, stoneold.inc . 325
7.14.1 stones1.inc . 325
7.14.2 stones2.inc . 329

7.15 stdinc.inc . 330
7.16 strings.inc . 330
7.17 textures.inc . 331

7.17.1 Stones . 331
7.17.2 Skies . 332
7.17.3 Woods . 332
7.17.4 Glass . 333
7.17.5 Metals . 334
7.17.6 Special textures . 335
7.17.7 Texture and pattern macros . 335

7.18 transforms.inc . 336

CONTENTS ix

7.19 woodmaps.inc, woods.inc . 338
7.19.1 woodmaps.inc . 339
7.19.2 woods.inc . 339

7.20 Other files . 340
7.20.1 logo.inc . 341
7.20.2 raddef.inc . 341
7.20.3 screen.inc . 342
7.20.4 stdcam.inc . 343
7.20.5 stage1.inc . 343
7.20.6 sunpos.inc . 343
7.20.7 font files (*.ttf) . 344
7.20.8 colormap files (*.map) . 344
7.20.9 image files (*.png, *.pot, *.df3) . 345

8 Quick Reference 347
8.1 Quick Reference Contents . 348
8.2 The Scene . 349
8.3 Language Basics . 349

8.3.1 Floats . 349
8.3.2 Vectors . 350
8.3.3 Colors . 351
8.3.4 User defined Functions . 351
8.3.5 Strings . 353
8.3.6 Arrays . 354
8.3.7 Splines . 355

8.4 Language Directives . 355
8.4.1 File Inclusion . 355
8.4.2 Identifier Declaration . 356
8.4.3 File Input/Output . 356
8.4.4 Default Texture . 357
8.4.5 Version Identfier . 357
8.4.6 Control Flow Directives . 357
8.4.7 Message Streams . 358
8.4.8 Macro . 358
8.4.9 Embedded Directives . 358

8.5 Transformations . 358
8.6 Camera . 359
8.7 Lights . 359

8.7.1 Lightgroup . 360
8.8 Objects . 361

8.8.1 Finite Solid Objects . 361
8.8.2 Finite Patch Objects . 364
8.8.3 Infinite Solid Objects . 366
8.8.4 Isosurface . 367
8.8.5 Parametric . 367
8.8.6 CSG . 368

8.9 Object Modifiers . 368
8.9.1 UV Mapping . 369
8.9.2 Material . 369

x CONTENTS

8.9.3 Interior . 370
8.9.4 Interior Texture . 370

8.10 Texture . 370
8.10.1 Plain Texture . 370
8.10.2 Layered Texture . 371
8.10.3 Patterned Texture . 371
8.10.4 Pigment . 372
8.10.5 Normal . 373
8.10.6 Finish . 374
8.10.7 Pattern . 375
8.10.8 Pattern Modifiers . 376

8.11 Media . 378
8.12 Atmospheric Effects . 379

8.12.1 Background . 379
8.12.2 Fog . 379
8.12.3 Sky Sphere . 379
8.12.4 Rainbow . 380

8.13 Global Settings . 380
8.13.1 Radiosity . 380
8.13.2 Photons . 381

Figures

1.1 Display gamma test image. 10
1.2 Example of how the recursive super-sampling works. 29

3.1 The perspective camera. 89

4.1 The geometry of a box. 117
4.2 The geometry of a cone. 118
4.3 The geometry of a cylinder. 118
4.4 The size and orientation of an un-scaled height field. 119
4.5 Relationship of pixels and triangles in a height field. 120
4.6 The geometry of a sphere. 128
4.7 Points on a surface of revolution. 132
4.8 Major and minor radius of a torus. 134
4.9 Two overlapping objects. 149
4.10 The union of two objects. 150
4.11 The intersection of two objects. 151
4.12 The difference between two objects. 152
4.13 Merge removes inner surfaces. 153
4.14 The geometry of a spotlight. 155
4.15 Intensity multiplier curve with a fixed falloff angle of 45 degrees. 156
4.16 Intensity multiplier curve with a fixed radius angle of 45 degrees. 156
4.17 Intensity multiplier curve with fixed angle and falloff angles of 30 and 60 degrees respectively

and different tightness values. 157
4.18 Intensity multiplier curve with a negative radius angle and different tightness values. 157
4.19 4x4 Area light, location and vectors. 159
4.20 Area light adaptive samples. 160
4.21 Area light facing object . 161
4.22 Area light not facing object . 161
4.23 Light fading functions for different fading powers. 164
4.24 An object clipped by another object. 167

5.1 UV Boxmap . 204
5.2 The hexagon pattern. 220
5.3 Quilted pattern with c0=0 and different values for c1. 225
5.4 Quilted pattern with c0=0.33 and different values for c1. 226
5.5 Quilted pattern with c0=0.67 and different values for c1. 226
5.6 Quilted pattern with c0=1 and different values for c1. 226
5.7 Turbulence random walk. 241

xii FIGURES

6.1 The Mie haze scattering function . 256
6.2 The Mie murky scattering function. 257
6.3 The Rayleigh scattering function. 257
6.4 The Henyey-Greenstein scattering function for different eccentricity values. 257
6.5 Reflective caustics . 262
6.6 Photons used for lenses and caustics . 263
6.7 Example of the photon autostop option . 270

Tables

2.1 Arithmetic expressions . 40
2.2 Relational expressions . 40
2.3 Logical expressions . 41
2.4 Conditional expressions . 41
2.5 All language directives . 69
2.6 All character escape sequences . 81

4.1 Quaternion basis vector multiplication rules . 123
4.2 Hypercomplex basis vector multiplication rules . 123
4.3 Function Keyword Maps 4-D value of h . 124
4.4 Cubic and quartic polynomial terms . 144
4.5 Some quartic shapes . 145

7.1 Primary colors . 275
7.2 Shades of gray...from 5% to 95%, in 5% increments . 276
7.3 Misc. colors - plate 1 . 277
7.4 Misc. colors - plate 2 . 278
7.5 Misc. colors - plate 3 . 279
7.6 glass.inc glass colors with transparency . 299
7.7 glass.inc glass colors without transparency for fadecolor . 300

8.1 Quick Reference Overview . 348

xiv TABLES

Chapter 1

Introduction

This book provides a reference for the Persistence of Vision Ray-Tracer (POV-Ray). The documentation applies
to all platforms to which this version of POV-Ray is ported. The platform-specific documentation is available
for each platform separately.

This book is divided into these main parts:

1. This introduction together with a complete reference on “POV-Ray Options” which explains options (set
either by command line switches or by INI file keywords) that tell POV-Ray how to render the scenes.

2. A complete reference on “Scene Description Language” in which you describe the scene.

3. A complete reference on the “Standard Include Files” that come with the POV-Ray package, to be used
in your scenes.

4. Finally, a consolidation of the POV-Ray Scene Description Language in the “Quick Reference”.

This book covers only the generic parts of the program which are common to each version.Each version has
platform-specific documentation not included here.We recommend you finish reading the tuorial book then
read the platform-specific information before using this reference.

The platform-specific docs will show you how to render a sample scene and will give you detailed description
of the platform-specific features.

The Windows version documentation is available on the POV-Ray program’s Help menu or by pressing the F1
key while in the program.

The Mac platform documentation is available via the “Help” menu as well as for viewing using a regular web
browser. Details may be found in the “POV-Ray MacOS Read Me” which contains information specific to the Mac
version of POV-Ray. It is best to read this document first.

The Unix / Linux version documentation can be found at the same place as the platform independent part.
Usually that is/usr/local/share/povray-3.?/html

2 Introduction

1.1 Notation and Basic Assumptions

Throughout the tutorial and reference books, the consistent notation is used to mark keywords of the scene
description language, command line switches, INI file keywords and file names. All POV-Ray scene descrip-
tionlanguage keywords, punctuation and command-line switches are mono-spaced. For examplesphere, 4.0
* sin(45.0) or +W640 +H480. Syntax descriptions are mono-spaced and all caps. For example required syntax
items are written likeSYNTAX ITEM, while optional syntax items are written in square braces like[SYNTAX ITEM].
If one or more syntax items are required, the ellipsis will be appended likeSYNTAX ITEM.... In case zero or more
syntax items are allowed, the syntax item will be written in square braces with appended ellipsis like[SYNTAX -

ITEM...]. A float value or expression is written mixed case likeValue 1, while a vector value or expression
is written in mixed case in angle braces like<Value 1>. Choices are represented by a vertical bar between
syntax items. For example a choice between three items would be written asITEM1 | ITEM2 | ITEM3. Further,
a certain lists and arrays also require square braces as part of the language rather than the language description.
When square braces are required as part of the syntax, they will be separated from the contained syntax item
specification with a spaces like[ITEM].

Note: POV-Ray is a command-line program on Unix and other text-based operating systems and is menu-driven
on Windows and Macintosh platforms. Some of these operating systems use folders to store files while others
use directories. Some separate the folders and sub-folders with a slash character (/), back-slash character (\),
or others.

We have tried to make this documentation as generic as possible but sometimes we have to refer to folders, files,
options etc. and there is no way to escape it. Here are some assumptions we make...

1. You installed POV-Ray in the “C:\POVRAY36” directory. For MS-Dos this is probably true but for Unix it
might be “/usr/povray3”, or for Windows it might be “C:\Program Files\POV-Ray for Windows v3.6”,
for Mac it might be “MyHD:Apps:POV-Ray 36:”, or you may have used some other drive or directory.
So if we tell you that “Include files are stored in the\povray36\include directory,” we assume you
can translate that to something like “::POVRAY36:INCLUDE” or “ C:\Program Files\POV-Ray for Windows

v3.6\include” or whatever is appropriate for your platform, operating system and installation.

2. POV-Ray uses INI files and/or command-line switches (if available) to choose options in all versions,
but Windows and Mac also use dialog boxes or menu choices to set options. We will describe options
assuming you are using switches or INI files when describing what the options do. We have taken care
to use the same terminology in designing menus and dialogs as we use in describing switches or INI
keywords. See your version-specific documentation on menu and dialogs.

3. Some of you are reading this using a help-reader, built-in help, web-browser, formatted printout, or plain
text file. We assume you know how to get around in which ever medium you are using. We will say
“See the chapter on ”Setting POV-Ray Options“ we assume you can click, scroll, browse, flip pages or
whatever to get there.

1.2 Command-line Options

The reference section describes all command line switches and INI file keywords that are used to set the options
of POV-Ray. It is supposed to be used as a reference for looking up things. It does not contain detailed
explanations on how scenes are written or how POV-Ray is used. It just explains all features, their syntax,
applications, limits, drawbacks, etc.

1.2 Command-line Options 3

Options may be specified by switches or INI-style options. Almost all INI-style options have equivalent+/ -
switches and most switches have equivalent INI-style option. The following sections give a detailed description
of each POV-Ray option. It includes both the INI-style settings and the+/ - switches.

The notation and terminology used is described in the tables below.

Keyword=bool TurnKeyword on if bool equalstrue, yes, on or 1 and Turn it off if it is
any other value.

Keyword=true Do this option iftrue, yes, on or 1 is specified.
Keyword=false Do this option iffalse, no, off or 0 is specified.
Keyword=filename SetKeyword to filename where filename is any valid file name.

Note: some options prohibit the use of any of the abovetrue or false
values as a file name. They are noted in later sections.

n Any integer such as in+W320
n.n Any float such as inClock=3.45
0.n Any float< 1.0 even if it has no leading 0
s Any string of text
x or y Any single character
path Any directory name, drive optional, no final path separator (”\“ or ”/“,

depending on the operating system)

Unless otherwise specifically noted, you may assume that either a plus or minus sign before a switch will
produce the same results.

1.2.1 Animation Options

Internal animation loop, automatic output file name numbering and the ability to shell out to the operating
system to external utilities which can assemble individual frames into an animation, greatly improved the
animation capability. The internal animation loop is simple yet flexible. You may still use external programs or
batch files to create animations without the internal loop.

External Animation Loop

Clock=n.n Setsclock float identifier to n.n
+Kn.n Same asClock=n.n

The Clock=n.n option or the +Kn.n switch may be used to pass a single float value to the program for basic
animation. The value is stored in the float identifierclock. If an object had arotate <0,clock,0> attached
then you could rotate the object by different amounts over different frames by setting+K10.0,+K20.0... etc. on
successive renderings. It is up to the user to repeatedly invoke POV-Ray with a differentClock value and a
different Output File Name for each frame.

Internal Animation Loop

The internal animation loop relieves the user of the task of generating complicated sets of batch files to invoke
POV-Ray multiple times with different settings. While the multitude of options may look intimidating, the

4 Introduction

Initial Frame=n Sets initial frame number to n
Final Frame=n Sets final frame number to n
Initial Clock=n.n Sets initial clock value to n.n
Final Clock=n.n Sets final clock value to n.n
+KFIn Same asInitial Frame=n
+KFFn Same asFinal Frame=n
+KIn.n Same asInitial Clock=n.n
+KFn.n Same asFinal Clock=n.n

clever set of default values means that you will probably only need to specify theFinal Frame=n or the+KFFn
option to specify the number of frames. All other values may remain at their defaults.

Any Final Frame setting other than -1 will trigger POV-Ray’s internal animation loop. For exampleFinal -

Frame=10 or +KFF10 causes POV-Ray to render your scene 10 times. If you specifiedOutput File Name=file.

tga then each frame would be output asfile01.tga, file02.tga, file03.tga etc. The number of zero-padded
digits in the file name depends upon the final frame number. For example+KFF100 would generatefile001.
tga throughfile100.tga. The frame number may encroach upon the file name. On MS-DOS with an eight
character limit,myscene.pov would render tomysce001.tga throughmysce100.tga.

The defaultInitial Frame=1 will probably never have to be changed. You would only change it if you were
assembling a long animation sequence in pieces. One scene might run from frame 1 to 50 and the next from 51
to 100. TheInitial Frame=n or +KFIn option is for this purpose.

Note: if you wish to render a subset of frames such as 30 through 40 out of a 1 to 100 animation, you should
not changeInitial Frame or Final Frame. Instead you should use the subset commands described in section
”Subsets of Animation Frames“.

Unlike some animation packages, the action in POV-Ray animated scenes does not depend upon the integer
frame numbers. Rather you should design your scenes based upon the float identifierclock. By default, the
clock value is 0.0 for the initial frame and 1.0 for the final frame. All other frames are interpolated between
these values. For example if your object is supposed to rotate one full turn over the course of the animation, you
could specifyrotate 360*clock*y. Then as clock runs from 0.0 to 1.0, the object rotates about the y-axis from
0 to 360 degrees.

The major advantage of this system is that you can render a 10 frame animation or a 100 frame or 500 frame or
329 frame animation yet you still get one full 360 degree rotation. Test renders of a few frames work exactly
like final renders of many frames.

In effect you define the motion over a continuous float valued parameter (the clock) and you take discrete
samples at some fixed intervals (the frames). If you take a movie or video tape of a real scene it works the same
way. An object’s actual motion depends only on time. It does not depend on the frame rate of your camera.

Many users have already created scenes for POV-Ray 2 that expect clock values over a range other than the
default 0.0 to 1.0. For this reason we provide theInitial Clock=n.nor +KIn.nandFinal Clock=n.nor +KFn.n
options. For example to run the clock from 25.0 to 75.0 you would specifyInitial Clock=25.0 andFinal -

Clock=75.0. Then the clock would be set to 25.0 for the initial frame and 75.0 for the final frame. In-between
frames would have clock values interpolated from 25.0 through 75.0 proportionally.

Users who are accustomed to using frame numbers rather than clock values could specifyInitial Clock=1.0

andFinal Clock=10.0 andFrame Final=10 for a 10 frame animation.

For new scenes, we recommend you do not change theInitial Clock or Final Clock from their default 0.0
to 1.0 values. If you want the clock to vary over a different range than the default 0.0 to 1.0, we recommend

1.2 Command-line Options 5

you handle this inside your scene file as follows...

#declare Start = 25.0;
#declare End = 75.0;
#declare My_Clock = Start+(End-Start)*clock;

Then useMy Clock in the scene description. This keeps the critical values 25.0 and 75.0 in your .pov file.

Note: more details concerning the inner workings of the animation loop are in the section on shell-out operating
system commands in section “Shell-out to Operating System”.

Subsets of Animation Frames

Subset Start Frame=n Set subset starting frame to n
Subset Start Frame=0.n Set subset starting frame to n percent
Subset End Frame=n Set subset ending frame to n
Subset End Frame=0.n Set subset ending frame to n percent
+SF0.n Same asSubset Start Frame

+EF0.n Same asSubset End Frame

When creating a long animation, it may be handy to render only a portion of the animation to see what it looks
like. Suppose you have 100 frames but only want to render frames 30 through 40. If you setInitial Frame=30

andFinal Frame=40 then the clock would vary from 0.0 to 1.0 from frames 30 through 40 rather than 0.30
through 0.40 as it should. Therefore you should leaveInitial Frame=1 andFinal Frame=100 and useSubset -

Start Frame=30 andSubset End Frame=40 to selectively render part of the scene. POV-Ray will then properly
compute the clock values.

Usually you will specify the subset using the actual integer frame numbers however an alternate form of the
subset commands takes a float value in the range0.0 <=n.nnn <=1.0 which is interpreted as a fraction of
the whole animation. For example,Subset Start Frame=0.333 andSubset End Frame=0.667 would render the
middle 1/3rd of a sequence regardless of the number of frames.

Cyclic Animation

Cyclic Animation=bool Turn cyclic animation on/off
+KC Turn cyclic animation on
-KC Turn cyclic animation off

Many computer animation sequences are designed to be run in a continuous loop. Suppose you have an object
that rotates exactly 360 degrees over the course of your animation and you didrotate 360*clock*y to do so.
Both the first and last frames would be identical. Upon playback there would be a brief one frame jerkiness. To
eliminate this problem you need to adjust the clock so that the last frame does not match the first. For example
a ten frame cyclic animation should not use clock 0.0 to 1.0. It should run from 0.0 to 0.9 in 0.1 increments.
However if you change to 20 frames it should run from 0.0 to 0.95 in 0.05 increments. This complicates things
because you would have to change the final clock value every time you changedFinal Frame. SettingCyclic -

Animation=on or using+KC will cause POV-Ray to automatically adjust the final clock value for cyclic animation
regardless of how many total frames. The default value for this setting is off.

6 Introduction

Field Rendering

Field Render=bool Turn field rendering on/off
Odd Field=bool Set odd field flag
+UF Turn field rendering on
-UF Turn field rendering off
+UO Set odd field flag on
-UO Set odd field flag off

Field rendering is sometimes used for animations when the animation is being output for television. TVs only
display alternate scan lines on each vertical refresh. When each frame is being displayed the fields are interlaced
to give the impression of a higher resolution image. The even scan lines make up the even field, and are drawn
first (i.e. scan lines 0, 2, 4, etc.), followed by the odd field, made up of the odd numbered scan lines are drawn
afterwards. If objects in an animation are moving quickly, their position can change noticeably from one field
to the next. As a result, it may be desirable in these cases to have POV-Ray render alternate fields at the actual
field rate (which is twice the frame rate), rather than rendering full frames at the normal frame rate. This would
save a great deal of time compared to rendering the entire animation at twice the frame rate, and then only using
half of each frame.

By default, field rendering is not used. SettingField Render=on or using +UF will cause alternate frames in an
animation to be only the even or odd fields of an animation. By default, the first frame is the even field, followed
by the odd field. You can have POV-Ray render the odd field first by specifyingOdd Field=on, or by using the
+UO switch.

1.2.2 General Output Options

Height and Width of Output

Height=n Sets screen height to n pixels
Width=n Sets screen width to n pixels
+Hn Same asHeight=n
+Wn Same asWidth=n

These switches set the height and width of the image in pixels. This specifies the image size for file output. The
preview display, if on, will generally attempt to pick a video mode to accommodate this size but the display
settings do not in any way affect the resulting file output.

Partial Output Options

When doing test rendering it is often convenient to define a small, rectangular sub-section of the whole screen
so you can quickly check out one area of the image. TheStart Row, End Row, Start Column andEnd Column

options allow you to define the subset area to be rendered. The default values are the full size of the image from
(1,1) which is the upper left to (w,h) on the lower right where w and h are theWidth=n and Height=n values
you have set.

Note: if the number specified is greater than 1 then it is interpreted as an absolute row or column number in
pixels. If it is a decimal value between 0.0 and 1.0 then it is interpreted as a percent of the total width or height
of the image.

1.2 Command-line Options 7

Start Column=n Set first column to n pixels
Start Column=0.n Set first column to n percent of width
+SC0.n Same asStart Column

Start Row=n Set first row to n pixels
Start Row=0.n Set first row to n percent of height
+Sn Same asStart Row=n
+SR0.n or+S0.n Same asStart Row=0.n
End Column=n Set last column to n pixels
End Column=0.n Set last column to n percent of width
+EC0.n Same asEnd Column

End Row=n Set last row to n pixels
End Row=0.n Set last row to n percent of height
+En Same asEnd Row=n
+ER0.n or+E0.n Same asEnd Row=0.n

For example: Start Row=0.75 and Start Column=0.75 starts on a row 75% down from the top at a column
75% from the left. Thus it renders only the lower-right 25% of the image regardless of the specified width and
height.

The +SR, +ER, +SC and +EC switches work in the same way as the corresponding INI-style settings for both
absolute settings or percentages. Early versions of POV-Ray allowed only start and end rows to be specified
with +Sn and +En so they are still supported in addition to+SR and+ER.

When rendering a subset of *columns* (+sc/+ec) POV-Ray generates a full width image and fills the not
rendered columns with black pixels. This should not be a problem for any image reading program no matter
what file format is used.

when rendering a subset of *rows* (+sr/+er) POV-Ray writes the full height into the image file header and only
writed those lines into the image that are rendered. This can cause problems with image reading programs that
are not checking the file while reading and just read over the end.

if POV-Ray wrote the actual height of the partial image into the image header there would be no way to continue
the trace in a later run.

Interrupting Options

Test Abort=bool Turn test for user abort on/off
+X Turn test abort on
-X Turn test abort off
Test Abort Count=n Set to test for abort every n pixels
+Xn Set to test for abort every n pixels on
-Xn Set to test for abort off (in future test every n pixels)

On some operating systems once you start a rendering you must let it finish. TheTest Abort=on option or+X
switch causes POV-Ray to test the keyboard for keypress. If you have pressed a key, it will generate a controlled
user abort. Files will be flushed and closed but only data through the last full row of pixels is saved. POV-Ray
exits with an error code 2 (normally POV-Ray returns 0 for a successful run or 1 for a fatal error).

When this option is on, the keyboard is polled on every line while parsing the scene file and on every pixel

8 Introduction

while rendering. Because polling the keyboard can slow down a rendering, theTest Abort Count=n option or
+Xn switch causes the test to be performed only everyn pixels rendered or scene lines parsed.

Resuming Options

Continue Trace=bool Sets continued trace on/off
+C Sets continued trace on
-C Sets continued trace off
Create Ini=file Generate an INI file to file
Create Ini=true Generate file.ini where file is scene name.
Create Ini=false Turn off generation of previously set file.ini
+GIfile Same asCreate Ini=file

If you abort a render while it is in progress or if you used theEnd Row option to end the render prematurely, you
can useContinue Trace=on or +C option to continue the render later at the point where you left off. This option
reads in the previously generated output file, displays the partial image rendered so far, then proceeds with the
ray-tracing. This option cannot be used if file output is disabled withOutput to file=off or -F.

TheContinue Trace option may not work if theStart Row option has been set to anything but the top of the file,
depending on the output format being used. Also POV-Ray cannot continue the file once it has been opened and
saved again by any program

POV-Ray tries to figure out where to resume an interrupted trace by reading any previously generated data in
the specified output file. All file formats contain the image size, so this will override any image size settings
specified. Some file formats (namely TGA and PNG) also store information about where the file started (i. e.
+SCn and +SRn options), alpha output+UA, and bit-depth+FNn, which will override these settings. It is up to the
user to make sure that all other options are set the same as the original render.

TheCreate Ini option or+GI switch provides an easy way to create an INI file with all of the rendering options,
so you can re-run files with the same options, or ensure you have all the same options when resuming. This
option creates an INI file with every option set at the value used for that rendering. This includes default values
which you have not specified. For example if you run POV-Ray with...

POVRAY +Isimple.pov MYOPTS +GIrerun.ini MOREOPTS

POV-Ray will create a file calledrerun.ini with all of the options used to generate this scene. The file is not
written until all options have been processed. This means that in the above example, the file will include options
from bothmyopts.ini and moreopts.ini despite the fact that the+GI switch is specified between them. You
may now re-run the scene with...

POVRAY RERUN

or resume an interrupted trace with

POVRAY RERUN +C

If you add other switches with thererun.ini reference, they will be included in future re-runs because the file
is re-written every time you use it.

TheCreate Ini option is also useful for documenting how a scene was rendered. If you renderwaycool.pov

with Create Ini=on then it will create a filewaycool.ini that you could distribute along with your scene file
so other users can exactly re-create your image.

1.2 Command-line Options 9

1.2.3 Display Output Options

Display Hardware Settings

Display=bool Turns graphic display on/off
+D Turns graphic display on
-D Turns graphic display off
Video Mode=x Set video mode to x; does not affect on/off
+Dx Set display on; Set mode to x
-Dx Set display off; but for future use mode x
Palette=y Set display palette to y; does not affect on/off
+Dxy Set display on; Set mode x; Set palette y
-Dxy Set display off; use mode x, palette y in future
Display Gamma=n.n Sets the display gamma to n.n

TheDisplay=on or +D switch will turn on the graphics display of the image while it is being rendered. Even on
some non-graphics systems, POV-Ray may display an 80 by 24 character“ASCII-Art” version of your image.
Where available, the display may be full, 24-bit true color. SettingDisplay=off or using the-D switch will turn
off the graphics display which is the default.

On the Windows platform, the default isDisplay=on. Turning display off does not, of course, turn off the actual
video display. Instead, POV-Ray will not open the output window that it normally shows a render in.

TheVideo Mode=x option sets the display mode or hardware type chosen wherex is a single digit or letter that
is machine dependent. GenerallyVideo Mode=0 means the default or an auto-detected setting should be used.
When using switches, this character immediately follows the switch. For example the+D0 switch will turn on
the graphics display in the default mode.

The Palette=y option selects the palette to be used. Typically the single character parametery is a digit which
selects one of several fixed palettes or a letter suchG for gray scale, H for 15-bit or 16-bit high color or T for
24-bit true color. When using switches, this character is the 2nd character after the switch. For example the+D0T

switch will turn on the graphics display in the default mode with a true color palette. TheDisplay Gamma=n.n
setting is not available as a command-line switch.

The Display Gamma setting overcomes the problem of images (whether ray-traced or not) having different
brightness when being displayed on different monitors, different video cards, and under different operating
systems.

Note: the Display Gamma is a setting based on your computer’s display hardware, and should be set correctly
once and not changed.

The Display Gamma INI setting works in conjunction with the newassumed gamma global setting to ensure that
POV scenes and the images they create look the same on all systems. See section “AssumedGamma” which
describes theassumed gamma global setting and describes gamma more thoroughly.

While the Display Gamma can be different for each system, there are a few general rules that can be used for
setting Display Gamma if you do not know it exactly. If theDisplay Gamma keyword does not appear in the INI
file, POV-Ray assumes that the display gamma is 2.2. This is because most PC monitors have a gamma value
in the range 1.6 to 2.6 (newer models seem to have a lower gamma value). Mac has the ability to do gamma
correction inside the system software (based on a user setting in the gamma control panel). If the gamma control
panel is turned off, or is not available, the default Macintosh system gamma is 1.8. Many newer PC graphics
cards can do hardware gamma correction and should use the current DisplayGamma setting, usually 1.0.

10 Introduction

Setting your Display Gamma

The following gamma test image can be used to help you set yourDisplay Gamma accurately.

Before viewing the gamma image darken the room and set the monitor brightness and contrast to maximum.
While viewing a black screen, lower the brightness gradually until the “background” is no longer noticeable (ie
when it just fades from view). This may be difficult on monitors that use overscanning, unless you change the
viewable area settings.

Figure 1.1: Display gamma test image.

Now, lower the contrast until the alternating white and black bars on the left edge of each column are equal
in width. This is trying to get a 50% gray by using half white and half black. If this is not possible, choose a
contrast setting which is about in the middle. While viewing the image from a distance, or with squinted eyes,
one of the numbered “swatches” will best match the gray value approximated by the white and black bars. The
number in this “swatch” is your display’s actual gamma value.

Normal display gamma values are in the range 2.0 to 2.6. If your monitor is usually used in a dim environment,
we often use a gamma value that is 15% - 25% lower than the actual display gamma to give the images more
contrast. Some systems, such as Macs and SGIs, already do gamma correction, so they may have display
gammas of 1.0 or 1.8.

For scene files that do not contain anassumed gamma global setting the INI file optionDisplay Gamma will not
have any affect on the preview output of POV-Ray or for most output file formats. However, theDisplay -

Gamma value is used when creating PNG format output files, and also when rendering the POV-Ray example files
(because they have anassumed gamma), so it should still be correctly set for your system to ensure proper results.

Display Related Settings

On some systems, when the image is complete, the graphics display is cleared and POV-Ray switches back into
text mode to print the final statistics and to exit. Normally when the graphics display is on, you want to look
at the image awhile before continuing. UsingPause When Done=on or +P causes POV-Ray to pause in graphics
mode until you press a key to continue. The default is not to pause (-P).

When the graphics display is not used, it is often desirable to monitor progress of the rendering. Using
Verbose=on or +V turns on verbose reporting of your rendering progress. This reports the number of the line
currently being rendered, the elapsed time for the current frame and other information. On some systems, this

1.2 Command-line Options 11

Pause When Done=bool Sets pause when done on/off
+P Sets pause when done on
-P Sets pause when done off
Verbose=bool Set verbose messages on/off
+V Set verbose messages on
-V Set verbose messages off
Draw Vistas=bool Turn draw vistas on/off
+UD Turn draw vistas on
-UD Turn draw vistas off

textual information can conflict with the graphics display. You may need to turn this off when the display is on.
The default setting is off (-V).

The optionDraw Vistas=on or +UD was originally a debugging help for POV-Ray’s vista buffer feature but it was
such fun we decided to keep it. Vista buffering is a spatial sub-division method that projects the 2-D extents of
bounding boxes onto the viewing window. POV-Ray tests the 2-D x, y pixel location against these rectangular
areas to determine quickly which objects, if any, the viewing ray will hit. This option shows you the 2-D
rectangles used. The default setting is off (-UD) because the drawing of the rectangles can take considerable
time on complex scenes and it serves no critical purpose. See section “Automatic Bounding Control” for more
details.

Mosaic Preview

Preview Start Size=n Set mosaic preview start size to n
+SPn Same as PreviewStartSize=n
Preview End Size=n Set mosaic preview end size to n
+EPn Same as PreviewEnd Size=n

Typically, while you are developing a scene, you will do many low resolution test renders to see if objects are
placed properly. Often this low resolution version does not give you sufficient detail and you have to render the
scene again at a higher resolution. A feature called“mosaic preview” solves this problem by automatically
rendering your image in several passes.

The early passes paint a rough overview of the entire image using large blocks of pixels that look like mosaic
tiles. The image is then refined using higher resolutions on subsequent passes. This display method very
quickly displays the entire image at a low resolution, letting you look for any major problems with the scene.
As it refines the image, you can concentrate on more details, like shadows and textures. You do not have to wait
for a full resolution render to find problems, since you can interrupt the rendering early and fix the scene, or if
things look good, you can let it continue and render the scene at high quality and resolution.

To use this feature you should first select aWidth and Height value that is the highest resolution you will need.
Mosaic preview is enabled by specifying how big the mosaic blocks will be on the first pass usingPreview -

Start Size=n or +SPn. The value n should be a number greater than zero that is a power of two (1, 2, 4, 8, 16,
32, etc.) If it is not a power of two, the nearest power of two less than n is substituted. This sets the size of the
squares, measured in pixels. A value of 16 will draw every 16th pixel as a 16*16 pixel square on the first pass.
Subsequent passes will use half the previous value (such as 8*8, 4*4 and so on.)

The process continues until it reaches 1*1 pixels or until it reaches the size you set withPreview End Size=n
or +EPn. Again the value n should be a number greater than zero that is a power of two and less than or equal

12 Introduction

to Preview Start Size. If it is not a power of two, the nearest power of two less than n is substituted. The
default ending value is 1. If you setPreview End Size to a value greater than 1 the mosaic passes will end before
reaching 1*1, but POV-Ray will always finish with a 1*1. For example, if you want a single 8*8 mosaic pass
before rendering the final image, setPreview Start Size=8 and Preview End Size=8.

No file output is performed until the final 1*1 pass is reached. Although the preliminary passes render only as
many pixels as needed, the 1*1 pass re-renders every pixel so that anti-aliasing and file output streams work
properly. This makes the scene take up to 25% longer than the regular 1*1 pass to render, so it is suggested
that mosaic preview not be used for final rendering. Also, the lack of file output until the final pass means
that renderings which are interrupted before the 1*1 pass can not be resumed without starting over from the
beginning.

1.2.4 File Output Options

Output to File=bool Sets file output on/off
+F Sets file output on (use default type)
-F Sets file output off

By default, POV-Ray writes an image file to disk. When you are developing a scene and doing test renders, the
graphic preview may be sufficient. To save time and disk activity you may turn file output off withOutput -

to File=off or -F.

Output File Type

Output File Type=x Sets file output format to x
+Fxn Sets file output on; sets format x, depth n
-Fxn Sets file output off; but in future use format x, depth n
Output Alpha=bool Sets alpha output on/off
+UA Sets alpha output on
-UA Sets alpha output off
Bits Per Color=n Sets file output bits/color to n

The default type of image file depends on which platform you are using. MS-DOS and most others default
to 24-bit uncompressed Targa. Windows defaults to ’sys’, which is 24-bit BMP. See your platform-specific
documentation to see what your default file type is. You may select one of several different file types using
Output File Type=x or +Fx wherex is one of the following...

.. C Compressed Targa-24 format (RLE, run length encoded)

.. N PNG (portable network graphics) format

.. P Unix PPM format
.. SSystem-specific such as Mac Pict or Windows BMP

.. T UncompressedTarga-24 format

Note: the obsolete+FD dump format and+FR raw format have been dropped because they were rarely used
and no longer necessary. PPM, PNG, and system specific formats have been added. PPM format images
are uncompressed, and have a simple text header, which makes it a widely portable image format. PNG is

1.2 Command-line Options 13

an image format designed not only to replace GIF, but to improve on its shortcomings. PNG offers the highest
compression available without loss for high quality applications, such as ray-tracing. The system specific format
depends on the platform used and is covered in the appropriate system specific documentation.

Most of these formats output 24 bits per pixel with 8 bits for each of red, green and blue data. PNG and PPM
allow you to optionally specify the output bit depth from 5 to 16 bits for each of the red, green, and blue colors,
giving from 15 to 48 bits of color information per pixel. The default output depth for all formats is 8 bits/color
(16 million possible colors), but this may be changed for PNG and PPM format files by settingBits Per Color=n
or by specifying+FNn or +FPn, where n is the desired bit depth.

Specifying a smaller color depth like 5 bits/color (32768 colors) may be enough for people with 8- or 16-bit
(256 or 65536 color) displays, and will improve compression of the PNG file. Higher bit depths like 10 or 12
may be useful for video or publishing applications, and 16 bits/color is good for grayscale height field output
(See section “Height Field” for details on height fields).

Targa format also allows 8 bits of alpha transparency data to be output, while PNG format allows 5 to 16 bits of
alpha transparency data, depending on the color bit depth as specified above. You may turn this option on with
Output Alpha=on or +UA. The default is off or -UA.

The alpha channel stores a transparency value for each pixel, just like there is also stored a value for red green
and blue light for each pixel. In POV-Ray, when the alpha channel is turned on, all areas of the image where the
background is partly or fully visible will be partly or fully transparent. Refractions of the background will also
be transparent, but not reflections. Also anti-aliasing is taken into account

The philosophy of the alpha channel feature in POV-Ray is that the background color should not be present in
the color of the image when the alpha channel is used. Instead, the amount of visible background is kept in
the alpha and *only* in the alpha channel. That ensures that images look correct when viewed with the alpha
channel.

See section “Using the Alpha Channel” for further details on using transparency in imagemaps in your scene.

In addition to support for variable bit-depths, alpha channel, and grayscale formats, PNG files also store the
Display Gamma value so the image displays properly on all systems (see section “Display Hardware Settings”).
Thehf gray 16 global setting, as described in section “HFGray 16” will also affect the type of data written to
the output file.

Output File Name

Output File Name=file Sets output file to file
+Ofile Same asOutput File Name=file

The default output filename is created from the scene name and need not be specified. The scene name is
the input name with all drive, path, and extension information stripped. For example if the input file name is
c:\povray3\mystuff\myfile.pov the scene name ismyfile. The proper extension is appended to the scene
name based on the file type. For examplemyfile.tga or myfile.png might be used.

You may override the default output name usingOutput File Name=file or +Ofile. For example:

Input_File_Name=myinput.pov
Output_File_Name=myoutput.tga

If an output file name of “-” is specified (a single minus sign), then the image will be written to standard output,
usually the screen. The output can then be piped into another program or to a GUI if desired.

14 Introduction

If the file specified is actually a path or directory or folder name and not a file name, then the default output
name is used but it is written to the specified directory. For example:

Input_File_Name=myscene.pov
Output_File_Name=c:\povray3\myimages\

This will createc:\povray3\myimages\myscene.tga as the output file.

Output File Buffer

The output-file buffer optionsBuffer Output andBuffer Size are removed per POV-Ray 3.6

Note: the options are still accepted, but ignored, in order to be backward compatible with old INI files.

CPU Utilization Histogram

The CPU utilization histogram is a way of finding out where POV-Ray is spending its rendering time, as well
as an interesting way of generating heightfields. The histogram splits up the screen into a rectangular grid of
blocks. As POV-Ray renders the image, it calculates the amount of time it spends rendering each pixel and then
adds this time to the total rendering time for each grid block. When the rendering is complete, the histogram is
a file which represents how much time was spent computing the pixels in each grid block.

Not all versions of POV-Ray allow the creation of histograms. The histogram output is dependent on the file
type and the system that POV-Ray is being run on.

File Type

Histogram Type=y Set histogram type to y (Turn off if type is ’X’)
+HTy Same asHistogram Type=y

The histogram output file type is nearly the same as that used for the image output file types in “Output File
Type”. The available histogram file types are as follows.

+HTC Comma separated values (CSV) often used in spreadsheets
+HTN PNG (portable network graphics) format grayscale
+HTP Unix PPM format
+HTS System-specific such as Mac Pict or Windows BMP
+HTT Uncompressed Targa-24 format (TGA)
+HTX No histogram file output is generated

Note: +HTC does not generate a compressed Targa-24 format output file but rather a text file with a comma-
separated list of the time spent in each grid block, in left-to-right and top-to bottom order. The units of time
output to the CSV file are system dependent. See the system specific documentation for further details on the
time units in CSV files.

The Targa and PPM format files are in the POV heightfield format (see “Height Field”), so the histogram
information is stored in both the red and green parts of the image, which makes it unsuitable for viewing. When
used as a height field, lower values indicate less time spent calculating the pixels in that block, while higher
indicate more time spent in that block.

1.2 Command-line Options 15

PNG format images are stored as grayscale images and are useful for both viewing the histogram data as well as
for use as a heightfield. In PNG files, the darker (lower) areas indicate less time spent in that grid block, while
the brighter (higher) areas indicate more time spent in that grid block.

File Name

Histogram Name=file Set histogram name to file
+HNfile Same asHistogram Name=file

The histogram file name is the name of the file in which to write the histogram data. If the file name is not
specified it will default to histogram.ext, whereext is based on the file type specified previously.

Note: that if the histogram name is specified the file name extension should match the file type.

Grid Size

Histogram Grid Size= nn.mm Set histogram grid to nn by mm
+HSnn.mm Same asHistogram Grid Size=nn.mm

The histogram grid size gives the number of times the image is split up in both the horizontal and vertical
directions. For example

povray +Isample +W640 +H480 +HTN +HS160.120 +HNhistogram.png

will split the image into 160*120 grid blocks, each of size 4*4 pixels, and output a PNG file, suitable for viewing
or for use as a heightfield. Smaller numbers for the grid size mean more pixels are put into the same grid block.
With CSV output, the number of values output is the same as the number of grid blocks specified. For the
other formats the image size is identical to the rendered image rather than the specified grid size, to allow easy
comparison between the histogram and the rendered image. If the histogram grid size is not specified, it will
default to the same size as the image, so there will be one grid block per pixel.

Note: on systems that do task-switching or multi-tasking the histogram may not exactly represent the amount
of time POV-Ray spent in a given grid block since the histogram is based on real time rather than CPU time. As
a result, time may be spent for operating system overhead or on other tasks running at the same time. This will
cause the histogram to have speckling, noise or large spikes. This can be reduced by decreasing the grid size so
that more pixels are averaged into a given grid block.

1.2.5 Scene Parsing Options

POV-Ray reads in your scene file and processes it to create an internal model of your scene. The process is called
parsing. As your file is parsed other files may be read along the way. This section covers options concerning
what to parse, where to find it and what version specific assumptions it should make while parsing it.

Constant

Declare=IDENTIFIER=FLOAT Declares an identifier with a float value

16 Introduction

You can now declare a constant in an INI file, and that constant will be available to the scene. Since INI file
statements may also be laced on the command-line, you can therefore also declare on the command-line (though
there is no switch for it).

Declare=MyValue=24

This would be the same as a#declare MyValue=24; in a scene file. The value on the right-hand side must be a
constant float value.

A possible use could be switching off radiosity or photons from commandline:

--in INI-file / on command-line

Declare=RAD=0

--in scenefile

global_settings {
#if (RAD)

radiosity {
...

}
#end

}

Input File Name

Input File Name=file Sets input file name to file
+Ifile Same asInput File Name=file

Note: there may be no space between+I andfile.

You will probably always set this option but if you do not the default input filename isobject.pov. If you do
not have an extension then.pov is assumed. On case-sensitive operating systems both.pov and.POV are tried.
A full path specification may be used (on MS-DOS systems+Ic:\povray3\mystuff\myfile.pov is allowed for
example). In addition to specifying the input file name this also establishes thescene name.

The scene name is the input name with drive, path and extension stripped. In the above example the scene name
is myfile. This name is used to create a default output file name and it is referenced other places.

Note: as per version 3.5 you can now specify a POV file on the command-line without the use of the +i switch
(i.e. it works the same way as specifying an INI file without a switch), the POV file then should be the last on
the commandline.

If you use ”-” as the input file name the input will be read from standard input. Thus you can pipe a scene
created by a program to POV-Ray and render it without having a scene file.

Under MS-DOS you can try this feature by typing.

type ANYSCENE.POV | povray +I-

1.2 Command-line Options 17

Include Header=file Sets primary include file name to file
+HIfile Same asInclude Header=file

Include File Name

This option allows you to include a file as the first include file of a scene file. You can for example use this
option to always include a specific set of default include files used by all your scenes.

Library Paths

Library Path=path Add path to list of library paths
+Lpath Same asLibrary Path=path

POV-Ray looks for files in the current directory. If it does not find a file it needs it looks in various other library
directories which you specify. POV-Ray does not search your operating system path. It only searches the current
directory and directories which you specify with this option. For example the standard include files are usually
kept in one special directory. You tell POV-Ray to look there with...

Library_Path=c:\povray3\include

You must not specify any final path separators (”\” or ”/”) at the end.

Multiple uses of this option switch do not override previous settings. Up to twenty unique paths may be
specified. If you specify the exact same path twice it is only counted once. The current directory will be
searched first followed by the indicated library directories in the order in which you specified them.

Language Version

Version=n.n Set initial language compatibility to version n.n
+MVn.n Same asVersion=n.n

As POV-Ray has evolved from version 1.0 through to today we have made every effort to maintain some amount
of backwards compatibility with earlier versions. Some old or obsolete features can be handled directly without
any special consideration by the user. Some old or obsolete features can no longer be handled at all. However
someold features can still be used if you warn POV-Ray that this is an older scene. In the POV-Ray scene
language you can use the#version directive to switch version compatibility to different settings. See section
”The #version Directive” for more details about the language version directive. Additionally you may use the
Version=n.n option or the+MVn.n switch to establish theinitial setting. For example one feature introduced in
2.0 that was incompatible with any 1.0 scene files is the parsing of float expressions. SettingVersion=1.0 or
using+MV1.0 turns off expression parsing as well as many warning messages so that nearly all 1.0 files will still
work. Naturally the default setting for this option is the current version number.

Note: some obsolete or re-designed featuresare totally unavailable in the current version of POV-Ray REGAR-
DLES OF THE VERSION SETTING.Details on these features are noted throughout this documentation.

18 Introduction

Pre Scene Command=s Set command before entire scene
Pre Frame Command=s Set command before each frame
Post Scene Command=s Set command after entire scene
Post Frame Command=s Set command after each frame
User Abort Command=s Set command when user aborts POV-Ray
Fatal Error Command=s Set command when POV-Ray has fatal error

1.2.6 Shell-out to Operating System

Note: no + or - switches are available for these options. They cannot be used from the command line. They
may only be used from INI files.

POV-Ray offers you the opportunity to shell-out to the operating system at several key points to execute another
program or batch file. Usually this is used to manage files created by the internal animation loop however the
shell commands are available for any scene. The strings is a single line of text which is passed to the operating
system to execute a program. For example

Post_Scene_Command=tga2gif -d -m myfile

would use the utilitytga2gif with the -D and-M parameters to convertmyfile.tga to myfile.gif after the
scene had finished rendering.

Note: individual platforms may provide means of preventing shell-outs from occurring. For example, the
Windows version provides a menu command to turn shell-outs off (which is the default setting for that platform).
The reason for this (along with file I/O restrictions) is to attempt to prevent untrusted INI files from doing harm
to your system.

String Substitution in Shell Commands

It could get cumbersome to change thePost Scene Command every time you changed scene names. POV-Ray
can substitute various values into a command string for you. For example:

Post_Scene_Command=tga2gif -d -m \%s

POV-Ray will substitute the%s with the scene name in the command. Thescene nameis theInput File Name

or +I setting with any drive, directory and extension removed. For example:

Input_File_Name=c:\povray3\scenes\waycool.pov

is stripped down to the scene namewaycool which results in...

Post_Scene_Command=tga2gif -d -m waycool

In an animation it may be necessary to have the exact output file name with the frame number included. The
string%o will substitute the output file name. Suppose you want to save your output files in a zip archive using
the utility programpkzip. You could do...

Post_Frame_Command=pkzip -m \%s \%o

After rendering frame 12 ofmyscene.pov POV-Ray would shell to the operating system with

pkzip -m myscene mysce012.tga

1.2 Command-line Options 19

The-M switch inpkzip moves mysce012.tga to myscene.zip and removes it from the directory. Note that%o

includes frame numbers only when in an animation loop. During thePre Scene Command and Post Scene -

Command there is no frame number so the original, unnumberedOutput File Name is used. Any User Abort -

Command or Fatal Error Command not inside the loop will similarly give an unnumbered%o substitution.

Here is the complete list of substitutions available for a command string.

%o Output file name with extension and embedded frame number if any
%s Scene name derived by stripping path and ext from input name
%n Frame number of this frame
%k Clock value of this frame
%h Height of image in pixels
%w Width of image in pixels
%% A single % sign.

Shell Command Sequencing

Here is the sequence of events in an animation loop. Non-animated scenes work the exact same way except
there is no loop.

1. Process all INI file keywords and command line switches just once.

2. Open any text output streams and do CreateINI if any.

3. Execute PreSceneCommand if any.

4. Loop through frames (or just do once on non-animation).

(a) Execute PreFrameCommand if any.

(b) Parse entire scene file, open output file and read settings, turn on display, render the frame, destroy
all objects, textures etc., close output file, close display.

(c) Execute PostFrameCommand if any.

(d) Repeat above steps until all frames are done.

5. Execute PostSceneCommand if any.

6. Finish

If the user interrupts processing theUser Abort Command, if any, is executed. User aborts can only occur during
the parsing and rendering parts of step (4b) above. If a fatal error occurs that POV-Ray notices theFatal -

Error Command, if any, is executed. Sometimes an unforeseen bug or memory error could cause a total crash of
the program in which case there is no chance to shell out. Fatal errors can occur just about anywhere including
during the processing of switches or INI files. If a fatal error occurs before POV-Ray has read theFatal -

Error Command string then obviously no shell can occur.

Note: the entire scene is re-parsed for every frame. Future versions of POV-Ray may allow you to hold over
parts of a scene from one frame to the next but for now it starts from scratch every time.

Note: that thePre Frame Command occurs before the scene is parsed. You might use this to call some custom
scene generation utility before each frame. This utility could rewrite your.pov or .inc files if needed. Perhaps
you will want to generate new.gif or .tga files for image maps or height fields on each frame.

20 Introduction

Shell Command Return Actions

Pre Scene Return=s Set pre scene return actions
Pre Frame Return=s Set pre frame return actions
Post Scene Return=s Set post scene return actions
Post Frame Return=s Set post frame return actions
User Abort Return=s Set user abort return actions
Fatal Error Return=s Set fatal return actions

Note: that no+ or - switches are available for these options. They cannot be used from the command line. They
may only be used from INI files.

Most operating systems allow application programs to return an error code if something goes wrong. When
POV-Ray executes a shell command it can make use of this error code returned from the shell process and take
some appropriate action if the code is zero or non-zero. POV-Ray itself returns such codes. It returns 0 for
success, 1 for fatal error and 2 for user abort.

The actions are designated by a single letter in the different... Return=s options. The possible actions are:

I ignore the code
S skip one step
A all steps skipped
Q quit POV-Ray immediately
U generate a user abort in POV-Ray
F generate a fatal error in POV-Ray

For example if yourPre Frame Command calls a program which generates your height field data and that utility
fails then it will return a non-zero code. We would probably want POV-Ray to abort as well. The option
Pre Frame Return=F will cause POV-Ray to do a fatal abort if thePre Frame Command returns a non-zero code.

Sometimes a non-zero code from the external process is a good thing. Suppose you want to test if a frame has
already been rendered. You could use theS action to skip this frame if the file is already rendered. Most utilities
report an error if the file is not found. For example the command...

pkzip -V myscene mysce012.tga

tells pkzip you want to view the catalog ofmyscene.zip for the filemysce012.tga. If the file is not in the archive
pkzip returns a non-zero code.

However we want to skip if the file is found. Therefore we need to reverse the action so it skips on zero and
does not skip on non-zero. To reverse the zero vs. non-zero triggering of an action precede it with a ”-” sign
(note a ”!” will also work since it is used in many programming languages as a negate operator).

Pre Frame Return=S will skip if the code shows error (non-zero) and will proceed normally on no error (zero).
Pre Frame Return=-S will skip if there is no error (zero) and will proceed normally if there is an error (non-zero).

The default for all shells isI which means that the return action is ignored no matter what. POV-Ray simply
proceeds with whatever it was doing before the shell command. The other actions depend upon the context.
You may want to refer back to the animation loop sequence chart in the previous section ”Shell Command
Sequencing”. The action for each shell is as follows.

On return from any UserAbort Command if there is an action triggered...

1.2 Command-line Options 21

...and you have specified... ...then POV-Ray will..
F Then turn this user abort into a fatal error. Do theFatal Error Command,

if any. Exit POV-Ray with error code 1.
S, A, Q, or U Then proceed with the user abort. Exit POV-Ray with error code 2.

On return from anyFatal Error Command then POV-Ray will proceed with the fatal error no matter what. It will
exit POV-Ray with error code 1.

On return from anyPre Scene Command, Pre Frame Command, Post Frame Command or Post Scene Commands if
there is an action triggered...

...and you have specified... ...then POV-Ray will...
F ...turn this user abort into a fatal error. Do theFatal Error Command, if

any. Exit POV-Ray with error code 1.
U ...generate a user abort. Do theUser Abort Command, if any. Exit POV-

Ray with an error code 2.
Q ..quit POV-Ray immediately. Acts as though POV-Ray never really ran.

Do no further shells, (not even aPost Scene Command) and exit POV-Ray
with an error code 0.

On return from aPre Scene Command if there is an action triggered...

...and you have specified... ...then POV-Ray will...
S ...skip rendering all frames. Acts as though the scene completed all

frames normally. Do not do anyPre Frame Command or Post Frame -

Commands. Do the Post Scene Command, if any. Exit POV-Ray with error
code 0. On the earlier chart this means skip step #4.

A ...skip all scene activity. Works exactly likeQ quit. On the earlier chart
this means skip to step #6. Acts as though POV-Ray never really ran.
Do no further shells, (not even aPost Scene Command) and exit POV-
Ray with an error code 0.

On return from aPre Frame Command if there is an action triggered...

On return from aPost Frame Command if there is an action triggered...

On return from anyPost Scene Command if there is an action triggered and you have specifiedS or A then no
special action occurs. This is the same asI for this shell command.

1.2.7 Text Output

Text output is an important way that POV-Ray keeps you informed about what it is going to do, what it is doing
and what it did. The program splits its text messages into 7 separate streams. Some versions of POV-Ray color-
codes the various types of text. Some versions allow you to scroll back several pages of messages. All versions
allow you to turn some of these text streams off/on or to direct a copy of the text output to one or several files.
This section details the options which give you control over text output.

22 Introduction

...and you have specified... ...then POV-Ray will...
S ...skip only this frame. Acts as though this frame never existed. Do not

do thePost Frame Command. Proceed with the next frame. On the earlier
chart this means skip steps (4b) and (4c) but loop back as needed in (4d).

A ...skip rendering this frame and all remaining frames. Acts as though
the scene completed all frames normally. Do not do any furtherPost -

Frame Commands. Do thePost Scene Command, if any. Exit POV-Ray with
error code 0. On the earlier chart this means skip the rest of step (4) and
proceed at step (5).

...and you have specified... ...then POV-Ray will...
S or A ...skip all remaining frames. Acts as though the scene completed all

frames normally. Do not do any furtherPost Frame Commands. Do the
Post Scene Command, if any. Exit POV-Ray with error code 0. On the
earlier chart this means skip the rest of step (4) and proceed at step (5).

Text Streams

There are seven distinct text streams that POV-Ray uses for output. On some versions each stream is designated
by a particular color. Text from these streams are displayed whenever it is appropriate so there is often an
intermixing of the text. The distinction is only important if you choose to turn some of the streams off or to
direct some of the streams to text files. On some systems you may be able to review the streams separately in
their own scroll-back buffer.

Here is a description of each stream.

Banner: This stream displays the program’s sign-on banner, copyright, contributor’s list, and some help
screens. It cannot be turned off or directed to a file because most of this text is displayed before any options or
switches are read. Therefore you cannot use an option or switch to control it. There are switches which display
the help screens. They are covered in section ”Help Screen Switches”.

Debug: This stream displays debugging messages. It was primarily designed for developers but this and other
streams may also be used by the user to display messages from within their scene files. See section ”Text
Message Streams” for details on this feature. This stream may be turned off and/or directed to a text file.

Fatal: This stream displays fatal error messages. After displaying this text, POV-Ray will terminate. When
the error is a scene parsing error, you may be shown several lines of scene text that leads up to the error. This
stream may be turned off and/or directed to a text file.

Render: This stream displays information about what options you have specified to render the scene. It includes
feedback on all of the major options such as scene name, resolution, animation settings, anti-aliasing and others.
This stream may be turned off and/or directed to a text file.

Statistics: This stream displays statistics after a frame is rendered. It includes information about the number
of rays traced, the length of time of the processing and other information. This stream may be turned off and/or
directed to a text file.

Status: This stream displays one-line status messages that explain what POV-Ray is doing at the moment. On
some systems this stream is displayed on a status line at the bottom of the screen. This stream cannot be directed
to a file because there is generally no need to. The text displayed by theVerbose option or+V switch is output

1.2 Command-line Options 23

to this stream so that part of the status stream may be turned off.

Warning: This stream displays warning messages during the parsing of scene files and other warnings. Despite
the warning, POV-Ray can continue to render the scene. You will be informed if POV-Ray has made any
assumptions about your scene so that it can proceed. In general any time you see a warning, you should also
assume that this means that future versions of POV-Ray will not allow the warned action. Therefore you should
attempt to eliminate warning messages so your scene will be able to run in future versions of POV-Ray. This
stream may be turned off and/or directed to a text file.

Console Text Output

Debug Console=bool Turn console display of debug info text on/off
+GD Same asDebug Console=On

-GD Same asDebug Console=Off

Fatal Console=bool Turn console display of fatal error text on/off
+GF Same asFatal Console=On

-GF Same asFatal Console=Off

Render Console=bool Turn console display of render info text on/off
+GR Same asRender Console=On

-GR Same asRender Console=Off

Statistic Console=bool Turn console display of statistic text on/off
+GS Same asStatistic Console=On

-GS Same asStatistic Console=Off

Warning Console=bool Turn console display of warning text on/off
+GW Same asWarning Console=On

-GW Same asWarning Console=Off

All Console=bool Turn on/off all debug, fatal, render, statistic and warning text to console.

+GA Same asAll Console=On

-GA Same asAll Console=Off

You may suppress the output to the console of the debug, fatal, render, statistic or warning text streams. For
example the Statistic Console=off option or the-GS switch can turn off the statistic stream. Usingon or +GS
you may turn it on again. You may also turn all five of these streams on or off at once using theAll Console

option or+GA switch.

Note: that these options take effect immediately when specified. Obviously any error or warning messages that
might occur before the option is read are not be affected.

Directing Text Streams to Files

You may direct a copy of the text streams to a text file for the debug, fatal, render, statistic, or warning text
streams. For example theStatistic File=soption or the+GSsswitch. If the strings is true or any of the other
valid true strings then that stream is redirected to a file with a default name. Validtrue values aretrue, yes,
on or 1. If the value is false the direction to a text file is turned off. Validfalse values arefalse, no, off or
0. Any other string specified turns on file output and the string is interpreted as the output file name.

24 Introduction

Debug File=true Echo debug info text to DEBUG.OUT
Debug File=false Turn off file output of debug info
Debug File=file Echo debug info text to file
+GDfile Both Debug Console=On, Debug File=file

-GDfile Both Debug Console=Off, Debug File=file

Fatal File=true Echo fatal text to FATAL.OUT
Fatal File=false Turn off file output of fatal
Fatal File=file Echo fatal info text to file
+GFfile Both Fatal Console=On, Fatal File=file

-GFfile Both Fatal Console=Off, Fatal File=file

Render File=true Echo render info text to RENDER.OUT
Render File=false Turn off file output of render info
Render File=file Echo render info text to file
+GRfile BothRender Console=On, Render File=file

-GRfile Both Render Console=Off, Render File=file

Statistic File=true Echo statistic text to STATS.OUT
Statistic File=false Turn off file output of statistics
Statistic File=file Echo statistic text to file
+GSfile BothStatistic Console=On, Statistic File=file

-GSfile BothStatistic Console=Off, Statistic File=file

Warning File=true Echo warning info text to WARNING.OUT
Warning File=false Turn off file output of warning info
Warning File=file Echo warning info text to file
+GWfile Both Warning Console=On, Warning File=file

-GWfile Both Warning Console=Off, Warning File=file

All File=true Echo all debug, fatal, render, statistic, and warning text to ALLTEXT.
OUT

All File=false Turn off file output of all debug, fatal, render, statistic, and warning text.

All File=file Echo all debug, fatal, render, statistic, and warning text to file
+GAfile Both All Console=On, All File=file

-GAfile Both All Console=Off, All File=file

Similarly you may specify such a true, false or file name string after a switch such as+GSfile. You may also
direct all five streams to the same file using theAll File option or +GA switch. You may not specify the same
file for two or more streams because POV-Ray will fail when it tries to open or close the same file twice.

Note: that these options take effect immediately when specified. Obviously any error or warning messages that
might occur before the option is read will not be affected.

Warning Level

Warning Level=n Allows you to turn off classes of warnings.
+WLn Same asWarning Level=n

Level 0 turns off all warnings. Level 5 turns off all language version related warnings. The default is level 10
and it enables all warnings. All other levels are reserved and should not be specified.

1.2 Command-line Options 25

Help Screen Switches

-? Show help screen 0 if this is the only switch

Note: there are no INI style equivalents to these options.

After displaying the help screens, POV-Ray terminates. Because some operating systems do not permit a
question mark as a command line switch you may also use the+H switch.

Note: this switch is also used to specify the height of the image in pixels. Therefore the+H switch is only
interpreted as a help switch if it is the only switch on the command line.

Graphical interface versions of POV-Ray such as Mac or Windows have extensive online help.

1.2.8 Tracing Options

There is more than one way to trace a ray. Sometimes there is a trade-off between quality and speed. Sometimes
options designed to make tracing faster can slow things down. This section covers options that tell POV-Ray
how to trace rays with the appropriate speed and quality settings.

Quality Settings

Quality=n Set quality value to n (0<= n <= 11)
+Qn Same asQuality=n

TheQuality=n option or+Qn switch allows you to specify the image rendering quality. You may choose to lower
the quality for test rendering and raise it for final renders. The quality adjustments are made by eliminating
some of the calculations that are normally performed. For example settings below 4 do not render shadows.
Settings below 8 do not use reflection or refraction. The duplicate values allow for future expansion. The values
correspond to the following quality levels:

0, 1 Just show quick colors. Use full ambient lighting only. Quick colors are
used only at 5 or below.

2, 3 Show specified diffuse and ambient light.
4 Render shadows, but no extended lights.
5 Render shadows, including extended lights.
6, 7 Compute texture patterns, compute photons
8 Compute reflected, refracted, and transmitted rays.
9, 10, 11 Compute media and radiosity

The default is 9 if not specified.

Automatic Bounding Control

POV-Ray uses a variety of spatial sub-division systems to speed up ray-object intersection tests. The primary
system uses a hierarchy of nested bounding boxes. This system compartmentalizes all finite objects in a scene
into invisible rectangular boxes that are arranged in a tree-like hierarchy. Before testing the objects within the

26 Introduction

Bounding=bool Turn bounding on/off
+MB Turn bounding on; Set threshold to 25 or previous amount
-MB Turn bounding off
Bounding Threshold=n Set bound threshold to n
+MBn Turn bounding on; bound threshold to n
-MBn Turn bounding off; set future threshold to n
Light Buffer=bool Turn light buffer on/off
+UL Turn light buffer on
-UL Turn light buffer off
Vista Buffer=bool Turn vista buffer on/off
+UV Turn vista buffer on
-UV Turn vista buffer off

bounding boxes the tree is descended and only those objects are tested whose bounds are hit by a ray. This can
greatly improve rendering speed. However for scenes with only a few objects the overhead of using a bounding
system is not worth the effort. TheBounding=off option or-MB switch allows you to force bounding off. The
default value is on.

The Bounding Threshold=n or +MBn switch allows you to set the minimum number of objects necessary before
bounding is used. The default is+MB25 which means that if your scene has fewer than 25 objects POV-Ray will
automatically turn bounding off because the overhead is not worth it. Generally it is a good idea to use a much
lower threshold like+MB5.

Additionally POV-Ray uses systems known asvista buffersand light buffersto further speed things up. These
systems only work when bounding is on and when there are a sufficient number of objects to meet the bounding
threshold. The vista buffer is created by projecting the bounding box hierarchy onto the screen and determining
the rectangular areas that are covered by each of the elements in the hierarchy. Only those objects whose
rectangles enclose a given pixel are tested by the primary viewing ray. The vista buffer can only be used with
perspective and orthographic cameras because they rely on a fixed viewpoint and a reasonable projection (i. e.
straight lines have to stay straight lines after the projection).

The light buffer is created by enclosing each light source in an imaginary box and projecting the bounding box
hierarchy onto each of its six sides. Since this relies on a fixed light source, light buffers will not be used for
area lights.

Reflected and transmitted rays do not take advantage of the light and vista buffer.

The default settings areVista Buffer=on or +UV and Light Buffer=on or +UL. The option to turn these features
off is available to demonstrate their usefulness and as protection against unforeseen bugs which might exist in
any of these bounding systems.

In general, any finite object and many types of CSG of finite objects will properly respond to this bounding
system. In addition blobs and meshes use an additional internal bounding system. These systems are not
affected by the above switch. They can be switched off using the appropriate syntax in the scene file (see
”Blob” and ”Mesh” for details).

Text objects are split into individual letters that are bounded using the bounding box hierarchy. Some CSG
combinations of finite and infinite objects are also automatically bound. The end result is that you will rarely
need to add manual bounding objects as was necessary in earlier versions of POV-Ray unless you use many
infinite objects.

1.2 Command-line Options 27

Removing User Bounding

Remove Bounds=bool Turn unnecessary bounds removal on/off
+UR Turn unnecessary bounds removal on
-UR Turn unnecessary bounds removal off
Split Unions=bool Turn split bounded unions on/off
+SU Turn split bounded unions on
-SU Turn split bounded unions off

Early versions of POV-Ray had no system of automatic bounding or spatial sub-division to speed up ray-object
intersection tests. Users had to manually create bounding boxes to speed up the rendering. Since version 3.0,
POV-Ray has had more sophisticated automatic bounding than any previous version. In many cases the manual
bounding on older scenes is slower than the new automatic systems. Therefore POV-Ray removes manual
bounding when it knows it will help. In rare instances you may want to keep manual bounding. Some older
scenes incorrectly used bounding when they should have used clipping. If POV-Ray removes the bounds in
these scenes the image will not look right. To turn off the automatic removal of manual bounds you should
specify Remove Bounds=off or use -UR. The default is Remove Bounds=on.

One area where the jury is still out is the splitting of manually bounded unions. Unbounded unions are always
split into their component parts so that automatic bounding works better. Most users do not bound unions
because they know that doing so is usually slower. If you do manually bound a union we presume you really
want it bound. For safety sake we do not presume to remove such bounds. If you want to remove manual bounds
from unions you should specifySplit Unions=on or use +SU. The default isSplit Unions=off.

Anti-Aliasing Options

Antialias=bool Turns anti-aliasing on/off
+A Turns aa on with threshold 0.3 or previous amount
-A Turns anti-aliasing off
Sampling Method=n Sets aa-sampling method (only1 or 2 are valid)
+AMn Same asSampling Method=n
Antialias Threshold=n.n Sets anti-aliasing threshold
+An.n Sets aa on with aa-threshold at n.n
-An.n Sets aa off (aa-threshold n.n in future)
Jitter=bool Sets aa-jitter on/off
+J Sets aa-jitter on with 1.0 or previous amount
-J Sets aa-jitter off
Jitter Amount=n.n Sets aa-jitter amount to n.n. If n.n<= 0 aa-jitter is set off
+Jn.n Sets aa-jitter on; jitter amount to n.n. If n.n<= 0 aa-jitter is set off
-Jn.n Sets aa-jitter off (jitter amount n.n in future)
Antialias Depth=n Sets aa-depth (1<= n <= 9)
+Rn Same asAntialias Depth=n

The ray-tracing process is in effect a discrete, digital sampling of the image with typically one sample per
pixel. Such sampling can introduce a variety of errors. This includes a jagged, stair-step appearance in sloping
or curved lines, a broken look for thin lines, moiré patterns of interference and lost detail or missing objects,
which are so small they reside between adjacent pixels. The effect that is responsible for those errors is called
aliasing.

28 Introduction

Anti-aliasing is any technique used to help eliminate such errors or to reduce the negative impact they have on
the image. In general, anti-aliasing makes the ray-traced image looksmoother. The Antialias=on option or
+A switch turns on POV-Ray’s anti-aliasing system.

When anti-aliasing is turned on, POV-Ray attempts to reduce the errors by shooting more than one viewing
ray into each pixel and averaging the results to determine the pixel’s apparent color. This technique is called
super-sampling and can improve the appearance of the final image but it drastically increases the time required
to render a scene since many more calculations have to be done.

POV-Ray gives you the option to use one of two alternate super-sampling methods. TheSampling Method=n
option or +AMn switch selects either type1 or type 2. Selecting one of those methods does not turn anti-aliasing
on. This has to be done by using the+A command line switch orAntialias=on option.

Type 1 is an adaptive, non-recursive, super-sampling method. It isadaptivebecause not every pixel is super-
sampled. Type 2 is an adaptive and recursive super-sampling method. It isrecursivebecause the pixel is
sub-divided and sub-sub-divided recursively. Theadaptivenature of type 2 is the variable depth of recursion.

In the default, non-recursive method (+AM1), POV-Ray initially traces one ray per pixel. If the color of a pixel
differs from its neighbors (to the left or above) by at least the set threshold value then the pixel is super-sampled
by shooting a given, fixed number of additional rays. The default threshold is 0.3 but it may be changed using
the Antialias Threshold=n.noption. When the switches are used, the threshold may optionally follow the+A.
For example +A0.1 turns anti-aliasing on and sets the threshold to 0.1.

The threshold comparison is computed as follows. If r1, g1, b1 and r2, g2, b2 are the rgb components of two
pixels then the difference between pixels is computed by

diff = abs(r1-r2) + abs(g1-g2) + abs(b1-b2)

If this difference is greater than the threshold then both pixels are super-sampled. The rgb values are in the range
from 0.0 to 1.0 thus the most two pixels can differ is 3.0. If the anti-aliasing threshold is 0.0 then every pixel is
super-sampled. If the threshold is 3.0 then no anti-aliasing is done. Lower threshold means more anti-aliasing
and less speed. Use anti-aliasing for your final version of a picture, not the rough draft. The lower the contrast,
the lower the threshold should be. Higher contrast pictures can get away with higher tolerance values. Good
values seem to be around 0.2 to 0.4.

When using the non-recursive method, the default number of super-samples is nine per pixel, located on a 3*3
grid. The Antialias Depth=n option or +Rn switch controls the number of rows and columns of samples taken
for a super-sampled pixel. For example+R4 would give 4*4=16 samples per pixel.

The second, adaptive, recursive super-sampling method starts by tracing four rays at the corners of each pixel. If
the resulting colors differ more than the threshold amount additional samples will be taken. This is done recur-
sively, i.e. the pixel is divided into four sub-pixels that are separately traced and tested for further subdivision.
The advantage of this method is the reduced number of rays that have to be traced. Samples that are common
among adjacent pixels and sub-pixels are stored and reused to avoid re-tracing of rays. The recursive character
of this method makes the super-sampling concentrate on those parts of the pixel that are more likely to need
super-sampling (see figure below).

The maximum number of subdivisions is specified by theAntialias Depth=n option or+Rn switch. This is
different from the adaptive, non-recursive method where the total number of super-samples is specified. A
maximum number ofn subdivisions results in a maximum number of samples per pixel that is given by the
following table.

Note: the maximum number of samples in the recursive case is hardly ever reached for a given pixel. If the
recursive method is used with no anti-aliasing each pixel will be the average of the rays traced at its corners. In

1.2 Command-line Options 29

Figure 1.2: Example of how the recursive super-sampling works.

+Rn Number of additional samples per super-
sampled pixel for the non-recursive
method+AM1

Maximum number of samples per super-
sampled pixel for the recursive method
+AM2

1 1 9
2 4 25
3 9 81
4 16 289
5 25 1089
6 36 4225
7 49 16641
8 64 66049
9 81 263169

most cases a recursion level of three is sufficient.

Another way to reduce aliasing artefacts is to introduce noise into the sampling process. This is calledjittering
and works because the human visual system is much more forgiving to noise than it is to regular patterns. The
location of the super-samples is jittered or wiggled a tiny amount when anti-aliasing is used. Jittering is used
by default but it may be turned off with theJitter=off option or-J switch. The amount of jittering can be
set with the Jitter Amount=n.n option. When using switches the jitter scale may be specified after the+Jn.n
switch. For example+J0.5 uses half the normal jitter. The default amount of 1.0 is the maximum jitter which
will insure that all super-samples remain inside the original pixel.

Note: the jittering noise is random and non-repeatable so you should avoid using jitter in animation sequences
as the anti-aliased pixels will vary and flicker annoyingly from frame to frame.

If anti-aliasing is not used one sample per pixel is taken regardless of the super-sampling method specified.

30 Introduction

Chapter 2

Scene Description Language

The reference section describes the POV-Rayscene description language. It is supposed to be used as a refer-
ence for looking up things. It does not contain detailed explanations on how scenes are written or how POV-Ray
is used. It just explains all features, their syntax, applications, limits, drawbacks, etc.

The scene description language allows you to describe the world in a readable and convenient way. Files are
created in plain ASCII text using an editor of your choice. The input file name is specified using theInput -

File Name=file option or+Ifile switch. By default the files have the extension.pov. POV-Ray reads the file,
processes it by creating an internal model of the scene and then renders the scene.

The overall syntax of a scene is shown below. See ”Notation and Basic Assumptions” for more information on
syntax notation.

SCENE:
SCENE_ITEM...

SCENE_ITEM:
LANGUAGE_DIRECTIVES |
camera { CAMERA_ITEMS... } |
OBJECTS |
ATMOSPHERIC_EFFECTS |
global_settings { GLOBAL_ITEMS }

In plain English, this means that a scene contains one or more scene items and that a scene item may be any of
the five items listed below it. The items may appear in any order. None is a required item. In addition to the
syntax depicted above, aLANGUAGEDIRECTIVEmay also appear anywhere embedded in other statements
between any two tokens. There are some restrictions on nesting directives also.

For details on those five items see section ”Language Directives”, section ”Objects”, section ”Camera”, section
”Atmospheric Effects” and section ”Global Settings” for details.

2.1 Language Basics

The POV-Ray language consists of identifiers, reserved keywords, floating point expressions, strings, special
symbols and comments. The text of a POV-Ray scene file is free format. You may put statements on separate

32 Scene Description Language

lines or on the same line as you desire. You may add blank lines, spaces or indentations as long as you do not
split any keywords or identifiers.

2.1.1 Identifiers and Keywords

POV-Ray allows you to define identifiers for later use in the scene file. An identifier may be 1 to 40 characters
long. It may consist of upper and lower case letters, the digits 0 through 9 or an underscore character (””). the
first character must be an alphabetic character. The declaration of identifiers is covered later.

POV-Ray has a number of reserved keywords which are listed below.

a

aa level

aa threshold

abs

absorption

accuracy

acos

acosh

adaptive

adc bailout

agate

agate turb

all

all intersections

alpha

altitude

always sample

ambient

ambient light

angle

aperture

append

arc angle

area light

array

asc

ascii

asin

asinh

assumed gamma

atan

atan2

atanh

autostop

average

b

b spline

background

bezier spline

bicubic patch

black hole

blob

blue

blur samples

bounded by

box

boxed

bozo

break

brick

brick size

brightness

brilliance

bump map

bump size

bumps

c

camera

case

caustics

ceil

cells

charset

checker

chr

circular

clipped by

clock

clock delta

clock on

collect

color

color map

colour

colour map

component

composite

concat

cone

confidence

conic sweep

conserve energy

contained by

control0

control1

coords

cos

2.1 Language Basics 33

cosh

count

crackle

crand

cube

cubic

cubic spline

cubic wave

cutaway textures

cylinder

cylindrical

d

debug

declare

default

defined

degrees

density

density file

density map

dents

df3

difference

diffuse

dimension size

dimensions

direction

disc

dispersion

dispersion samples

dist exp

distance

div

double illuminate

e

eccentricity

else

emission

end

error

error bound

evaluate

exp

expand thresholds

exponent

exterior

extinction

f

face indices

facets

fade color

fade colour

fade distance

fade power

falloff

falloff angle

false

fclose

file exists

filter

final clock

final frame

finish

fisheye

flatness

flip

floor

focal point

fog

fog alt

fog offset

fog type

fopen

form

frame number

frequency

fresnel

function

g

gather

gif

global lights

global settings

gradient

granite

gray

gray threshold

green

h

34 Scene Description Language

height field

hexagon

hf gray 16

hierarchy

hypercomplex

hollow

i

if

ifdef

iff

ifndef

image height

image map

image pattern

image width

include

initial clock

initial frame

inside

inside vector

int

interior

interior texture

internal

interpolate

intersection

intervals

inverse

ior

irid

irid wavelength

isosurface

j

jitter

jpeg

julia

julia fractal

l

lambda

lathe

leopard

light group

light source

linear spline

linear sweep

ln

load file

local

location

log

look at

looks like

low error factor

m

macro

magnet

major radius

mandel

map type

marble

material

material map

matrix

max

max extent

max gradient

max intersections

max iteration

max sample

max trace

max trace level

media

media attenuation

media interaction

merge

mesh

mesh2

metallic

method

metric

min

min extent

minimum reuse

mod

mortar

n

natural spline

nearest count

no

no bump scale

no image

no reflection

no shadow

noise generator

normal

2.1 Language Basics 35

normal indices normal map

normal vectors

number of waves

o

object

octaves

off

offset

omega

omnimax

on

once

onion

open

orient

orientation

orthographic

p

panoramic

parallel

parametric

pass through

pattern

perspective

pgm

phase

phong

phong size

photons

pi

pigment

pigment map

pigment pattern

planar

plane

png

point at

poly

poly wave

polygon

pot

pow

ppm

precision

precompute

pretrace end

pretrace start

prism

prod

projected through

pwr

q

quadratic spline

quadric

quartic

quaternion

quick color

quick colour

quilted

r

radial

radians

radiosity

radius

rainbow

ramp wave

rand

range

ratio

read

reciprocal

recursion limit

red

reflection

reflection exponent

refraction

render

repeat

rgb

rgbf

rgbft

rgbt

right

ripples

rotate

roughness

s

samples

save file

scale

scallop wave

scattering

seed

select

shadowless

sin

36 Scene Description Language

sine wave

sinh

size

sky

sky sphere

slice

slope

slope map

smooth

smooth triangle

solid

sor

spacing

specular

sphere

sphere sweep

spherical

spiral1

spiral2

spline

split union

spotlight

spotted

sqr

sqrt

statistics

str

strcmp

strength

strlen

strlwr

strupr

sturm

substr

sum

superellipsoid

switch

sys

t

t

tan

tanh

target

text

texture

texture list

texture map

tga

thickness

threshold

tiff

tightness

tile2

tiles

tolerance

toroidal

torus

trace

transform

translate

transmit

triangle

triangle wave

true

ttf

turb depth

turbulence

type

u

u

u steps

ultra wide angle

undef

union

up

use alpha

use color

use colour

use index

utf8

uv indices

uv mapping

uv vectors

v

v

v steps

val

variance

vaxis rotate

vcross

vdot

version

vertex vectors

vlength

vnormalize

vrotate

vstr

vturbulence

w

warning

warp

water level

waves

while

width

wood

wrinkles

write

2.1 Language Basics 37

x

x

y

y yes

z

z

All reserved words are fully lower case. Therefore it is recommended that your identifiers contain at least one
upper case character so it is sure to avoid conflict with reserved words.

2.1.2 Comments

Comments are text in the scene file included to make the scene file easier to read or understand. They are
ignored by the ray-tracer and are there for your information. There are two types of comments in POV-Ray.

Two slashes are used for single line comments. Anything on a line after a double slash (//) is ignored by the
ray-tracer. For example:

// This line is ignored

You can have scene file information on the line in front of the comment as in:

object { FooBar } // this is an object

The other type of comment is used for multiple lines. It starts with ”/*” and ends with ”*/”. Everything
in-between is ignored. For example:

/* These lines
are ignored
by the
ray-tracer */

This can be useful if you want to temporarily remove elements from a scene file./* ... */ comments can
comment outlines containing other// comments and thus can be used to temporarily or permanently comment
out parts of a scene. /* ... */ comments can be nested, the following is legal:

/* This is a comment
// This too
/* This also */
*/

Use comments liberally and generously. Well used, they really improve the readability of scene files.

38 Scene Description Language

2.1.3 Float Expressions

Many parts of the POV-Ray language require you to specify one or more floating point numbers. A floating
point number is a number with a decimal point. Floats may be specified using literals, identifiers or functions
which return float values. You may also create very complex float expressions from combinations of any of
these using various familiar operators.

Where POV-Ray needs an integer value it allows you to specify a float value and it truncates it to an integer.
When POV-Ray needs a logical or boolean value it interprets any non-zero float as true and zero as false.
Because float comparisons are subject to rounding errors POV-Ray accepts values extremely close to zero as
being false when doing boolean functions. Typically values whose absolute values are less than a preset value
epsilonare considered false for logical expressions. The value ofepsilonis system dependent but is generally
about 1.0e-10. Two floatsa andb are considered to be equal ifabs(a-b)< epsilon.

The full syntax for float expressions is given below. Detailed explanations are given in the following sub-
sections.

FLOAT:
NUMERIC_TERM [SIGN NUMERIC_TERM]...

SIGN:
+ | -

NUMERIC_TERM:
NUMERIC_FACTOR [MULT NUMERIC_FACTOR]...

MULT:
* | /

NUMERIC_FACTOR:
FLOAT_LITERAL |
FLOAT_IDENTIFIER |
SIGN NUMERIC_FACTOR |
FLOAT_FUNCTION |
FLOAT_BUILT-IN_IDENT |
(FULL_EXPRESSION) |
! NUMERIC_FACTOR

VECTOR DECIMAL_POINT DOT_ITEM FLOAT_LITERAL:
[DIGIT...] [DECIMAL_POINT] DIGIT... [EXP [SIGN] DIGIT...]

DIGIT:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

DECIMAL_POINT:
.

EXP:
e | E

DOT_ITEM:
x | y | z | t | u | v | red | blue | green | filter |
transmit | gray

FLOAT_FUNCTION:
abs(FLOAT) | acos(FLOAT) | acosh(FLOAT) | asc(STRING) |
asin(FLOAT) | asinh(FLOAT) | atan(FLOAT) | atanh(FLOAT) |
atan2(FLOAT , FLOAT) | ceil(FLOAT) | cos(FLOAT) |
cosh(FLOAT) | defined(IDENTIFIER) | degrees(FLOAT) |
dimensions(ARRAY_IDENTIFIER) |
dimension_size(ARRAY_IDENTIFIER , FLOAT) |
div(FLOAT , FLOAT) | exp(FLOAT) | file_exists(STRING) |
floor(FLOAT) | int(FLOAT) | ln(Float | log(FLOAT) |

2.1 Language Basics 39

max(FLOAT , FLOAT, ...) | min(FLOAT , FLOAT, ...) |
mod(FLOAT , FLOAT) | pow(FLOAT , FLOAT) |
radians(FLOAT) | rand(FLOAT) | seed(FLOAT) |
select(FLOAT, FLOAT, FLOAT [,FLOAT]) | sin(FLOAT) |
sinh(FLOAT) | sqrt(FLOAT) | strcmp(STRING , STRING) |
strlen(STRING) | tan(FLOAT) | tanh(FLOAT) |
val(STRING) | vdot(VECTOR , VECTOR) | vlength(VECTOR) |
FLOAT_BUILT-IN_IDENT:
clock | clock_delta | clock_on | false | final_clock |
final_frame | frame_number | initial_clock | initial_frame |
image_width | image_height | no | off | on | pi | true |
version | yes |

FULL_EXPRESSION:
LOGICAL_EXPRESSION [? FULL_EXPRESSION : FULL_EXPRESSION]

LOGICAL_EXPRESSION:
REL_TERM [LOGICAL_OPERATOR REL_TERM]...

LOGICAL_OPERATOR:
\& | | (note: this means an ampersand or a

vertical bar is a logical operator)
REL_TERM:

FLOAT [REL_OPERATOR FLOAT]...
REL_OPERATOR:

< | <= | = | >= | > | !=
INT:

FLOAT (note: any syntax which requires a
integer INT will accept a FLOAT
and it will be truncated to an
integer internally by POV-Ray).

Note: FLOAT IDENTIFIERSare identifiers previously declared to have float values. TheDOT ITEM syntax is
actually a vector or color operator but it returns a float value. See ”Vector Operators” or ”Color Operators” for
details. An ARRAYIDENTIFIER is just the identifier name of a previously declared array, it does not include
the[] braces nor the index. The syntax forSTRINGis in the section ”Strings”.

Literals

Float literals are represented by an optional sign (”+” or ”-”) digits, an optional decimal point and more digits.
If the number is an integer you may omit the decimal point and trailing zero. If it is all fractional you may omit
the leading zero. POV-Ray supports scientific notation for very large or very small numbers. The following are
all valid float literals:

-2.0 -4 34 3.4e6 2e-5 .3 0.6

Identifiers

Float identifiers may be declared to make scene files more readable and to parameterize scenes so that changing
a single declaration changes many values. An identifier is declared as follows.

FLOAT_DECLARATION:
#declare IDENTIFIER = EXPRESSION; |
#local IDENTIFIER = EXPRESSION;

40 Scene Description Language

Where IDENTIFIER is the name of the identifier up to 40 characters long andEXPRESSIONis any valid
expression which evaluates to a float value.

Note: there should be a semi-colon after the expression in a float declaration. If omitted, it generates a warning
and some macros may not work properly. See ” #declare vs. #local” for information on identifier scope.

Here are some examples.

#declare Count = 0;
#declare Rows = 5.3;
#declare Cols = 6.15;
#declare Number = Rows*Cols;
#declare Count = Count+1;

As the last example shows, you can re-declare a float identifier and may use previously declared values in that
re-declaration. There are several built-in identifiers which POV-Ray declares for you. See ”Float Expressions:
Built-in Variables” for details.

Operators

Arithmetic expressions:Basic math expressions can be created from float literals, identifiers or functions using
the following operators in this order of precedence...

() expressions in parentheses first
+A -A !A unary minus, unary plus and logical ”not”
A*B A/B multiplication and division
A+B A-B addition and subtraction

Table 2.1: Arithmetic expressions

Relational, logical and conditional expressions may also be created. However there is a restriction that these
types of expressions must be enclosed in parentheses first. This restriction, which is not imposed by most
computer languages, is necessary because POV-Ray allows mixing of float and vector expressions. Without the
parentheses there is an ambiguity problem. Parentheses are not required for the unary logical not operator ”!”
as shown above. The operators and their precedence are shown here.

Relational expressions:The operands are arithmetic expressions and the result is always boolean with 1 for
true and 0 for false. All relational operators have the same precedence.

(A < B) A is less than B
(A <= B) A is less than or equal to B
(A = B) A is equal to B (actually abs(A-B)<EPSILON)
(A != B) A is not equal to B (actually abs(A-B)>=EPSILON)
(A >= B) A is greater than or equal to B
(A > B) A is greater than B

Table 2.2: Relational expressions

Logical expressions:The operands are converted to boolean values of 0 for false and 1 for true. The result is
always boolean. All logical operators have the same precedence.

Note: these are not bit-wise operations, they are logical.

2.1 Language Basics 41

(A & B) true only if both A and B are true, false otherwise
(A | B) true if either A or B or both are true

Table 2.3: Logical expressions

Conditional expressions:The operand C is boolean while operands A and B are any expressions. The result is
of the same type as A and B.

(C ? A : B) if C then A else B

Table 2.4: Conditional expressions

Assuming the various identifiers have been declared, the following are examples of valid expressions...

1+2+3 2*5 1/3 Row*3 Col*5
(Offset-5)/2 This/That+Other*Thing
((This<That) \& (Other>=Thing)?Foo:Bar)

Expressions are evaluated left to right with innermost parentheses evaluated first, then unary +, - or !, then
multiply or divide, then add or subtract, then relational, then logical, then conditional.

Functions

POV-Ray defines a variety of built-in functions for manipulating floats, vectors and strings. Function calls con-
sist of a keyword which specifies the name of the function followed by a parameter list enclosed in parentheses.
Parameters are separated by commas. For example:

keyword(param1,param2)

The following are the functions which return float values. They take one or more float, integer, vector, or
string parameters. Assume thatA andB are any valid expression that evaluates to a float;I is a float which is
truncated to integer internally,S, S1, S2 etc. are strings, andV, V1, V2 etc. are any vector expressions.O is an
object identifier to a pre-declared object.

abs(A) Absolute value ofA. If A is negative, returns-A otherwise returnsA.

acos(A) Arc-cosine ofA. Returns the angle, measured in radians, whose cosine isA.

acosh(A) inverse hyperbolic cosine ofA.

asc(S) Returns an integer value in the range 0 to 255 that is the ASCII value of the first character of the string
S. For example asc("ABC") is 65 because that is the value of the character ”A”.

asin(A) Arc-sine of A. Returns the angle, measured in radians, whose sine isA.

asinh(A) invers hyperbolic sine ofA

atan2(A,B) Arc-tangent of(A/B). Returns the angle, measured in radians, whose tangent is(A/B). Returns
appropriate value even ifB is zero. Useatan2(A,1) to compute usual atan(A) function.

atanh(A) invers hyperbolic tangent ofA

ceil(A) Ceiling of A. Returns the smallest integer greater thanA. Rounds up to the next higher integer.

cos(A) Cosine ofA. Returns the cosine of the angleA, whereA is measured in radians.

42 Scene Description Language

cosh(A) The hyperbolic cosine ofA.

defined(IDENTIFIER) Returns true if the identifier is currently defined,false otherwise. This is especially
useful for detecting end-of-file after a#read directive because the file identifier is automatically undefined when
end-of-file is reached. See ”The #read Directive” for details.

degrees(A) Convert radians to degrees. Returns the angle measured in degrees whose value in radians isA.
Formula is degrees=A/pi*180.0.

dimensions(ARRAYIDENTIFIER) Returns the number of dimensions of a previously declared array iden-
tifier. For example if you do#declare MyArray=array[6][10] then dimensions(MyArray) returns the value
2.

dimension size(ARRAYIDENTIFIER, FLOAT) Returns the size of a given dimension of a previously de-
clared array identifier. Dimensions are numbered left-to-right starting with 1. For example if you do#declare

MyArray=array[6][10] then dimension size(MyArray,2) returns the value10.

div(A,B) Integer division. The integer part of(A/B).

exp(A) Exponential ofA. Returns the value ofe raised to the powerA wheree is the base of the natural
logarithm, i.e. the non-repeating value approximately equal to 2.71828182846.

file exists(S) Attempts to open the file specified by the stringS. The current directory and all library directo-
ries specified by theLibrary Path or +L options are also searched. See ”Library Paths” for details. Returns1

if successful and0 if unsuccessful.

floor(A) Floor ofA. Returns the largest integer less thanA. Rounds down to the next lower integer.

inside(O,V) It returns either 0.0, when the vectorV is outside the object, specified by the object-identifierO, or
1.0 if it is inside.

Note: inside does not accept object-identifiers to non-solid objects.

int(A) Integer part ofA. Returns the truncated integer part ofA. Rounds towards zero.

log(A) Logarithm ofA. Returns the logarithm base10of the valueA.

ln(A) Natural logarithm ofA. Returns the natural logarithm baseeof the valueA.

max(A,B,...) Maximum of two or more float values. ReturnsA if A larger thanB. Otherwise returnsB.

min(A,B,...) Minimum of two or more float values. ReturnsA if A smaller than B. Otherwise returnsB.

mod(A,B) Value ofA modulo B. Returns the remainder after the integer division ofA/B. Formula ismod=((A/B)-
int(A/B))*B.

pow(A,B) Exponentiation. Returns the value ofA raised to the powerB.

Note:For a negative A and a non-integer B the function has no defined return value. The result then may depend
on the platform POV-Ray is compiled on.

radians(A) Convert degrees to radians. Returns the angle measured in radians whose value in degrees isA.
Formula is radians=A*pi/180.0.

rand(I) Returns the next pseudo-random number from the stream specified by the positive integerI. You must
call seed() to initialize a random stream before callingrand(). The numbers are uniformly distributed, and
have values between0.0 and1.0, inclusively. The numbers generated by separate streams are independent
random variables.

2.1 Language Basics 43

seed(I) Initializes a new pseudo-random stream with the initial seed valueA. The number corresponding to
this random stream is returned. Any number of pseudo-random streams may be used as shown in the example
below:

#declare R1 = seed(0);
#declare R2 = seed(12345);
sphere { <rand(R1), rand(R1), rand(R1)>, rand(R2) }

Multiple random generators are very useful in situations where you userand() to place a group of objects,
and then decide to userand() in another location earlier in the file to set some colors or place another group
of objects. Without separaterand() streams, all of your objects would move when you added more calls to
rand(). This is very annoying.

select(A, B, C [,D]). It can be used with three or four parameters.Select compares the first argument with
zero, depending on the outcome it will returnB, C or D. A,B,C,D can be floats or funtions.
When used with three parameters, ifA < 0 it will return B, elseC (A >= 0).
When used with four parameters, ifA < 0 it will return B. If A = 0 it will return C. Else it will returnD (A > 0).

Example:
If A has the consecutive values -2, -1, 0, 1, and 2 :

// A = -2 -1 0 1 2
select (A, -1, 0, 1) //returns -1 -1 0 1 1
select (A, -1, 1) //returns -1 -1 1 1 1

sin(A) Sine ofA. Returns the sine of the angleA, where A is measured in radians.

sinh(A) The hyperbolic sine ofA.

strcmp(S1,S2) Compare stringS1 to S2. Returns a float value zero if the strings are equal, a positive number if
S1 comes afterS2 in the ASCII collating sequence, else a negative number.

strlen(S) Length ofS. Returns an integer value that is the number of characters in the stringS.

sqrt(A) Square root ofA. Returns the value whose square isA.

tan(A) Tangent ofA. Returns the tangent of the angleA, whereA is measured in radians.

tanh(A) The hyperbolic tangent ofA.

val(S) Convert stringS to float. Returns a float value that is represented by the text in stringS. For example
val("123.45") is 123.45 as a float.

vdot(V1,V2) Dot product ofV1 andV2. Returns a float value that is the dot product (sometimes called scalar
product) ofV1 with V2. It is directly proportional to the length of the two vectors and the cosine of the angle
between them. Formula isvdot=V1.x*V2.x + V1.y*V2.y + V1.z*V2.z.See the animated demo sceneVECT2.POV

for an illustration.

vlength(V) Length ofV. Returns a float value that is the length of vectorV. Formula isvlength=sqrt(vdot(A,A)).
Can be used to compute the distance between two points.Dist=vlength(V2-V1).

See section ”Vector Functions” and section ”String Functions” for other functions which are somewhat float-
related but which return vectors and strings. In addition to the above built-in functions, you may also define
your own functions using the#macro directive. See the section ”User Defined Macros” for more details.

44 Scene Description Language

Built-in Constants

Constants are:

FLOAT_BUILT-IN_IDENT:
false | no | off | on | pi | true | yes

The built-in constants never change value. They are defined as though the following lines were at the start of
every scene.

#declare pi = 3.1415926535897932384626;
#declare true = 1;
#declare yes = 1;
#declare on = 1;
#declare false = 0;
#declare no = 0;
#declare off = 0;

The built-in float identifierpi is obviously useful in math expressions involving circles. The built-in float
identifiers on, off, yes, no, true, andfalse are designed for use as boolean constants.

The built-in float constatson, off, yes, no, true, andfalse are most often used as boolean values with object
modifiers or parameters such assturm, hollow, hierarchy, smooth, media attenuation, andmedia interaction.
Whenever you see syntax of the formkeyword [Bool] , if you simply specify the keyword without the optional
boolean then it assumeskeyword on. You need not use the boolean but for readability it is a good idea. You
must use one of the false booleans or an expression which evaluates to zero to turn it off.

Note: some of these keywords areon by default, if no keyword is specified.

For example:

object { MyBlob } // sturm defaults off, but
// hierarchy defaults on

object { MyBlob sturm } // turn sturm on
object { MyBlob sturm on } // turn sturm on
object { MyBlob sturm off } // turn sturm off
object { MyBlob hierarchy } // does nothing, hierarchy was

// already on
object { MyBlob hierarchy off } // turn hierarchy off

Built-in Variables

There are several built-in float variables. You can use them to specify values or to create expressions but you
cannot re-declare them to change their values.

Clock-related are:

FLOAT_BUILT-IN_IDENT:
clock | clock_delta | clock_on | final_clock | final_frame
frame_number | initial_clock | initial_frame

These keywords allow to use the values of the clock which have been set in the command line switch options (or
INI-file). They represent float or integer values, read from the animation options. You cannot re-declare these
identifiers.

2.1 Language Basics 45

clock

The built-in float identifierclock is used to control animations in POV-Ray. Unlike some animation packages,
the action in POV-Ray animated scenes does not depend upon the integer frame numbers. Rather you should
design your scenes based upon the float identifierclock. For non-animated scenes its default value is 0 but
you can set it to any float value using the INI file optionClock=n.nor the command-line switch+Kn.n to pass a
single float value your scene file.

Other INI options and switches may be used to animate scenes by automatically looping through the rendering
of frames using various values forclock. By default, the clock value is 0 for the initial frame and 1 for the
final frame. All other frames are interpolated between these values.
For example if your object is supposed to rotate one full turn over the course of the animation you could specify
rotate 360*clock*y. Then as clock runs from 0 to 1, the object rotates about the y-axis from 0 to 360 degrees.

Although the value of clock will change from frame-to-frame, it will never change throughout the parsing of
a scene.

clock delta

The built-in float identifierclock delta returns the amount of time between clock values in animations in POV-
Ray. While most animations only need the clock value itself, some animation calculations are easier if you
know how long since the last frame. Caution must be used when designing such scenes. If you render a scene
with too few frames, the results may be different than if you render with more frames in a given time period.
On non-animated scenes,clock delta defaults to 1.0. See section ”Animation Options” for more details.

clock on

With this identifier the status of the clock can be checked: 1 is on, 0 is off.

#if(clock_on=0)
//stuff for still image

#else
//some animation

#end

frame number

If you rather want to define the action in POV-Ray animated scenes depending upon the integer frame numbers,
this identifier can be used.
It reads the number of the frame currently being rendered.

#if(frame_number=1)
//stuff for first image or frame

#end
#if(frame_number=2)

//stuff for second image or frame
#end
#if(frame_number=n)

//stuff for n th image or frame
#end

initial clock

This identifier reads the value set through the INI file optionInitial Clock=n.n or the command-line switch
+KIn.n.

final clock

This identifier reads the value set through the INI file optionFinal Clock=n.n or the command-line switch
+KFn.n.

46 Scene Description Language

initial frame

This identifier reads the value set through the INI file optionInitial Frame=n or the command-line switch
+KFIn.

final frame

This identifier reads the value set through the INI file optionFinal Frame=n or the command-line switch+KFFn.

Note: that these values are the ones actually used. When the option ’cyclic animation’ is set, they could be
different from the ones originally set in the options.

Image-size are:

FLOAT_BUILT-IN_IDENT:
image_width | image_height

image width

This identifier reads the value set through the INI file optionWidth=n or the command-line switch+Wn.

image height

This identifier reads the value set through the INI file optionHeight=n or the command-line switch+Hn.

You could use these keywords to set the camera ratio (up and right vectors) correctly. The viewing angle of the
camera covers the full width of the rendered image. The camera ratio will always follow the ratio of the image
width to height, regardless of the set image size. Use it like this:

up y*image_height
right x*image_width

You could also make some items of the scene dependent on the image size:

#if (image_width < 300) crand 0.1 #else crand 0.5 #end

or:

image_map {
pattern image_width, image_width { //make pattern resolution

gradient x //dependent of render width
color_map { [0.0 ...] [1.0 ...] }

}
}

Version is:

FLOAT_BUILT-IN_IDENT:
version

The built-in float variable version contains the current setting of the version compatibility option. Although
this value defaults to the current POV-Ray version number, the initial value ofversion may be set by the INI
file option Version=n.n or by the +MVn.n command-line switch. This tells POV-Ray to parse the scene file
using syntax from an earlier version of POV-Ray.

The INI option or switch only affects the initial setting. Unlike other built-in identifiers, you may change the
value ofversion throughout a scene file. You do not use#declare to change it though. The#version language
directive is used to change modes. Such changes may occur several times within scene files.

Together with the built-inversion identifier the #version directive allows you to save and restore the previous
values of this compatibility setting. The new#local identifier option is especially useful here. For example
supposemystuff.inc is in version 1 format. At the top of the file you could put:

2.1 Language Basics 47

#local Temp_Vers = version; // Save previous value
#version 1.0; // Change to 1.0 mode
... // Version 1.0 stuff goes here...
#version Temp_Vers; // Restore previous version

Note: there should be a semi-colon after the float expression in a#version directive. If omitted, it generates a
warning and some macros may not work properly.

2.1.4 Vector Expressions

POV-Ray often requires you to specify avector. A vector is a set of related float values. Vectors may be
specified using literals, identifiers or functions which return vector values. You may also create very complex
vector expressions from combinations of any of these using various familiar operators.

POV-Ray vectors may have from two to five components but the vast majority of vectors have three components.
Unless specified otherwise, you should assume that the word ”vector” means a three component vector. POV-
Ray operates in a 3D x, y, z coordinate system and you will use three component vectors to specify x, y and z
values. In some places POV-Ray needs only two coordinates. These are often specified by a 2D vector called
an UV vector. Fractal objects use 4D vectors. Color expressions use 5D vectors but allow you to specify 3, 4
or 5 components and use default values for the unspecified components. Unless otherwise noted, all 2, 4 or 5
component vectors work just like 3D vectors but they have a different number of components.

The syntax for combining vector literals into vector expressions is almost identical to the rules for float expres-
sions. In the syntax for vector expressions below, some of the syntax items are defined in the section for float
expressions. See ”Float Expressions” for those definitions. Detailed explanations of vector-specific issues are
given in the following sub-sections.

VECTOR:
NUMERIC_TERM [SIGN NUMERIC_TERM]

NUMERIC_TERM:
NUMERIC_FACTOR [MULT NUMERIC_FACTOR]

NUMERIC_FACTOR:
VECTOR_LITERAL |
VECTOR_IDENTIFIER |
SIGN NUMERIC_FACTOR |
VECTOR_FUNCTION |
VECTOR_BUILT-IN_IDENT |
(FULL_EXPRESSION) |
! NUMERIC_FACTOR |
FLOAT

VECTOR_LITERAL:
< FLOAT , FLOAT , FLOAT >

VECTOR_FUNCTION:
min_extent (OBJECT_IDENTIFIER) |
max_extent (OBJECT_IDENTIFIER) |
trace(OBJECT_IDENTIFIER, VECTOR, VECTOR, [VECTOR_IDENTIFIER])|
vaxis_rotate(VECTOR , VECTOR , FLOAT) |
vcross(VECTOR , VECTOR) |
vrotate(VECTOR , VECTOR) |
vnormalize(VECTOR) |
vturbulence(FLOAT, FLOAT, FLOAT, VECTOR)

VECTOR_BUILT-IN_IDENT:

48 Scene Description Language

x | y | z | t | u | v

Note: VECTORIDENTIFIERSare identifiers previously declared to have vector values.

Literals

Vector literals consist of two to five float expressions that are bracketed by angle brackets< and>. The terms
are separated by commas. For example here is a typical three component vector:

< 1.0, 3.2, -5.4578 >

The commas between components are necessary to keep the program from thinking that the 2nd term is the
single float expression3.2-5.4578 and that there is no 3rd term. If you see an error message such as ”Float
expected but ’>’ found instead” then you probably have missed a comma.

Sometimes POV-Ray requires you to specify floats and vectors side-by-side. The rules for vector expressions
allow for mixing of vectors with vectors or vectors with floats so commas are required separators whenever an
ambiguity might arise. For example<1,2,3>-4 evaluates as a mixed float and vector expression where 4 is
subtracted from each component resulting in<-3,-2,-1>. However the comma in<1,2,3>,-4 means this
is a vector followed by a float.

Each component may be a full float expression. For example

<This+3,That/3,5*Other_Thing>

is a valid vector.

Identifiers

Vector identifiers may be declared to make scene files more readable and to parameterize scenes so that changing
a single declaration changes many values. An identifier is declared as follows.

VECTOR_DECLARATION:
#declare IDENTIFIER = EXPRESSION; |
#local IDENTIFIER = EXPRESSION;

Where IDENTIFIER is the name of the identifier up to 40 characters long andEXPRESSIONis any valid
expression which evaluates to a vector value.

Note: there should be a semi-colon after the expression in a vector declaration. If omitted, it generates a warning
and some macros may not work properly. See ” #declare vs. #local” for information on identifier scope.

Here are some examples....

#declare Here = <1,2,3>;
#declare There = <3,4,5>;
#declare Jump = <Foo*2,Bar-1,Bob/3>;
#declare Route = There-Here;
#declare Jump = Jump+<1,2,3>;

Note: you invoke a vector identifier by using its name without any angle brackets. As the last example shows,
you can re-declare a vector identifier and may use previously declared values in that re-declaration. There are
several built-in identifiers which POV-Ray declares for you. See section ”Built-in Vector Identifiers” for details.

2.1 Language Basics 49

Operators

Vector literals, identifiers and functions may also be combined in expressions the same as float values. Oper-
ations are performed on a component-by-component basis. For example<1,2,3> + <4,5,6> evaluates the
same as<1+4,2+5,3+6> or <5,7,9>. Other operations are done on a similar component-by-component basis.
For example(<1,2,3> = <3,2,1>) evaluates to<0,1,0> because the middle components are equal but the
others are not. Admittedly this is not very useful but it is consistent with other vector operations.

Conditional expressions such as(C ? A : B) require that C is a float expression butA andB may be vector
expressions. The result is that the entire conditional evaluates as a valid vector. For example ifFoo and Bar

are floats then(Foo < Bar ? <1,2,3> : <5,6,7>) evaluates as the vector<1,2,3> if Foo is less thanBar

and evaluates as<5,6,7> otherwise.

You may use the dot operator to extract a single float component from a vector. Suppose the identifierSpot

was previously defined as a vector. ThenSpot.x is a float value that is the first component of this x, y, z vector.
Similarly Spot.y andSpot.z reference the 2nd and 3rd components. IfSpot was a two component UV vector
you could useSpot.u andSpot.v to extract the first and second component. For a 4D vector use.x, .y, .z,
and.t to extract each float component. The dot operator is also used in color expressions which are covered
later.

Operator Promotion

You may use a lone float expression to define a vector whose components are all the same. POV-Ray knows
when it needs a vector of a particular type and will promote a float into a vector if need be. For example the
POV-Rayscale statement requires a three component vector. If you specifyscale 5 then POV-Ray interprets
this asscale <5,5,5> which means you want to scale by 5 in every direction.

Versions of POV-Ray prior to 3.0 only allowed such use of a float as a vector in various limited places such as
scale and turbulence. However you may now use this trick anywhere. For example...

box{0,1} // Same as box{<0,0,0>,<1,1,1>}
sphere{0,1} // Same as sphere{<0,0,0>,1}

When promoting a float into a vector of 2, 3, 4 or 5 components, all components are set to the float value,
however when promoting a vector of a lower number of components into a higher order vector, all remaining
components are set to zero. For example if POV-Ray expects a 4D vector and you specify9 the result is<9,

9,9,9> but if you specify<7,6> the result is <7,6,0,0>.

Functions

POV-Ray defines a variety of built-in functions for manipulating floats, vectors and strings. Function calls con-
sist of a keyword which specifies the name of the function followed by a parameter list enclosed in parentheses.
Parameters are separated by commas. For example:

keyword(param1,param2)

The following are the functions which return vector values. They take one or more float, integer, vector, or
string parameters. Assume thatA andB are any valid expression that evaluates to a vector; andF is any float
expression.

50 Scene Description Language

min extent(OBJECT IDENTIFIER), max extent(OBJECT IDENTIFIER). Themin extent andmax extent return the
minimum and maximum coordinates of a #declared object’s bounding box (Corner1 and Corner2), in effect
allowing you to find the dimensions and location of the object.

Note: this is not perfect, in some cases (such as CSG intersections and differences or isosurfaces) the bounding
box does not represent the actual dimensions of the object.

Example:

#declare Sphere =
sphere {

<0,0,0>, 1
pigment { rgb <1,0,0> }

}
#declare Min = min_extent (Sphere);
#declare Max = max_extent (Sphere);
object { Sphere }
box {

Min, Max
pigment { rgbf <1,1,1,0.5> }

}

trace(OBJECT IDENTIFIER, A, B, [VECTOR IDENTIFIER]). trace helps you finding the exact location of a ray
intersecting with an object’s surface. It traces a ray beginning at the pointA in the direction specified by the
vectorB. If the ray hits the specified object, this function returns the coordinate where the ray intersected the
object. If not, it returns<0,0,0>. If a fourth parameter in the form of a vector identifier is provided, the normal
of the object at the intersection point (not including any normal perturbations due to textures) is stored into that
vector. If no intersection was found, the normal vector is reset to<0,0,0>.

Note: Checking the normal vector for<0,0,0> is the only reliable way to determine whether an intersection
has actually occurred, intersections can and do occur anywhere, including at<0,0,0>.

Example:

#declare MySphere = sphere { <0, 0, 0>, 1 }
#declare Norm = <0, 0, 0>;
#declare Start = <1, 1, 1>;
#declare Inter=

trace (MySphere, Start, <0, 0, 0>-Start, Norm);
object {

MySphere
texture {

pigment { rgb 1}
}

}
#if (vlength(Norm)!=0)
cylinder {

Inter, Inter+Norm, .1
texture {

pigment {color red 1}
}

}
#end

vaxis rotate(A,B,F) RotateA about B by F. Given the x,y,z coordinates of a point in space designated by the

2.1 Language Basics 51

vectorA, rotate that point about an arbitrary axis defined by the vectorB. Rotate it through an angle specified in
degrees by the float valueF. The result is a vector containing the new x,y,z coordinates of the point.

vcross(A,B) Cross product ofA andB. Returns a vector that is the vector cross product of the two vectors.
The resulting vector is perpendicular to the two original vectors and its length is equal to the area of the
parallelogram defined by them. Or to put in an other way, the cross product can also be formulated as:AxB =

|A| * |B| * sin(angle(A,B)) * perpendicular unit vector(A,B) So the length of the resulting
vector is proportional to the sine of the angle betweenA andB. See the animated demo sceneVECT2.POV for an
illustration.

vnormalize(A) Normalize vector A. Returns a unit length vector that is the same direction asA. Formula is
vnormalize(A)=A/vlength(A).

Note:vnormalize(<0,0,0>) will result in an error.

vrotate(A,B) Rotate A about origin by B. Given the x,y,z coordinates of a point in space designated by the
vectorA, rotate that point about the origin by an amount specified by the vectorB. Rotate it about the x-axis by
an angle specified in degrees by the float valueB.x. Similarly B.y andB.z specify the amount to rotate in
degrees about the y-axis and z-axis. The result is a vector containing the new x,y,z coordinates of the point.

vturbulence(Lambda, Omega, Octaves, A) Turbulence vector at A. Given the x,y,z coordinates of a point in
space designated by the vector A, return the turbulence vector for that point based on the numbers given for
Lambda, Omega and Octaves. For the meaning of the parameters, check out the Lambda, Omega and Octaves
sections.
The amount of turbulence can be controlled by multiplying the turbulence vector by a multiple. The frequency
at which the turbulence vector changes can be controlled by multiplying A with a multiple. The turbulence
vector returned by the function can be added to the original point A to obtain a turbulated version of the point
A. Example :
#declare MyVector = MyVector + Amount * vturbulence(2, 0.5, 6, MyVector * Frequency);

See section ”Float Functions” for other functions which are somewhat vector-related but which return floats. In
addition to the above built-in functions, you may also define your own functions using the#macro directive. See
the section ”User Defined Macros” for more details.

Built-in Constants

There are several built-in vector identifiers. You can use them to specify values or to create expressions but you
cannot re-declare them to change their values. They are:

VECTOR_BUILT-IN_IDENT:
x | y | z | t | u | v

All built-in vector identifiers never change value. They are defined as though the following lines were at the
start of every scene.

#declare x = <1, 0, 0>;
#declare y = <0, 1, 0>;
#declare z = <0, 0, 1>;
#declare t = <0, 0, 0, 1>;
#declare u = <1, 0>;
#declare v = <0, 1>;

The built-in vector identifiersx, y, and z provide much greater readability for your scene files when used in
vector expressions. For example....

52 Scene Description Language

plane { y, 1} // The normal vector is obviously "y".
plane { <0,1,0>, 1} // This is harder to read.
translate 5*x // Move 5 units in the "x" direction.
translate <5,0,0> // This is less obvious.

An expression like5*x evaluates to5*<1,0,0> or <5,0,0>.

Similarly u andv may be used in 2D vectors. When using 4D vectors you should usex, y, z, and t and
POV-Ray will promotex, y, and z to 4D when used where 4D is required.

2.1.5 Specifying Colors

COLOR:
COLOR_BODY |
color COLOR_BODY | (this means the keyword color or
colour COLOR_BODY colour may optionally precede

any color specification)
COLOR_BODY:

COLOR_VECTOR |
COLOR_KEYWORD_GROUP |
COLOR_IDENTIFIER

COLOR_VECTOR:
rgb <3_Term_Vector> |
rgbf <4_Term_Vector> |
rgbt <4_Term_Vector> |
[rgbft] <5_Term_Vector>

COLOR_KEYWORD_GROUP:
[COLOR_KEYWORD_ITEM]...

COLOR_KEYWORD_ITEM:
COLOR_IDENTIFIER |
red Red_Amount |
blue Blue_Amount |
green Green_Amount |
filter Filter_Amount |
transmit Transmit_Amount

Note: COLORIDENTIFIERSare identifiers previously declared to have color values. The 3, 4, and 5 term
vectors are usually vector literals but may be vector expressions or floats promoted to vectors. See ”Operator
Promotion” and the sections below.

POV-Ray often requires you to specify a color. Colors consist of five values or color components. The first
three are calledred, green, andblue. They specify the intensity of the primary colors red, green and blue using
an additive color system like the one used by the red, green and blue color phosphors on a color monitor.

The 4th component, calledfilter, specifies the amount of filtered transparency of a substance. Some real-
world examples of filtered transparency are stained glass windows or tinted cellophane. The light passing
through such objects is tinted by the appropriate color as the material selectively absorbs some frequencies of
light while allowing others to pass through. The color of the object is subtracted from the light passing through
so this is called subtractive transparency.

The 5th component, calledtransmit, specifies the amount of non-filtered light that is transmitted through a
surface. Some real-world examples of non-filtered transparency are thin see-through cloth, fine mesh netting
and dust on a surface. In these examples, all frequencies of light are allowed to pass through tiny holes in the

2.1 Language Basics 53

surface. Although the amount of light passing through is diminished, the color of the light passing through is
unchanged.

The color of the object and the color transmitted through the object together contribute 100% of the final color.
So if transmit is set to 0.9, the transmitted color contributes 90% and the color of the object contributes only
10%. This is also true outside of the 0-1 range, so for example iftransmit is set to 1.7, the transmitted color
contributes with 170% and the color of the object contributes with minus 70%. Usingtransmit values outside
of the 0-1 range can be used to create interesting special effects, but does not correspond to any phenomena
seen in the real world. An example:

#version 3.5;
global_settings {assumed_gamma 1.0}
camera {location -2.5*z look_at 0 orthographic}
box {

0,1
texture {

pigment {
gradient y
colour_map {

[0, red 1]
[1, blue 1]

}
}
finish{ambient 1}

}
texture {

pigment {
gradient x
colour_map {

[0, rgb 0.5 transmit -3]
[1, rgb 0.5 transmit 3]

}
}
finish{ambient 1}

}
translate <-0.5,-0.5,0>
scale <3,2,1>

}

When using thetransmit value for special effects, you can visualize it this way: Thetransmit value means
”contrast”. 1.0 is no change in contrast, 0.5 is half contrast, 2.0 is double contrast and so on. You could say
that transmit ”scales” the colors. The color of the object is the ”center value”. All colors will get closer to
the ”center value” iftransmit is between 0 and 1, and all colors will spread away from the ”center value” if
transmit is greater than 1. Iftransmit is negative the colors will be inverted around the ”center value”. Rgb 0.5
is common to use as ”center value”, but other values can be used for other effects. The ”center value” really is a
color, and non-gray colors can be used for interesting effects. The red, green and blue components are handled
separately.

Note: early versions of POV-Ray used the keywordalpha to specify filtered transparency. However that word
is often used to describe non-filtered transparency. For this reasonalpha is no longer used.

Each of the five components of a color are float values which are normally in the range between 0.0 and 1.0.
However any values, even negatives may be used.

54 Scene Description Language

Under most circumstances the keywordcolor is optional and may be omitted. We also support the British or
Canadian spellingcolour. Colors may be specified using vectors, keywords with floats or identifiers. You may
also create very complex color expressions from combinations of any of these using various familiar operators.
The syntax for specifying a color has evolved since POV-Ray was first released. We have maintained the original
keyword-based syntax and added a short-cut vector notation. Either the old or new syntax is acceptable however
the vector syntax is easier to use when creating color expressions.

The syntax for combining color literals into color expressions is almost identical to the rules for vector and float
expressions. In the syntax for vector expressions, some of the syntax items are defined in the section for float
expressions. See ”Float Expressions” for those definitions. Detailed explanations of color-specific issues are
given in the following sub-sections.

Color Vectors

The syntax for a color vector is...

COLOR_VECTOR:
rgb <3_Term_Vector> |
rgbf <4_Term_Vector> |
rgbt <4_Term_Vector> |
[rgbft] <5_Term_Vector>

...where the vectors are any valid vector expressions of 3, 4 or 5 components. For example

color rgb <1.0, 0.5, 0.2>

This specifies a color whose red component is 1.0 or 100% of full intensity. The green component is 0.5 or
50% of full intensity and the blue component is 0.2 or 20% of full intensity. Although the filter and transmit
components are not explicitly specified, they exist and are set to their default values of 0 or no transparency.

Thergbf keyword requires a four component vector. The 4th component is the filter component and the transmit
component defaults to zero. Similarly thergbt keyword requires four components where the 4th value is moved
to the 5th component which is transmit and then the filter component is set to zero.

Thergbft keyword allows you to specify all five components. Internally in expressions all five are always used.

Under some circumstances, if the vector expression is a 5 component expression or there is a color identifier in
the expression then thergbtf keyword is optional.

Color Keywords

The older keyword method of specifying a color is still useful and many users prefer it.

COLOR_KEYWORD_GROUP:
[COLOR_KEYWORD_ITEM]...

COLOR_KEYWORD_ITEM:
COLOR_IDENTIFIER |
red Red_Amount | blue Blue_Amount | green Green_Amount |
filter Filter_Amount | transmit Transmit_Amount

Although thecolor keyword at the beginning is optional, it is more common to see it in this usage. This is
followed by any of five additional keywordsred, green, blue, filter, or transmit. Each of these component
keywords is followed by a float expression. For example

2.1 Language Basics 55

color red 1.0 green 0.5

This specifies a color whose red component is 1.0 or 100% of full intensity and the green component is 0.5
or 50% of full intensity. Although the blue, filter and transmit components are not explicitly specified, they
exist and are set to their default values of 0. The component keywords may be given in any order and if any
component is unspecified its value defaults to zero. ACOLORIDENTIFIERcan also be specified but it should
always be first in the group. See ”Common Color Pitfalls” for details.

Color Identifiers

Color identifiers may be declared to make scene files more readable and to parameterize scenes so that changing
a single declaration changes many values. An identifier is declared as follows.

COLOR_DECLARATION:
#declare IDENTIFIER = COLOR; |
#local IDENTIFIER = COLOR;

WhereIDENTIFIERis the name of the identifier up to 40 characters long andCOLORis any valid specification.

Note: there should be a semi-colon at the end of the declaration. If omitted, it generates a warning and some
macros may not work properly. See ” #declare vs. #local” for information on identifier scope.

Here are some examples....

#declare White = rgb <1,1,1>;
#declare Cyan = color blue 1.0 green 1.0;
#declare Weird = rgb <Foo*2,Bar-1,Bob/3>;
#declare LightGray = White*0.8;
#declare LightCyan = Cyan red 0.6;

As theLightGray example shows you do not need any color keywords when creating color expressions based
on previously declared colors. The last example shows you may use a color identifier with the keyword style
syntax. Make sure that the identifier comes first before any other component keywords.

Like floats and vectors, you may re-define colors throughout a scene but the need to do so is rare.

Color Operators

Color vectors may be combined in expressions the same as float or vector values. Operations are performed
on a component by component basis. For examplergb <1.0,0.5,0.2>*0.9 evaluates the same asrgb<1.0,

0.5,0.2>*<0.9,0.9,0.9> or rgb<0.9,0.45,0.18>. Other operations are done on a similar component by
component basis.

You may use the dot operator to extract a single component from a color. Suppose the identifierShade was
previously defined as a color. ThenShade.red is the float value of the red component ofShade. Similarly
Shade.green, Shade.blue, Shade.filter andShade.transmit extract the float value of the other color compo-
nents.shade.gray returns the gray value of the color vector.

Common Color Pitfalls

The variety and complexity of color specification methods can lead to some common mistakes. Here are some
things to consider when specifying a color.

56 Scene Description Language

When using filter transparency, the colors which come through are multiplied by the primary color components.
For example if gray light such asrgb<0.9,0.9,0.9> passes through a filter such asrgbf<1.0,0.5,0.0,1.0>

the result is rgb<0.9,0.45,0.0> with the red let through 100%, the green cut in half from 0.9 to 0.45 and the
blue totally blocked. Often users mistakenly specify a clear object by

color filter 1.0

but this has implied red, green and blue values of zero. You have just specified a totally black filter so no light
passes through. The correct way is either

color red 1.0 green 1.0 blue 1.0 filter 1.0

or

color transmit 1.0

In the 2nd example it does not matter what the rgb values are. All of the light passes through untouched. Another
pitfall is the use of color identifiers and expressions with color keywords. For example...

color My_Color red 0.5

this substitutes whatever was the red component ofMy Color with a red component of 0.5 however...

color My_Color + red 0.5

adds 0.5 to the red component ofMy Color and even less obvious...

color My_Color * red 0.5

that cuts the red component in half as you would expect but it also multiplies the green, blue, filter and transmit
components by zero! The part of the expression after the multiply operator evaluates torgbft<0.5,0,0,0,0>

as a full 5 component color.

The following example results in no change toMy Color.

color red 0.5 My_Color

This is because the identifier fully overwrites the previous value. When using identifiers with color keywords,
the identifier should be first. Another issue to consider: some POV-Ray syntax allows full color specifications
but only uses the rgb part. In these cases it is legal to use a float where a color is needed. For example:

finish { ambient 1 }

The ambient keyword expects a color so the value1 is promoted to<1,1,1,1,1> which is no problem. However

pigment { color 0.4 }

is legal but it may or may not be what you intended. The0.4 is promoted to<0.4,0.4,0.4,0.4,0.4> with the
filter and transmit set to 0.4 as well. It is more likely you wanted...

pigment { color rgb 0.4 }

in which case a 3 component vector is expected. Therefore the0.4 is promoted to<0.4,0.4,0.4,0.0,0.0>

with default zero for filter and transmit. Finally there is another problem which arises when using color dot
operators in#declare or #local directives. Consider the directive:

#declare MyColor = rgb <0.75, 0.5, 0.75>;
#declare RedAmt = MyColor.red;

Now RedAmt should be a float but unfortunately it is a color. POV-Ray looks at the first keyword after the equals
to try to guess what type of identifier you want. It sees the color identifierMyColor and assumes you want

2.1 Language Basics 57

to declare a color. It then computes the float value as 0.75 then promotes that intorgbft<0.75,0.75,0.75,

0.75,0.75>. It would take a major rewrite to fix this problem so we are just warning you about it. Any of the
following work-arounds will work properly.

#declare RedAmt = 0.0+MyColor.red;
#declare RedAmt = 1.0*MyColor.red;
#declare RedAmt = (MyColor.red);

2.1.6 User-Defined Functions

Some objects allow you to specify functions that will be evaluated while rendering to determine the surface of
these objects. In this respect functions are quite different to macros, which are evaluated at parse time but do
not otherwise affect rendering. Additionally you may call these functions anywhere a Float Function is allowed,
even during parsing. The syntax is identical to Float Expressions, however, only float functions that apply to
float values may be used. Excluded are for examplestrlen or vlength. You find a full list of supported float
functions in the syntax definition below.

FLOAT:
LOGIC_AND [OR LOGIC_AND]

OR:
|

LOGIC_AND:
REL_TERM [AND REL_TERM]

AND:
\&

REL_TERM:
TERM [REL_OPERATOR TERM]

REL_OPERATOR:
< | <= | >= | > | = | !=

TERM:
FACTOR [SIGN FACTOR]

SIGN:
+ | -

FACTOR:
MOD_EXPRESSION [MULT MOD_EXPRESSION]

MULT:
* | /

EXPRESSION:
FLOAT_LITERAL |
FLOAT_IDENTIFIER |
FLOAT_FUNCTION |
FLOAT_BUILT-IN_IDENT |
FUNCTION_IDENTIFIER |
(FLOAT) |
IDENTIFIER |
SIGN EXPRESSION

FLOAT_FUNCTION:
abs(FLOAT) | acos(FLOAT) | acosh(FLOAT) | asin(FLOAT) |
asinh(FLOAT) | atan(FLOAT) | atanh(FLOAT) |
atan2(FLOAT , FLOAT) | ceil(FLOAT) | cos(FLOAT) |
cosh(FLOAT) | degrees(FLOAT) | exp(FLOAT) |
floor(FLOAT) | int(FLOAT) | ln (Float) | log(FLOAT) |

58 Scene Description Language

max(FLOAT , FLOAT, ...) | min(FLOAT , FLOAT, ...) |
mod(FLOAT , FLOAT) | pow(FLOAT , FLOAT) |
radians(FLOAT) | sin(FLOAT) | sinh(FLOAT) |
sqrt(FLOAT) | tan(FLOAT) | tanh(FLOAT) |
select(FLOAT , FLOAT , FLOAT [, FLOAT])

FUNCTION_IDENTIFIER:
#local FUNCTION_IDENTIFIER = function { FLOAT } |
#declare FUNCTION_IDENTIFIER = function { FLOAT } |
#local FUNCTION_IDENTIFIER = function(IDENT_LIST) { FLOAT } |
#declare FUNCTION_IDENTIFIER = function(IDENT_LIST) { FLOAT } |
#local FUNCTION_IDENTIFIER = function{SPECIAL_FLOAT_FUNCTION} |
#local VECTOR_IDENTIFIER = function{SPECIAL_VECTOR_FUNCTION} |
#local COLOR_IDENTIFIER = function { SPECIAL_COLOR_FUNCTION } |

IDENT_LIST:
IDENT_ITEM [, IDENT_LIST]

IDENT_ITEM:
x | y | z | u | v | IDENTIFIER
(Note: x = u and y = v)

SPECIAL_FLOAT_FUNCTION:
pattern { PATTERN_BLOCK }

SPECIAL_VECTOR_FUNCTION:
TRANSFORMATION_BLOCK | SPLINE

SPECIAL_COLOR_FUNCTION:
PIGMENT

PATTERN_BLOCK:
PATTERN

Note: Only the above mentioned items can be used in user-defined functions. For example the rand() function
is not available.

All of the above mentioned float functions are described in the section Float Functions.

Sum and Product functions

prod(i, b, n, a) The product function.

n

∏
i=b

a

Table 2.1: product function

sum(i, b, n, a) The sum function.

n

∑
i=b

a

Table 2.2: sum function

2.1 Language Basics 59

For bothprod andsum: i is any variable name anda is any expression, usually depending oni. b andn are also
any expression.
Example:

#declare factorial = function(C) { prod(i, 1, C, i) }
#declare A = factorial(5);

The first parameter is the name of the iteration variable. The second is the initial value expression and the third is
the final value expression. Those may not depend on the iteration variable but the iteration variable may still be
used inside those two expressions (because it happens to already have been defined) but its value is undefined.
The last expression is the actual expression which will be iterated through. It may use any variable in scope.

The scope of an iteration variable is the sequence operation function. That is, a iteration variable is only
defined when used inside thesum/prod function. Of coursesum/prod functions may be nested. However, there
is one limit of a maximum of 56 local variable defined simultaneously, which essentially means that in any
combinationsum/prod functions cannot be nested deeper than 56 levels.

The iteration variable is incremented by one for each step, but its initial and final value may be any value. The
iteration will be continued as long as the iteration value is less or equal to the final value.

Note: because the iteration value is a floating-point variable, adding one will add a certain bias in a long
iterations and thus the floating-point precision will be an issue in such a case and needs to be considered by
allowing a reasonable error for the final value!

If the expression to be added has a negative sign it will of course in effect be substracted. Thus changing the
sign will allow to generate negative values in the sum function. Equally multiplying by1/expression effectively
creates a division when used in the prod function.

Obviously to work in the first place the initial value of the result is the neutral element of the operation. That
is, a sum calculation starts with0 and a product calculation starts with1 just like it is assumed in the sum and
product functions in ’regular’ math.

It should be noted that mathematically either sum or product are redundant because:

log10(prod(i, b, n, a)) = sum(i, b, n, log10(a))

which implies a sum can be represented as a product and vice versa, observing the usual mathematical con-
straints of logarithms, of course. However, as logarithms and their inverse (powers) are slow to compute both
are provided...

Functions and Macros

You can use macros in functions, but the macros will be called only once when the function is defined, not every
time the function is called. You cannot pass function variables to the macros.

You can pass functions to macros, how to do this is best explained by an example:

#macro Foo(Bar, X)
#declare Y = Bar(X);
#declare Z = Bar(Y);

#end

#declare FUNC=function(n){n+2}

Foo(FUNC, 1)

60 Scene Description Language

#debug str(Y,5,5)
#debug "n"
#debug str(Z,5,5)
#debug "n"

Declaring User-Defined Float Functions

You declare a user defined function using the#declare or #local directives. By default a function takes three
parameters and you do not have to explicitly specify the parameter names. The default three parameters arex, y
andz. For example:

#declare foo = function { x + y * z }

If you need fewer or more parameters you have to explicitly specify the parameter list.

Note: x andu as well asy andv are equivalent so you may not specify both parameter names. You may not
specify two or more parameters with the same name either. Doing so may result in a parse error or undefined
function results.

The following are valid functions with parameters:

#declare foo2 = function(x, y, z) { x + y * z }
#declare foo3 = function(k1, k2, z, y) { x + y * z + k1 * y + k2 }
#declare foo4 = function(h) { h * h + h }
#declare foo4 = function(u, v) { x + y * v } //=u + v*v
#declare foo4 = function(x, v, z) { u + y * v + z } //=x + v*v + z

Limits:

• The minimum number of parameters per function is 1.

• The maximum number of allowed parameters per function is 56.

• The maximum number offunction blocks per scene is 1048575.

• The maximum number of operators per function is about 200000. Individual limits will be different
depending on the types of operators used in the function.

• The maximum depth for nesting functions is 1024.

• The maximum number of constants in all functions 1048575.

Note: Redeclaring functions, directly, is not allowed. The way to do this is toundef it first.

There is one special float function type. You may declare apattern function.

Note: the syntax is identical to that of patterns, however, you may not specify colors. Its result is always a float
and not a color vector, as returned by a function containing a pigment.

#declare foo = function {
pattern {

checker
}

}

Note: the number of parameters of special function types is determined automatically, so you do not need to
specify parameter names.

2.1 Language Basics 61

Declaring User-Defined Vector Functions

Right now you may only declare vector functions using one of the special function types. Supported types are
transform andspline functions. For example:

#declare foo = function {
transform {

rotate <90, 0, 0>
scale 4

}
}

#declare myvector = foo(4, 3, 7);

#declare foo2 = function {
spline {

linear_spline
0.0, <0,0,0>
0.5, <1,0,0>
1.0, <0,0,0>

}
}

#declare myvector2 = foo2(0.7);

Function splines take the vector size into account. That is, a function containing a spline with five components
will also return a five component vector (aka a color), a function containing a spline with two components will
only return a two component vector and so on.

Note: the number of parameters of special function types is determined automatically, so you do not need to
specify parameter names.

Declaring User-Defined Color Functions

Right now you may only declare color functions using one of the special function types. The only supported
type is thepigment function. You may use every validpigment. This is a very simple example:

#declare foo = function {
pigment {

color red 1
}

}

#declare Vec = foo(1,2,3)

An example using a pattern:

#declare foo = function {
pigment {

crackle
color_map {

[0.3, color Red]
[1.0, color Blue]

}

62 Scene Description Language

}
}

#declare Val = foo(2,3,4).gray

Note: the number of parameters of special function types is determined automatically, so you do not need to
specify parameter names.

Internal Pre-Defined Functions

Several functions are pre-defined. These internal functions can be accessed through the ”functions.inc”, so it
should be included in your scene.
The number of required parameters and what they control are also given in the include file, but the ”functions.
inc” chapter in the ”Standard Include File” section gives more information.

2.1.7 Strings

The POV-Ray language requires you to specify a string of characters to be used as a file name, text for messages
or text for a text object. Strings may be specified using literals, identifiers or functions which return string values.
See ”String Functions” for details on string functions. Although you cannot build string expressions from
symbolic operators such as are used with floats, vectors or colors, you may perform various string operations
using string functions. Some applications of strings in POV-Ray allow for non-printing formatting characters
such as newline or form-feed.

STRING:
STRING_FUNCTION |
STRING_IDENTIFIER |

STRING_LITERAL STRING_LITERAL:
"up to 256 ASCII characters"

STRING_FUNCTION:
str(FLOAT , INT , INT) |
concat(STRING , STRING , [STRING ,...]) | chr(INT) |
substr(STRING , INT , INT) | strupr(STRING) |
strlwr(STRING) | vstr(INT, VECTOR, STRING, INT, INT)

String Literals

String literals begin with a double quote mark ’”’ which is followed by up to 256 characters and are terminated
by another double quote mark. You can change the character set of strings using theglobal settings charset

option. The following are all valid string literals:

”Here” ”There” ”myfile.gif” ”textures.inc”

Note: if you need to specify a quote mark in a string literal you must precede it with a backslash.

Example

"Joe said \"Hello\" as he walked in."

is converted to

Joe said "Hello" as he walked in.

2.1 Language Basics 63

If you need to specify a backslash, you will have to specify two. For example:

"This is a backslash \\ and this is two \\\\"

Is converted to:

This is a backslash \ and this is two \\

Windows users need to be especially wary about this as the backslash is also the windows path separator. For
example, the following code does not produce the intended result:

#declare DisplayFont = "c:\windows\fonts\lucon.ttf"
text { ttf DisplayFont "Hello", 2,0 translate y*1.50 }

New users might expect this to create a text object using the font ”c:\windows\fonts\lucon.ttf”. Instead, it will
give an error message saying that it cannot find the font file ”c:windowsontslucon.ttf”.

The correct form of the above code is as follows:

#declare DisplayFont = "c:\\windows\\fonts\\lucon.ttf"
text { ttf DisplayFont "Hello", 2,0 translate y*1.50 }

The escaping of backslashes occurs in all POV-Ray string literals. There are also other formatting codes such
as\n for new line. See ”Text Formatting” for details.

String Identifiers

String identifiers may be declared to make scene files more readable and to parameterize scenes so that changing
a single declaration changes many values. An identifier is declared as follows.

STRING_DECLARATION:
#declare IDENTIFIER = STRING |
#local IDENTIFIER = STRING

Where IDENTIFIER is the name of the identifier up to 40 characters long andSTRINGis any valid string
specification.

Note: unlike floats, vectors, or colors, there need not be a semi-colon at the end of the declaration. See ”#declare
vs. #local” for information on identifier scope.

Here are some examples...

#declare Font_Name = "ariel.ttf"
#declare Inc_File = "myfile.inc"
#declare Name = "John"
#declare Name = concat(Name," Doe")

As the last example shows, you can re-declare a string identifier and may use previously declared values in that
re-declaration.

String Functions

POV-Ray defines a variety of built-in functions for manipulating floats, vectors and strings. Function calls con-
sist of a keyword which specifies the name of the function followed by a parameter list enclosed in parentheses.
Parameters are separated by commas. For example:

64 Scene Description Language

keyword(param1,param2)

The following are the functions which return string values. They take one or more float, integer, vector, or string
parameters. Assume thatA is any valid expression that evaluates to a float;B, L, andP are floats which are
truncated to integers internally,S, S1, S2 etc are strings.

chr(B) Character whose character value isB. Returns a single character string. The character value of the
character is specified by an integerB which must be in the range 0 to 65535 if you specifiedcharset utf8 in the
global settings and 0 to 127 if you specifiedcharset ascii. Refer to your platform specific documentation if
you specifiedcharset sys. For examplechr(70) is the string ”F”. When rendering text objects you should be
aware that the characters rendered are dependent on the (TTF) font being used.

concat(S1,S2,...) Concatenate stringsS1 and S2. Returns a string that is the concatenation of all parameter
strings. Must have at least 2 parameters but may have more. For example:

concat("Value is ", str(A,3,1), " inches")

If the float valueA was12.34321 the result is"Value is 12.3 inches" which is a string.

str(A,L,P): Convert float A to a formatted string. Returns a formatted string representation of float value
A. The integer parameterL specifies the minimum length of the string and the type of left padding used if the
string’s representation is shorter than the minimum. IfL is positive then the padding is with blanks. IfL is
negative then the padding is with zeros. The overall minimum length of the formatted string isabs(L). If the
string needs to be longer, it will be made as long as necessary to represent the value.

The integer parameterP specifies the number of digits after the decimal point. IfP is negative then a compiler-
specific default precision is use. Here are some examples:

str(123.456, 0, 3) "123.456"
str(123.456, 4, 3) "123.456"
str(123.456, 9, 3) " 123.456"
str(123.456,-9, 3) "00123.456"

str(123.456, 0, 2) "123.46"
str(123.456, 0, 0) "123"
str(123.456, 5, 0) " 123"
str(123.000, 7, 2) " 123.00"

str(123.456, 0,-1) "123.456000" (platform specific)

strlwr(S) Lower case ofS. Returns a new string in which all upper case letters in the string S1 are converted to
lower case. The original string is not affected. For examplestrlwr("Hello There!") results in ”hello there!”.

substr(S,P,L) Sub-string fromS. Returns a string that is a subset of the characters in parameterS starting
at the position specified by the integer valueP for a length specified by the integer valueL. For example
substr("ABCDEFGHI",4,2) evaluates to the string ”DE”. IfP+L-1>strlen(S)an error occurs.

strupr(S) Upper case ofS. Returns a new string in which all lower case letters in the stringS are converted
to upper case. The original string is not affected. For examplestrupr("Hello There!") results in ”HELLO
THERE!”.

vstr(N,A,S,L,P) Convert vector A to a formatted string. Returns a formatted string representation of vectorA

where the elements of the vector are separated by the string parameterS. The integer parameterN specifies the
amount of dimensions in vectorA. N is autoclipped to the range of 2 to 5, without warning. Specifying a vector
A with more dimensions than given byN will result in an error.
The integer parameterL specifies the minimum length of the string and the type of left padding used if the

2.1 Language Basics 65

string’s representation is shorter than the minimum. The integer parameterP specifies the number of digits after
the decimal point. IfP is negative then a compiler-specific default precision is use. The function ofL andP is
the same as instr. Here are some examples:

vstr(2, <1,2>, ", ", 0,1) "1.0, 2.0"
vstr(5, <1,2,3,4,5>, ", ", 0,1) "1.0, 2.0, 3.0, 4.0, 5.0"
vstr(1, 1, ", ", 0,1) "1.0, 1.0"
vstr(2, 1, ", ", 0,1) "1.0, 1.0"
vstr(5, 1, ", ", 0,1) "1.0, 1.0, 1.0, 1.0, 1.0"
vstr(7, 1, ", ", 0,1) "1.0, 1.0, 1.0, 1.0, 1.0"
vstr(3, <1,2>, ", ", 0,1) "1.0, 2.0, 0.0"
vstr(5, <1,2,3>, ", ", 0,1) "1.0, 2.0, 3.0, 0.0, 0.0"
vstr(3, <1,2,3,4>, ", ", 0,1) error

See section ”Float Functions” for other functions which are somewhat string-related but which return floats. In
addition to the above built-in functions, you may also define your own functions using the#macro directive. See
the section ”User Defined Macros” for more details.

2.1.8 Array Identifiers

You may declare arrays of identifiers of up to five dimensions. Any item that can be declared as an identifier
can be declared in an array.

Declaring Arrays

The syntax for declaring an array is as follows:

ARRAY_DECLARATION:
#declare IDENTIFIER = array[INT][[INT]]..[ARRAY_INITIALIZER] |
#local IDENTIFIER = array[INT][[INT]]..[ARRAY_INITIALIZER]

ARRAY_INITIALIZER:
{ARRAY_ITEM, [ARRAY_ITEM,]... }

ARRAY_ITEM:
RVALUE | ARRAY_INITIALIZER

Where IDENTIFIER is the name of the identifier up to 40 characters long and INT is a valid float expres-
sion which is internally truncated to an integer which specifies the size of the array. The optionalARRAY-
INITIALIZER is discussed in the next section ”Array Initializers”. Here is an example of a one-dimensional,
uninitialized array.

#declare MyArray = array[10]

This declares an uninitialized array of ten elements. The elements are referenced asMyArray[0] through
MyArray[9]. As yet, the type of the elements are undetermined. Once you have initialized any element of
the array, all other elements can only be defined as that type. An attempt to reference an uninitialized element
results in an error. For example:

#declare MyArray = array[10]
#declare MyArray[5] = pigment{White} //all other elements must

//be pigments too.
#declare MyArray[2] = normal{bumps 0.2} //generates an error
#declare Thing = MyArray[4] //error: uninitialized array element

66 Scene Description Language

Multi-dimensional arrays up to five dimensions may be declared. For example:

#declare MyGrid = array[4][5]

declares a 20 element array of 4 rows and 5 columns. Elements are referenced fromMyGrid[0][0] to
MyGrid[3][4]. Although it is permissible to reference an entire array as a whole, you may not reference just
one dimension of a multi-dimensional array. For example:

#declare MyArray = array[10]
#declare MyGrid = array[4][5]
#declare YourArray = MyArray //this is ok
#declare YourGrid = MyGrid //so is this
#declare OneRow = MyGrid[2] //this is illegal

The#ifdef and#ifndef directives can be used to check whether a specific element of an array has been declared.
For methods to determine the size of an array look in the float section fordimensions anddimension size

Large uninitialized arrays do not take much memory. Internally they are arrays of pointers so they probably use
just 4 bytes per element. Once initialized with values, they consume memory depending on what you put in
them.

The rules for local vs. global arrays are the same as any other identifier.

Note: this applies to the entire array. You cannot mix local and global elements in the same array. See ”#declare
vs. #local” for information on identifier scope.

Array Initializers

Because it is cumbersome to individually initialize the elements of an array, you may initialize it as it is created
using array initializer syntax. For example:

#include "colors.inc"
#declare FlagColors = array[3] {Red,White,Blue}

Multi-dimensional arrays may also be initialized this way. For example:

#declare Digits =
array[4][10]
{
{7,6,7,0,2,1,6,5,5,0},
{1,2,3,4,5,6,7,8,9,0},
{0,9,8,7,6,5,4,3,2,1},
{1,1,2,2,3,3,4,4,5,5}

}

The commas are required between elements and between dimensions as shown in the example.

2.1.9 Spline Identifiers

Splines give you a way to define ’pathways’ through your scenes. You specify a series of points, and POV-Ray
interpolates to make a curve connecting them. Every point along the spline has a numerical value. A good
example of a spline is the path of a moving object: the spline itself would be the path traced out by the object
and the ’parameter’ would be time; as time changes the object’s position moves along the spline.

2.1 Language Basics 67

Therefore, given a time reference you could use this spline to find the position of the object. In fact, splines are
very well suited to animation.

The syntax is:

SPLINE_DECLARATION:
#declare IDENTIFIER =

spline {
[SPLINE_IDENTIFIER] |
[SPLINE_TYPE] |
[Val_1, <Point_1>[,]
Val_2, <Point_2>[,]
...
Val_n, <Point_n>]

}

SPLINE_TYPE:
linear_spline | quadratic_spline | cubic_spline | natural_spline

SPLINE_USAGE:
MySpline(Val) | MySpline(Val, SPLINE_TYPE)

The first item gives the type of interpolation.
In alinear spline, straight lines connect each point.
In aquadratic spline, a smooth curve defined by a second-order polynomial connects each point.
In cubic spline andnatural spline, a smooth curve defined by a third-order polynomial connects each point.
The default islinear spline.

Following this are a number of float values each followed by a position vector, all separated by commas.Val 1,
Val 2, etc, are the value of the spline parameter at each specific point. The points need not be in order of their
parameter values. If two points have the same parameter value, the second point will replace the first. Beyond
the range of the lowest and highest parameter values, the spline position is fixed at the endpoints.

Note: Because of the way cubicsplines are defined: the first and last points are tangents rather than points
on the spline, cubicspline interpolation is only valid between the second and next-to-last points. For all other
spline types, interpolation is valid from the first point to the last point. For t-values outside the valid range,
POV-Ray returns the value of the nearest valid point.

To use a spline, you place the spline identifier followed by the parameter (in parentheses) wherever you would
normally put a vector, similar to a macro. Splines behave mostly like three-dimensional vectors.
Here is an example:

camera { location <0,2,-2> look_at 0 }
light_source { <-5,30,-10> 1 }
#declare MySpline =

spline {
cubic_spline
-.25, <0,0,-1>
0.00, <1,0,0>
0.25, <0,0,1>
0.50, <-1,0,0>
0.75, <0,0,-1>
1.00, <1,0,0>
1.25, <0,0,1>

}

68 Scene Description Language

#declare ctr = 0;
#while (ctr < 1)

sphere {
MySpline(ctr),.25
pigment { rgb <1-ctr,ctr,0> }

}
#declare ctr = ctr + 0.01;

#end

You can also have POV-Ray evaluate a spline as if it were a different type of spline by specifying the type of
spline after the value to interpolate at, for example:

sphere{ <2,0,2>, .25 pigment{rgb MySpline(clock, linear_spline)}}

Splines are ’intelligent’ when it comes to returning vectors. The vector with the most components in the spline
determines the size of the returned vector. This allows vectors from two to five components to be returned by
splines.

Also, function splines take the vector size into account. That is, a function containing a spline with five
components will also return a five component vector (aka a color), a function containing a spline with two
components will only return a two component vector and so on.

Splines and Macros

You can pass functions to macros, how to do this is best explained by an example

#macro Foo(Bar, Val)
#declare Y = Bar(Val).y;

#end

#declare myspline = spline {
1, <4,5>
3, <5,5>
5, <6,5>

}

Foo(myspline, 2)

#debug str(Y,5,5)
#debug "\n"

2.2 Language Directives

The POV Scene Language contains several statements calledlanguage directiveswhich tell the file parser how
to do its job. These directives can appear in almost any place in the scene file - even in the middle of some other
statements. They are used to include other text files in the stream of commands, to declare identifiers, to define
macros, conditional, or looped parsing and to control other important aspects of scene file processing.

2.2 Language Directives 69

Each directive begins with the hash character# (often called a number sign or pound sign). It is followed by a
keyword and optionally other parameters.

In versions of POV-Ray prior to 3.0, the use of this# character was optional. Language directives could only
be used between objects, camera or lightsource statements and could not appear within those statements. The
exception was the#include which could appear anywhere. Now that all language directives can be used almost
anywhere, the# character is mandatory. The following keywords introduce language directives.

#break

#case

#debug

#declare

#default

#else

#end

#error

#fclose

#fopen

#if

#ifdef

#ifndef

#include

#local

#macro

#range

#read

#render

#statistics

#switch

#undef

#version

#warning

#while

#write

Table 2.5: All language directives

Earlier versions of POV-Ray considered the keyword#max intersections and the keyword#max trace level to
be language directives but they have been moved to theglobal settings statement and should be placed there
without the# sign. Their use as a directive still works but it generates a warning and may be discontinued in the
future.

2.2.1 Include Files and the #include Directive

The language allows include files to be specified by placing the line

#include "filename.inc"

at any point in the input file. The filename may be specified by any valid string expression but it usually is a
literal string enclosed in double quotes. It may be up to 40 characters long (or your computer’s limit), including
the two double-quote characters.

The include file is read in as if it were inserted at that point in the file. Using include is almost the same as
cutting and pasting the entire contents of this file into your scene.

Include files may be nested. You may have at most 10 nested include files. There is no limit on un-nested
include files.

Generally, include files have data for scenes but are not scenes in themselves. By convention scene files end in
.pov and include files end with.inc.

It is legal to specify drive and directory information in the file specification however it is discouraged because it
makes scene files less portable between various platforms. Use of full lower case is also recommended but not
required.

Note: if you ever intend to distribute any source files you make for POV-Ray, remember that some operating
systems have case-sensitive file names).

70 Scene Description Language

It is typical to put standard include files in a special sub-directory. POV-Ray can only read files in the current
directory or one referenced by theLibrary Path option or+L switch. See section ”Library Paths”.

You may use the#local directive to declare identifiers which are temporary in duration and local to the include
file in scope. For details see ”#declare vs. #local”.

2.2.2 The #declare and #local Directives

Identifiers may be declared and later referenced to make scene files more readable and to parameterize scenes
so that changing a single declaration changes many values. There are several built-in identifiers which POV-
Ray declares for you. See section ”Float Expressions: Built-in Variables” and ”Built-in Vector Identifiers” for
details.

Declaring identifiers

An identifier is declared as follows.

DECLARATION:
#declare IDENTIFIER = RVALUE |
#local IDENTIFIER = RVALUE

RVALUE:
FLOAT; | VECTOR; | COLOR; | STRING | OBJECT | TEXTURE |
PIGMENT | NORMAL | FINISH | INTERIOR | MEDIA | DENSITY |
COLOR_MAP | PIGMENT_MAP | SLOPE_MAP | NORMAL_MAP |
DENSITY_MAP | CAMERA | LIGHT_SOURCE | FOG | RAINBOW |
SKY_SPHERE | TRANSFORM

WhereIDENTIFIER is the name of the identifier up to 40 characters long andRVALUE is any of the listed
items. They are called that because they are values that can appear to theright of the equals sign. The syntax
for each is in the corresponding section of this language reference. Here are some examples.

#declare Rows = 5;
#declare Count = Count+1;
#local Here = <1,2,3>;
#declare White = rgb <1,1,1>;
#declare Cyan = color blue 1.0 green 1.0;
#declare Font_Name = "ariel.ttf"
#declare Rod = cylinder {-5*x,5*x,1}
#declare Ring = torus {5,1}
#local Checks = pigment { checker White, Cyan }
object{ Rod scale y*5 } // not "cylinder { Rod }"
object {
Ring
pigment { Checks scale 0.5 }
transform Skew

}

Note: that there should be a semi-colon after the expression in all float, vector and color identifier declarations.
This semi-colon is introduced in POV-Ray version 3.1. If omitted, it generates a warning and some macros may
not work properly. Semicolons after other declarations are optional.

2.2 Language Directives 71

Declarations, like most language directives, can appear almost anywhere in the file - even within other state-
ments. For example:

#declare Here=<1,2,3>;
#declare Count=0; // initialize Count
union {
object { Rod translate Here*Count }
#declare Count=Count+1; // re-declare inside union
object { Rod translate Here*Count }
#declare Count=Count+1; // re-declare inside union
object { Rod translate Here*Count }

}

As this example shows, you can re-declare an identifier and may use previously declared values in that re-
declaration.

Note: object identifiers use the generic wrapper statementobject{ ... }. You do not need to know what kind
of object it is.

Declarations may be nested inside each other within limits. In the example in the previous section you could
declare the entire union as a object. However for technical reasons there are instances where you may not use
any language directive inside the declaration of floats, vectors or color expressions. Although these limits have
been loosened somewhat since POV-Ray 3.1, they still exist.

Identifiers declared within#macro ... #end blocks are not created at the time the macro is defined. They are only
created at the time the macro is actually invoked. Like all other items inside such a #macro definition, they are
ignored when the macro is defined.

#declare vs. #local

Identifiers may be declared either global using#declare or local using the#local directive.

Those created by the#declare directive are permanent in duration and global in scope. Once created, they are
available throughout the scene and they are not released until all parsing is complete or until they are specifically
released using#undef. See ”Destroying Identifiers”.

Those created by the#local directive are temporary in duration and local in scope. They temporarily override
any identifiers with the same name. See ”Identifier Name Collisions”.

If #local is used inside a#macro then the identifier is local to that macro. When the macro is invoked and the
#local directive is parsed, the identifier is created. It persists until the#end directive of the macro is reached. At
the#end directive, the identifier is destroyed. Subsequent invocations of the macro create totally new identifiers.

Use of#local within an include file but not in a macro, also creates a temporary identifier that is local to that
include file. When the include file is included and the#local directive is parsed, the identifier is created. It
persists until the end of the include file is reached. At the end of file the identifier is destroyed. Subsequent
inclusions of the file create totally new identifiers.

Use of#local in the main scene file (not in an include file and not in a macro) is identical to#declare. For
clarity sake you should not use#local in a main file except in a macro.

There is currently no way to create permanent, yet local identifiers in POV-Ray.

Local identifiers may be specifically released early using#undef but in general there is no need to do so. See
”Destroying Identifiers”.

72 Scene Description Language

Identifier Name Collisions

Local identifiers may have the same names as previously declared identifiers. In this instance, the most recent,
most local identifier takes precedence. Upon entering an include file or invoking a macro, a new symbol table
is created. When referencing identifiers, the most recently created symbol table is searched first, then the next
most recent and so on back to the global table of the main scene file. As each macro or include file is exited, its
table and identifiers are destroyed. Parameters passed by value reside in the same symbol table as the one used
for identifiers local to the macro.

The rules for duplicate identifiers may seem complicated when multiple-nested includes and macros are in-
volved, but in actual practice the results are generally what you intended.

Consider this example: You have a main scene file calledmyscene.pov and it contains

#declare A = 123;
#declare B = rgb<1,2,3>;
#declare C = 0;
#include "myinc.inc"

Inside the include file you invoke a macro calledMyMacro(J,K,L). It is not important whereMyMacro is defined
as long as it is defined before it is invoked. In this example, it is important that the macro is invoked from within
myinc.inc.

The identifiersA, B, and C are generally available at all levels. If eithermyinc.inc or MyMacro contain a line
such as #declare C=C+1; then the valueC is changed everywhere as you might expect.

Now suppose insidemyinc.inc you do...

#local A = 546;

The main version ofA is hidden and a newA is created. This newA is also available insideMyMacro because
MyMacro is nested insidemyinc.inc. Once you exitmyinc.inc, the local A is destroyed and the originalA
with its value of123 is now in effect. Once you have created the localA insidemyinc.inc, there is no way to
reference the original globalA unless you#undef A or exit the include file. Using#undef always undefines the
most local version of an identifier.

Similarly if MyMacro contained...

#local B = box{0,1}

then a new identifierB is created local to the macro only. The original value ofB remains hidden but is restored
when the macro is finished. The localB need not have the same type as the original.

The complication comes when trying to assign a new value to an identifier at one level that was declared local
at an earlier level. Suppose insidemyinc.inc you do...

#local D = 789;

If you are insidemyinc.inc and you want to incrementD by one, you might try to do...

#local D = D + 1;

but if you try to do that insideMyMacro you will create a newD which is local toMyMacro and not the D which
is external toMyMacro but local to myinc.inc. Therefore you’ve said ”create aMyMacro D from the value of
myinc.inc’s D plus one”. That’s probably not what you wanted. Instead you should do...

#declare D = D + 1;

2.2 Language Directives 73

You might think this creates a newD that is global but it actually increments the myinc.inc version ofD. Confus-
ing isn’t it? Here are the rules:

1. When referencing an identifier, you always get the most recent, most local version. By ”referencing” we
mean using the value of the identifier in a POV-Ray statement or using it on the right of an equals sign in
either a#declare or #local.

2. When declaring an identifier using the#local keyword, the identifier which is created or has a new value
assigned, is ALWAYS created at the current nesting level of macros or include files.

3. When declaring a NEW, NON-EXISTANT identifier using#declare, it is created as fully global. It is put
in the symbol table of the main scene file.

4. When ASSIGNING A VALUE TO AN EXISTING identifier using#declare, it assigns it to the most
recent, most local version at the time.

In summary,#local always means ”the current level”, and#declare means ”global” for new identifiers and
”most recent” for existing identifiers.

Destroying Identifiers with #undef

Identifiers created with#declare will generally persist until parsing is complete. Identifiers created with#local

will persist until the end of the macro or include file in which they were created. You may however un-define
an identifier using the#undef directive. For example:

#undef MyValue

If multiple local nested versions of the identifier exist, the most local most recent version is deleted and any
identically named identifiers which were created at higher levels will still exist.

See also ”The #ifdef and #ifndef Directives”.

2.2.3 File I/O Directives

You may open, read, write, append, and close plain ASCII text files while parsing POV-Ray scenes. This
feature is primarily intended to help pass information between frames of an animation. Values such as an
object’s position can be written while parsing the current frame and read back during the next frame. Clever use
of this feature could allow a POV-Ray scene to generate its own include files or write self-modifying scripts.
We trust that users will come up with other interesting uses for this feature.

Note: some platform versions of POV-Ray (e.g. Windows) provide means to restrict the ability of scene files to
read & write files.

The #fopen Directive

Users may open a text file using the#fopen directive. The syntax is as follows:

FOPEN_DIRECTIVE:
#fopen IDENTIFIER "filename" OPEN_TYPE

OPEN_TYPE:
read | write | append

74 Scene Description Language

WhereIDENTIFIER is an undefined identifier used to reference this file as a file handle,”filename” is any
string literal or string expression which specifies the file name. Files opened with theread are open for read
only. Those opened withwrite create a new file with the specified name and it overwrites any existing file with
that name. Those opened withappend opens a file for writing but appends the text to the end of any existing file.

The file handle identifier created by#fopen is always global and remains in effect (and the file remains open)
until the scene parsing is complete or until you#fclose the file. You may use #ifdef FILE HANDLE -
IDENTIFIERto see if a file is open.

The #fclose Directive

Files opened with the#fopen directive are automatically closed when scene parsing completes however you
may close a file using the#fclose directive. The syntax is as follows:

FCLOSE_DIRECTIVE:
#fclose FILE_HANDLE_IDENTIFIER

WhereFILE HANDLE IDENTIFIER is previously opened file opened with the#fopen directive. See ”The
#fopen Directive”.

The #read Directive

You may read string, float or vector values from a plain ASCII text file directly into POV-Ray variables using
the #read directive. The file must first be opened in ”read” mode using the #fopen directive. The syntax for
#read is as follows:

READ_DIRECTIVE:
#read (FILE_HANDLE_IDENTIFIER, DATA_IDENTIFIER[,DATA_IDENTIFIER]..)

DATA_IDENTIFIER:
UNDECLARED_IDENTIFIER | FLOAT_IDENTIFIER | VECTOR_IDENTIFIER |
STRING_IDENTIFIER

WhereFILE HANDLE IDENTIFIER is the previously opened file. It is followed by one or moreDATA -
IDENTIFIERs separated by commas. The parentheses around the identifier list are required. ADATA -
IDENTIFIER is any undeclared identifier or any previously declared string identifier, float identifier, or vector
identifier. Undefined identifiers will be turned into global identifiers of the type determined by the data which
is read. Previously defined identifiers remain at whatever global/local status they had when originally created.
Type checking is performed to insure that the proper type data is read into these identifiers.

The format of the data to be read must be a series of valid string literals, float literals, or vector literals sepa-
rated by commas. Expressions or identifiers are not permitted in the data file however unary minus signs and
exponential notation are permitted on float values.

If you attempt to read past end-of-file, the file is automatically closed and theFILE HANDLE IDENTIFIER is
deleted from the symbol table. This means that the boolean functiondefined(IDENTIFIER) can be used to
detect end-of-file. For example:

#fopen MyFile "mydata.txt" read
#while (defined(MyFile))

#read (MyFile,Var1,Var2,Var3)
...

#end

2.2 Language Directives 75

The #write Directive

You may write string, float or vector values to a plain ASCII text file from POV-Ray variables using the#write

directive. The file must first be opened in eitherwrite or append mode using the#fopen directive. The syntax
for #write is as follows:

WRITE_DIRECTIVE:
#write(FILE_HANDLE_IDENTIFIER, DATA_ITEM[,DATA_ITEM]...)

DATA_ITEM:
FLOAT | VECTOR | STRING

WhereFILE HANDLE IDENTIFIER is the previously opened file. It is followed by one or moreDATA ITEMs
separated by commas. The parentheses around the identifier list are required. ADATA ITEM is any valid string
expression, float expression, or vector expression. Float expressions are evaluated and written as signed float
literals. If you require format control, you should use thestr(VALUE,L,P) function to convert it to a formatted
string. See ”String Functions” for details on thestr function. Vector expressions are evaluated into three signed
float constants and are written with angle brackets and commas in standard POV-Ray vector notation. String
expressions are evaluated and written as specified.

Note: data read by the#read directive must have comma delimiters between values and quotes around string
data but the #write directive does not automatically output commas or quotes.

For example the following#read directive reads a string, float and vector.

#read (MyFile,MyString,MyFloat,MyVect)

It expects to read something like:

"A quote delimited string", -123.45, <1,2,-3>

The POV-Ray code to write this might be:

#declare Val1 = -123.45;
#declare Vect1 = <1,2,-3>;
#write(MyFile,"\"A quote delimited string\",",Val1,",",Vect1,"\n")

See ”String Literals” and ”Text Formatting” for details on writing special characters such as quotes, newline,
etc.

2.2.4 The #default Directive

POV-Ray creates a default texture when it begins processing. You may change those defaults as described
below. Every time you specify atexture statement, POV-Ray creates a copy of the default texture. Anything
you put in the texture statement overrides the default settings. If you attach apigment, normal, or finish to an
object without any texture statement then POV-Ray checks to see if a texture has already been attached. If it has
a texture then the pigment, normal or finish will modify the existing texture. If no texture has yet been attached
to the object then the default texture is copied and the pigment, normal or finish will modify that texture.

You may change the default texture, pigment, normal or finish using the language directive#default as follows:

DEFAULT_DIRECTIVE:
#default {DEFAULT_ITEM }

DEFAULT_ITEM:
TEXTURE | PIGMENT | NORMAL | FINISH

76 Scene Description Language

For example:

#default {
texture {

pigment { rgb <1,0,0> }
normal { bumps 0.3 }
finish { ambient 0.4 }

}
}

This means objects will default to red bumps and slightly high ambient finish. Also you may change just part
of it like this:

#default {
pigment {rgb <1,0,0>}

}

This still changes the pigment of the default texture. At any time there is only one default texture made from the
default pigment, normal and finish. The example above does not make a separate default for pigments alone.

Note: the special texturestiles and material map or a texture with atexture map may not be used as defaults.

You may change the defaults several times throughout a scene as you wish. Subsequent#default statements
begin with the defaults that were in effect at the time. If you wish to reset to the original POV-Ray defaults then
you should first save them as follows:

//At top of file
#declare Original_Default = texture {}

later after changing defaults you may restore it with...

#default {texture {Original_Default}}

If you do not specify a texture for an object then the default texture is attached when the object appears in the
scene. It is not attached when an object is declared. For example:

#declare My_Object =
sphere{ <0,0,0>, 1 } // Default texture not applied
object{ My_Object } // Default texture added here

You may force a default texture to be added by using an empty texture statement as follows:

#declare My_Thing =
sphere { <0,0,0>, 1 texture {} } // Default texture applied

The original POV-Ray defaults for all items are given throughout the documentation under each appropriate
section.

2.2.5 The #version Directive

As POV-Ray has evolved from version 1.0 through 3.6 we have made every effort to maintain some amount of
backwards compatibility with earlier versions. Some old or obsolete features can be handled directly without
any special consideration by the user. Some old or obsolete features can no longer be handled at all. However
someold features can still be used if you warn POV-Ray that this is an older scene. The#version directive can
be used to switch version compatibility to different setting several times throughout a scene file. The syntax is:

2.2 Language Directives 77

VERSION_DIRECTIVE:
#version FLOAT;

Note: there should be a semi-colon after the float expression in a#version directive. This semi-colon is
introduced in POV-Ray version 3.1. If omitted, it generates a warning and some macros may not work properly.

Additionally you may use theVersion=n.n option or the+MVn.n switch to establish theinitial setting. See
”Language Version” for details. For example one feature introduced in 2.0 that was incompatible with any
1.0 scene files is the parsing of float expressions. Using#version 1.0 turns off expression parsing as well as
many warning messages so that nearly all 1.0 files will still work. Naturally the default setting for this option is
#version 3.5.

Note: Some obsolete or re-designed featuresare totally unavailable in the current version of POV-Ray REGAR-
DLES OF THE VERSION SETTING.Details on these features are noted throughout this documentation.

The built-in float identifierversion contains the current setting of the version compatibility option. See ”Float
Expressions: Built-in Variables”. Together with the built-inversion identifier the#version directive allows
you to save and restore the previous values of this compatibility setting. The new#local identifier option is
especially useful here. For example supposemystuff.inc is in version 1 format. At the top of the file you
could put:

#local Temp_Vers = version; // Save previous value
#version 1.0; // Change to 1.0 mode
... // Version 1.0 stuff goes here...
#version Temp_Vers; // Restore previous version

Future versions of POV-Ray may not continue to maintain full backward compatibility even with the#version

directive. We strongly encourage you to phase in current version syntax as much as possible.

2.2.6 Conditional Directives

POV-Ray allows a variety of language directives to implement conditional parsing of various sections of your
scene file. This is especially useful in describing the motion for animations but it has other uses as well. Also
available is a#while loop directive. You may nest conditional directives 200 levels deep.

The #if...#else...#end Directives

The simplest conditional directive is a traditional#if directive. It is of the form...

IF_DIRECTIVE:
#if (Cond) TOKENS... [#else TOKENS...] #end

TheTOKENSare any number of POV-Ray keyword, identifiers, or punctuation and(Cond) is a float expression
that is interpreted as a boolean value. The parentheses are required. The#end directive is required. A value of
0.0 is false and any non-zero value is true.

Note: extremely small values of about 1e-10 are considered zero in case of round off errors.

If Cond is true, the first group of tokens is parsed normally and the second set is skipped. If false, the first set
is skipped and the second set is parsed. For example:

#declare Which=1;
#if (Which)

78 Scene Description Language

box { 0, 1 }
#else

sphere { 0, 1 }
#end

The box is parsed and the sphere is skipped. Changing the value ofWhich to 0 means the box is skipped and
the sphere is used. The#else directive and second token group is optional. For example:

#declare Which=1;
#if (Which)

box { 0, 1 }
#end

Changing the value ofWhich to 0 means the box is removed.

At the beginning of the chapter ”Language Directives” it was stated that ”These directives can appear in almost
any place in the scene file....”. The following is an example where it will not work, it will confuse the parser:

#if(#if(yes) yes #end) #end

The #ifdef and #ifndef Directives

The #ifdef and #ifndef directive are similar to the#if directive however they are used to determine if an
identifier has been previously declared.

IFDEF_DIRECTIVE:
#ifdef (IDENTIFIER) TOKENS... [#else TOKENS...] #end

IFNDEF_DIRECTIVE:
#ifndef (IDENTIFIER) TOKENS... [#else TOKENS...] #end

If the IDENTIFIER exists then the first group of tokens is parsed normally and the second set is skipped. If
false, the first set is skipped and the second set is parsed. This is especially useful for replacing an undefined
item with a default. For example:

#ifdef (User_Thing)
// This section is parsed if the
// identifier "User_Thing" was
// previously declared
object{User_Thing} // invoke identifier

#else
// This section is parsed if the
// identifier "User_Thing" was not
// previously declared
box{<0,0,0>,<1,1,1>} // use a default

#end
// End of conditional part

The#ifndef directive works the opposite. The first group is parsed if the identifier isnot defined. As with the
#if directive, the#else clause is optional and the#end directive is required.

The #ifdef and#ifndef directives can be used to determine whether a specific element of an array has been
assigned.

#declare MyArray=array[10]
//#declare MyArray[0]=7;
#ifdef(MyArray[0])

2.2 Language Directives 79

#debug "first element is assigned\n"
#else

#debug "first element is not assigned\n"
#end

The #switch, #case, #range and #break Directives

A more powerful conditional is the#switch directive. The syntax is as follows...

SWITCH_DIRECTIVE:
#switch (Switch_Value) SWITCH_CLAUSE... [#else TOKENS...] #end

SWITCH_CLAUSE:
#case(Case_Value) TOKENS... [#break] |
#range(Low_Value , High_Value) TOKENS... [#break]

TheTOKENSare any number of POV-Ray keyword, identifiers, or punctuation and(SwitchValue) is a float
expression. The parentheses are required. The#end directive is required. TheSWITCHCLAUSEcomes in two
varieties. In the#case variety, the floatSwitchValueis compared to the floatCaseValue. If they are equal, the
condition is true.

Note: that values whose difference is less than 1e-10 are considered equal in case of round off errors.

In the#range variety,Low ValueandHigh Valueare floats separated by a comma and enclosed in parentheses.
If Low Value<= Switch Valueand SwitchValue<=High Valuethen the condition is true.

In either variety, if the clause’s condition is true, that clause’s tokens are parsed normally and parsing continues
until a #break, #else or #end directive is reached. If the condition is false, POV-Ray skips until another#case

or #range is found.

There may be any number of#case or #range clauses in any order you want. If a clause evaluates true but
no #break is specified, the parsing will fall through to the next#case or #range and that clause conditional
is evaluated. Hitting#break while parsing a successful section causes an immediate jump to the#end without
processing subsequent sections, even if a subsequent condition would also have been satisfied.

An optional#else clause may be the last clause. It is only executed if the clause before it was a false clause.

Here is an example:

#switch (VALUE)
#case (TEST_1)
// This section is parsed if VALUE=TEST_1

#break //First case ends
#case (TEST_2)
// This section is parsed if VALUE=TEST_2

#break //Second case ends
#range (LOW_1,HIGH_1)
// This section is parsed if (VALUE>=LOW_1)\&(VALUE<=HIGH_1)

#break //Third case ends
#range (LOW_2,HIGH_2)
// This section is parsed if (VALUE>=LOW_2)\&(VALUE<=HIGH_2)

#break //Fourth case ends
#else
// This section is parsed if no other case or
// range is true.

#end // End of conditional part

80 Scene Description Language

The #while...#end Directive

The#while directive is a looping feature that makes it easy to place multiple objects in a pattern or other uses.

WHILE_DIRECTIVE:
#while (Cond) TOKENS... #end

TheTOKENSare any number of POV-Ray keyword, identifiers, or punctuation marks which are thebodyof the
loop. The #while directive is followed by a float expression that evaluates to a boolean value. A value of 0.0 is
false and any non-zero value is true.

Note: extremely small values of about 1e-10 are considered zero in case of round off errors.

The parentheses around the expression are required. If the condition is true parsing continues normally until
an#end directive is reached. At the end, POV-Ray loops back to the#while directive and the condition is re-
evaluated. Looping continues until the condition fails. When it fails, parsing continues after the#end directive.

Note: it is possible for the condition to fail the first time and the loop is totally skipped. It is up to the user to
insure that something inside the loop changes so that it eventually terminates.

Here is a properly constructed loop example:

#declare Count=0;
#while (Count < 5)
object { MyObject translate x*3*Count }
#declare Count=Count+1;

#end

This example places five copies ofMyObject in a row spaced three units apart in the x-direction.

2.2.7 User Message Directives

With the addition of conditional and loop directives, the POV-Ray language has the potential to be more like an
actual programming language. This means that it will be necessary to have some way to see what is going on
when trying to debug loops and conditionals. To fulfill this need we have added the ability to print text messages
to the screen. You have a choice of five different text streams to use including the ability to generate a fatal error
if you find it necessary. Limited formatting is available for strings output by this method.

Text Message Streams

The syntax for a text message is any of the following:

TEXT_STREAM_DIRECTIVE:
#debug STRING | #error STRING | #warning STRING

WhereSTRINGis any valid string of text including string identifiers or functions which return strings. For
example:

#switch (clock*360)
#range (0,180)
#debug "Clock in 0 to 180 range\n"

#break
#range (180,360)
#debug "Clock in 180 to 360 range\n"

2.2 Language Directives 81

#break
#else
#warning "Clock outside expected range\n"
#warning concat("Value is:",str(clock*360,5,0),"\n")

#end

There are seven distinct text streams that POV-Ray uses for output. You may output only to three of them.
On some versions of POV-Ray, each stream is designated by a particular color. Text from these streams are
displayed whenever it is appropriate so there is often an intermixing of the text. The distinction is only important
if you choose to turn some of the streams off or to direct some of the streams to text files. On some systems
you may be able to review the streams separately in their own scroll-back buffer. See ”Directing Text Streams
to Files” for details on re-directing the streams to a text file.

Here is a description of how POV-Ray uses each stream. You may use them for whatever purpose you want
except note that use of the#error stream causes a fatal error after the text is displayed.

Debug: This stream displays debugging messages. It was primarily designed for developers but this and other
streams may also be used by the user to display messages from within their scene files.

Error: This stream displays fatal error messages. After displaying this text, POV-Ray will terminate. When the
error is a scene parsing error, you may be shown several lines of scene text that leads up to the error.

Warning: This stream displays warning messages during the parsing of scene files and other warnings. Despite
the warning, POV-Ray can continue to render the scene.

The #render and#statistsics could be accessed in previous versions. Their output is now redirected to the
#debug stream. The#banner and#status streams can not be accessed by the user.

Text Formatting

Some escape sequences are available to include non-printing control characters in your text. These sequences
are similar to those used in string literals in the C programming language. The sequences are:

"\a" Bell or alarm, 0x07
"\b" Backspace, 0x08
"\f" Form feed, 0x0C
"\n" New line (line feed) 0x0A
"\r" Carriage return 0x0D
"\t" Horizontal tab 0x09
"\uNNNN" Unicode character code NNNN 0xNNNN
"\v" Vertical tab 0x0B
"\0" Null 0x00
"\\" Backslash 0x5C
"\’" Single quote 0x27
"\"" Double quote 0x22

Table 2.6: All character escape sequences

For example:

#debug "This is one line.\nBut this is another"\n

82 Scene Description Language

Depending on what platform you are using, they may not be fully supported for console output. However they
will appear in any text file if you re-direct a stream to a file.

2.2.8 User Defined Macros

POV-Ray 3.1 introduced user defined macros with parameters. This feature, along with the ability to declare
#local variables, turned the POV-Ray Language into a fully functional programming language. Consequently,
it is now possible to write scene generation tools in POV-Ray’s own language that previously required external
utilities.

The #macro Directive

The syntax for declaring a macro is:

MACRO_DEFINITION:
#macro IDENTIFIER ([PARAM_IDENT] [, PARAM_IDENT]...) TOKENS... #end

WhereIDENTIFIER is the name of the macro andPARAMIDENTs are a list of zero or more formal param-
eter identifiers separated by commas and enclosed by parentheses. The parentheses are required even if no
parameters are specified.

TheTOKENSare any number of POV-Ray keyword, identifiers, or punctuation marks which are thebodyof
the macro. The body of the macro may contain almost any POV-Ray syntax items you desire. It is terminated
by the#end directive.

Note: any conditional directives such as#if...#end, #while...#end, etc. must be fully nested inside or outside
the macro so that the corresponding#end directives pair-up properly.

A macro must be declared before it is invoked. All macro names are global in scope and permanent in duration.
You may redefine a macro by another#macro directive with the same name. The previous definition is lost.
Macro names respond to#ifdef, #ifndef, and#undef directives. See ”The #ifdef and #ifndef Directives” and
”Destroying Identifiers with #undef”.

Invoking Macros

You invoke the macro by specifying the macro name followed by a list of zero or more actual parameters
enclosed in parentheses and separated by commas. The number of actual parameters must match the number
of formal parameters in the definition. The parentheses are required even if no parameters are specified. The
syntax is:

MACRO_INVOCATION:
MACRO_IDENTIFIER ([ACTUAL_PARAM] [, ACTUAL_PARAM]...)

ACTUAL_PARAM:
IDENTIFIER | RVALUE

An RVALUE is any value that can legally appear to the right of an equals sign in a#declare or #local dec-
laration. See ”Declaring identifiers” for information onRVALUEs. When the macro is invoked, a new local
symbol table is created. The actual parameters are assigned to formal parameter identifiers as local, temporary
variables. POV-Ray jumps to the body of the macro and continues parsing until the matching#end directive
is reached. There, the local variables created by the parameters are destroyed as well as any local identifiers

2.2 Language Directives 83

expressly created in the body of the macro. It then resumes parsing at the point where the macro was invoked. It
is as though the body of the macro was cut and pasted into the scene at the point where the macro was invoked.

Note: it is possible to invoke a macro that was declared in another file. This is quite normal and in fact is how
many ”plug-ins” work (such as the popular Lens Flare macro). However, be aware that calling a macro that was
declared in a file different from the one that it is being called from involves more overhead than calling one in
the same file.

This is because POV-Ray does not tokenize and store its language. Calling a macro in another file therefore
requires that the other file be opened and closed for each call. Normally, this overhead is inconsequential;
however, if you are calling the macro many thousands of times, it can cause significant delays. A future version
of the POV-Ray language will remove this problem.

Here is a simple macro that creates a window frame object when you specify the inner and outer dimensions.

#macro Make_Frame(OuterWidth,OuterHeight,InnerWidth,
InnerHeight,Depth)

#local Horz = (OuterHeight-InnerHeight)/2;
#local Vert = (OuterWidth-InnerWidth)/2;
difference {

box{
<0,0,0>,<OuterWidth,OuterHeight,Depth>

}
box{

<Vert,Horz,-0.1>,
<OuterWidth-Vert,OuterHeight-Horz,Depth+0.1>

}
}

#end
Make_Frame(8,10,7,9,1) //invoke the macro

In this example, the macro has five float parameters. The actual parameters (the values 8, 10, 7, 9, and 1) are
assigned to the five identifiers in the#macro formal parameter list. It is as though you had used the following
five lines of code.

#local OuterWidth = 8;
#local OuterHeight = 10;
#local InnerWidth, = 7;
#local InnerHeight = 9;
#local Depth = 1;

These five identifiers are stored in the same symbol table as any other local identifier such asHorz or Vert in
this example. The parameters and local variables are all destroyed when the#end statement is reached. See
”Identifier Name Collisions” for a detailed discussion of how local identifiers, parameters, and global identifiers
work when a local identifier has the same name as a previously declared identifier.

Are POV-Ray Macros a Function or a Macro?

POV-Ray macros are a strange mix of macros and functions. In traditional computer programming languages,
a macro works entirely by token substitution. The body of the routine is inserted into the invocation point by
simply copying the tokens and parsing them as if they had been cut and pasted in place. Such cut-and-paste
substitution is often calledmacro substitutionbecause it is what macros are all about. In this respect, POV-
Ray macros are exactly like traditional macros in that they use macro substitution for the body of the macro.

84 Scene Description Language

However traditional macros also use this cut-and-paste substitution strategy for parameters but POV-Ray does
not.

Suppose you have a macro in the C programming languageTypical Cmac(Param) and you invoke it as
Typical Cmac(else A=B). Anywhere thatParam appears in the macro body, the four tokenselse, A, =, and B

are substituted into the program code using a cut-and-paste operation. No type checking is performed because
anything is legal. The ability to pass an arbitrary group of tokens via a macro parameter is a powerful (and
sadly often abused) feature of traditional macros.

After careful deliberation, we have decided against this type of parameters for our macros. The reason is that
POV-Ray uses commas more frequently in its syntax than do most programming languages. Suppose you create
a macro that is designed to operate on one vector and two floats. It might be definedOurMac(V,F1,F2). If you
allow arbitrary strings of tokens and invoke a macro such asOurMac(<1,2,3>,4,5) then it is impossible to tell
if this is a vector and two floats or if its 5 parameters with the two tokens< and1 as the first parameter. If we
design the macro to accept 5 parameters then we cannot invoke it like this...OurMac(MyVector,4,5).

Function parameters in traditional programming languages do not use token substitution to pass values. They
create temporary, local variables to store parameters that are either constant values or identifier references which
are in effect a pointer to a variable. POV-Ray macros use this function-like system for passing parameters to
its macros. In our exampleOurMac(<1,2,3>,4,5), POV-Ray sees the< and knows it must be the start of a
vector. It parses the whole vector expression and assigns it to the first parameter exactly as though you had used
the statement#local V=<1,2,3>;.

Although we say that POV-Ray parameters are more like traditional function parameters than macro parameters,
there still is one difference. Most languages require you to declare the type of each parameter in the definition
before you use it but POV-Ray does not. This should be no surprise because most languages require you to
declare the type of any identifier before you use it but POV-Ray does not. This means that if you pass the wrong
type value in a POV-Ray macro parameter, it may not generate an error until you reference the identifier in
the macro body. No type checking is performed as the parameter is passed. So in this very limited respect,
POV-Ray parameters are somewhat macro-like but are mostly function-like.

Returning a Value Like a Function

POV-Ray macros have a variety of uses. Like most macros, they provide a parameterized way to insert arbitrary
code into a scene file. However most POV-Ray macros will be used like functions or procedures in a traditional
programming language. Macros are designed to fill all of these roles.

When the body of a macro consists of statements that create an entire item such as an object, texture, etc.
then the macro acts like a function which returns a single value. TheMake Frame macro example in the section
”Invoking Macros” above is such a macro which returns a value that is an object. Here are some examples of
how you might invoke it.

union { //make a union of two objects
object{ Make_Frame(8,10,7,9,1) translate 20*x}
object{ Make_Frame(8,10,7,9,1) translate -20*x}

}
#declare BigFrame = object{ Make_Frame(8,10,7,9,1)}
#declare SmallFrame = object{ Make_Frame(5,4,4,3,0.5)}

Because no type checking is performed on parameters and because the expression syntax for floats, vectors, and
colors is identical, you can create clever macros which work on all three. See the sample sceneMACRO3.POV

which includes this macro to interpolate values.

2.2 Language Directives 85

// Define the macro. Parameters are:
// T: Middle value of time
// T1: Initial time
// T2: Final time
// P1: Initial position (may be float, vector or color)
// P2: Final position (may be float, vector or color)
// Result is a value between P1 and P2 in the same proportion
// as T is between T1 and T2.
#macro Interpolate(T,T1,T2,P1,P2)

(P1+(T1+T/(T2-T1))*(P2-P1))
#end

You might invoke it withP1 andP2 as floats, vectors, or colors as follows.

sphere{
Interpolate(I,0,15,<2,3,4>,<9,8,7>), //center location is vector
Interpolate(I,0,15,3.0,5.5) //radius is float
pigment {

color Interpolate(I,0,15,rgb<1,1,0>,rgb<0,1,1>)
}

}

As the float valueI varies from 0 to 15, the location, radius, and color of the sphere vary accordingly.

There is a danger in using macros as functions. In a traditional programming language function, the result to be
returned is actually assigned to a temporary variable and the invoking code treats it as a variable of a given type.
However macro substitution may result in invalid or undesired syntax. The definition of the macroInterpolate

above has an outermost set of parentheses. If those parentheses are omitted, it will not matter in the examples
above, but what if you do this...

#declare Value = Interpolate(I,0,15,3.0,5.5)*15;

The end result is as if you had done...

#declare Value = P1+(T1+T/(T2-T1))*(P2-P1) * 15;

which is syntactically legal but not mathematically correct because theP1 term is not multiplied. The parenthe-
ses in the original example solves this problem. The end result is as if you had done...

#declare Value = (P1+(T1+T/(T2-T1))*(P2-P1)) * 15;

which is correct.

Returning Values Via Parameters

Sometimes it is necessary to have a macro return more than one value or you may simply prefer to return a value
via a parameter as is typical in traditional programming language procedures. POV-Ray macros are capable of
returning values this way. The syntax for POV-Ray macro parameters says that the actual parameter may be an
IDENTIFIERor an RVALUE. Values may only be returned via a parameter if the parameter is anIDENTIFIER.
Parameters that areRVALUESare constant values that cannot return information. AnRVALUEis anything that
legally may appear to the right of an equals sign in a#declare or #local directive. For example consider the
following trivial macro which rotates an object about the x-axis.

#macro Turn_Me(Stuff,Degrees)
#declare Stuff = object{Stuff rotate x*Degrees}

86 Scene Description Language

#end

This attempts to re-declare the identifierStuff as the rotated version of the object. However the macro might
be invoked with Turn Me(box{0,1},30) which uses a box object as anRVALUEparameter. This will not work
because the box is not an identifier. You can however do this

#declare MyObject=box{0,1}
Turn_Me(MyObject,30)

The identifierMyObject now contains the rotated box.

See ”Identifier Name Collisions” for a detailed discussion of how local identifiers, parameters, and global
identifiers work when a local identifier has the same name as a previously declared identifier.

While it is obvious thatMyObject is an identifier and box{0,1} is not, it should be noted thatTurn -

Me(object{MyObject},30) will not work because object{MyObject} is considered an object statement and is
not a pure identifier. This mistake is more likely to be made with float identifiers versus float expressions.
Consider these examples.

#declare Value=5.0;
MyMacro(Value) //MyMacro can change the value of Value but...
MyMacro(+Value) //This version and the rest are not lone
MyMacro(Value+0.0) // identifiers. They are float expressions
MyMacro(Value*1.0) // which cannot be changed.

Although all four invocations ofMyMacro are passed the value 5.0, only the first may modify the value of the
identifier.

Chapter 3

Scene Settings

3.1 Camera

The camera definition describes the position, projection type and properties of the camera viewing the scene.
Its syntax is:

CAMERA:
camera{ [CAMERA_ITEMS...] }

CAMERA_ITEM:
CAMERA_TYPE | CAMERA_VECTOR | CAMERA_MODIFIER |
CAMERA_IDENTIFIER

CAMERA_TYPE:
perspective | orthographic | fisheye | ultra_wide_angle |
omnimax | panoramic | cylinder CylinderType | spherical

CAMERA_VECTOR:
location <Location> | right <Right> | up <Up> |
direction <Direction> | sky <Sky>

CAMERA_MODIFIER:
angle HORIZONTAL [VERTICAL] | look_at <Look_At> |
blur_samples Num_of_Samples | aperture Size |
focal_point <Point> | confidence Blur_Confidence |
variance Blur_Variance | NORMAL | TRANSFORMATION

Camera default values:

DEFAULT CAMERA:
camera {

perspective
location <0,0,0>
direction <0,0,1>
right 1.33*x
up y
sky <0,1,0>

}

CAMERA TYPE: perspective

88 Scene Settings

angle : \˜{}67.380 (direction_length=0.5*
right_length/tan(angle/2))

confidence : 0.9 (90\%)
direction : <0,0,1>
focal_point: <0,0,0>
location : <0,0,0>
look_at : z
right : 1.33*x
sky : <0,1,0>
up : y
variance : 1/128

Depending on the projection type zero or more of the parameters are required:

• If no camera is specified the default camera is used.

• If no projection type is given the perspective camera will be used (pinhole camera).

• TheCAMERATYPEhas to be the first item in the camera statement.

• OtherCAMERAITEMsmay legally appear in any order.

• For other than the perspective camera, the minimum that has to be specified is the CAMERATYPE, the
cylindrical camera also requires theCAMERATYPEto be followed by a float.

• The Orthographic camera has two ’modes’. For the pure orthographic projection up or right have to be
specified. For an orthographic camera, with the same area of view as a perspective camera at the plane
which goes through the lookat point, the angle keyword has to be use. A value for the angle is optional.

• All other CAMERAITEMs are taken from the default camera, unless they are specified differently.

3.1.1 Placing the Camera

The POV-Ray camera has ten different models, each of which uses a different projection method to project the
scene onto your screen. Regardless of the projection type all cameras use thelocation, right, up, direction,
and keywords to determine the location and orientation of the camera. The type keywords and these four vectors
fully define the camera. All other camera modifiers adjust how the camera does its job. The meaning of these
vectors and other modifiers differ with the projection type used. A more detailed explanation of the camera
types follows later. In the sub-sections which follows, we explain how to place and orient the camera by the
use of these four vectors and thesky and look at modifiers. You may wish to refer to the illustration of the
perspective camera below as you read about these vectors.

Location and Look At

Under many circumstances just two vectors in the camera statement are all you need to position the camera:
location andlook at vectors. For example:

camera {
location <3,5,-10>
look_at <0,2,1>

}

3.1 Camera 89

Figure 3.1: The perspective camera.

The location is simply the x, y, z coordinates of the camera. The camera can be located anywhere in the ray-
tracing universe. The default location is<0,0,0>. Thelook at vector tells POV-Ray to pan and tilt the camera
until it is looking at the specified x, y, z coordinates. By default the camera looks at a point one unit in the
z-direction from the location.

Thelook at modifier should almost always be the last item in the camera statement. If other camera items are
placed after thelook at vector then the camera may not continue to look at the specified point.

The Sky Vector

Normally POV-Ray pans left or right by rotating about the y-axis until it lines up with thelook at point and
then tilts straight up or down until the point is met exactly. However you may want to slant the camera sideways
like an airplane making a banked turn. You may change the tilt of the camera using thesky vector. For example:

camera {
location <3,5,-10>
sky <1,1,0>
look_at <0,2,1>

}

This tells POV-Ray to roll the camera until the top of the camera is in line with the sky vector. Imagine that the
sky vector is an antenna pointing out of the top of the camera. Then it uses thesky vector as the axis of rotation
left or right and then to tilt up or down in line with thesky until pointing at thelook at point. In effect you are
telling POV-Ray to assume that the sky isn’t straight up.

The sky vector does nothing on its own. It only modifies the way thelook at vector turns the camera. The
default value is sky<0,1,0>.

Angles

The angle keyword followed by a float expression specifies the (horizontal) viewing angle in degrees of the
camera used. Even though it is possible to use thedirection vector to determine the viewing angle for the
perspective camera it is much easier to use theangle keyword.

90 Scene Settings

When you specify theangle, POV-Ray adjusts the length of thedirection vector accordingly. The formula
used is direction length = 0.5 * right length / tan(angle / 2)where right length is the length of theright
vector. You should therefore specify thedirection and right vectors before theangle keyword. The right

vector is explained in the next section.

There is no limitation to the viewing angle except for the perspective projection. If you choose viewing angles
larger than 360 degrees you will see repeated images of the scene (the way the repetition takes place depends
on the camera). This might be useful for special effects.

Thespherical camera has the option to also specify a vertical angle. If not specified it defaults to the horizontal
angle/2

For example if you render an image with a 2:1 aspect ratio and map it to a sphere using spherical mapping,
it will recreate the scene. Another use is to map it onto an object and if you specify transformations for the
object before the texture, say in an animation, it will look like reflections of the environment (sometimes called
environment mapping).

The Direction Vector

You will probably not need to explicitly specify or change the cameradirection vector but it is described here
in case you do. It tells POV-Ray the initial direction to point the camera before moving it with thelook at or
rotate vectors (the default value isdirection<0,0,1>). It may also be used to control the (horizontal) field
of view with some types of projection. The length of the vector determines the distance of the viewing plane
from the camera’s location. A shorterdirection vector gives a wider view while a longer vector zooms in for
close-ups. In early versions of POV-Ray, this was the only way to adjust field of view. However zooming should
now be done using the easier to useangle keyword.

If you are using theultra wide angle, panoramic, or cylindrical projection you should use a unit length
direction vector to avoid strange results. The length of thedirection vector does not matter when using the
orthographic, fisheye, or omnimax projection types.

Up and Right Vectors

The primary purpose of theup andright vectors is to tell POV-Ray the relative height and width of the view
screen. The default values are:

right 4/3*x
up y

In the defaultperspective camera, these two vectors also define the initial plane of the view screen before
moving it with the look at or rotate vectors. The length of theright vector (together with thedirection
vector) may also be used to control the (horizontal) field of view with some types of projection. Thelook at

modifier changes both theup andright vectors. Theangle calculation depends on theright vector.

Most camera types treat theup and right vectors the same as theperspective type. However several make
special use of them. In theorthographic projection: The lengths of theup andright vectors set the size of the
viewing window regardless of thedirection vector length, which is not used by the orthographic camera.

When usingcylindrical projection: types 1 and 3, the axis of the cylinder lies along theup vector and the
width is determined by the length ofright vector or it may be overridden with theangle vector. In type 3 the
up vector determines how many units high the image is. For example if you haveup 4*y on a camera at the

3.1 Camera 91

origin. Only points from y=2 to y=-2 are visible. All viewing rays are perpendicular to the y-axis. For type 2
and 4, the cylinder lies along theright vector. Viewing rays for type 4 are perpendicular to theright vector.

Note: that theup, right, and direction vectors should always remain perpendicular to each other or the image
will be distorted. If this is not the case a warning message will be printed. The vista buffer will not work for
non-perpendicular camera vectors.

Aspect Ratio

Together theup andright vectors define theaspect ratio(height to width ratio) of the resulting image. The
default valuesup<0,1,0> and right<1.33,0,0> result in an aspect ratio of 4 to 3. This is the aspect ratio of
a typical computer monitor. If you wanted a tall skinny image or a short wide panoramic image or a perfectly
square image you should adjust theup andright vectors to the appropriate proportions.

Most computer video modes and graphics printers use perfectly square pixels. For example Macintosh displays
and IBM SVGA modes 640x480, 800x600 and 1024x768 all use square pixels. When your intended viewing
method uses square pixels then the width and height you set with theWidth andHeight options or+W or +H
switches should also have the same ratio as theup andright vectors.

Note: 640/480 = 4/3 so the ratio is proper for this square pixel mode.

Not all display modes use square pixels however. For example IBM VGA mode 320x200 and Amiga 320x400
modes do not use square pixels. These two modes still produce a 4/3 aspect ratio image. Therefore images
intended to be viewed on such hardware should still use 4/3 ratio on theirup andright vectors but the pixel
settings will not be 4/3.

For example:

camera {
location <3,5,-10>
up <0,1,0>
right <1,0,0>
look_at <0,2,1>

}

This specifies a perfectly square image. On a square pixel display like SVGA you would use pixel settings such
as+W480 +H480 or +W600 +H600. However on the non-square pixel Amiga 320x400 mode you would want to
use values of+W240 +H400 to render a square image.

The bottom line issue is this: theup and right vectors should specify the artist’s intended aspect ratio for the
image and the pixel settings should be adjusted to that same ratio for square pixels and to an adjusted pixel
resolution for non-square pixels. Theup andright vectors shouldnotbe adjusted based on non-square pixels.

Handedness

Theright vector also describes the direction to the right of the camera. It tells POV-Ray where the right side of
your screen is. The sign of theright vector can be used to determine the handedness of the coordinate system
in use. The default value is: right<1.33,0,0>. This means that the +x-direction is to the right. It is called
a left-handedsystem because you can use your left hand to keep track of the axes. Hold out your left hand
with your palm facing to your right. Stick your thumb up. Point straight ahead with your index finger. Point
your other fingers to the right. Your bent fingers are pointing to the +x-direction. Your thumb now points into
+y-direction. Your index finger points into the +z-direction.

92 Scene Settings

To use a right-handed coordinate system, as is popular in some CAD programs and other ray-tracers, make the
same shape using your right hand. Your thumb still points up in the +y-direction and your index finger still
points forward in the +z-direction but your other fingers now say the +x-direction is to the left. That means that
the right side of your screen is now in the -x-direction. To tell POV-Ray to act like this you can use a negative
x value in the right vector such as: right<-1.33,0,0>. Since having x values increasing to the left does
not make much sense on a 2D screen you now rotate the whole thing 180 degrees around by using a positive z
value in your camera’s location. You end up with something like this.

camera {
location <0,0,10>
up <0,1,0>
right <-1.33,0,0>
look_at <0,0,0>

}

Now when you do your ray-tracer’s aerobics, as explained in the section ”Understanding POV-Ray’s Coordinate
System”, you use your right hand to determine the direction of rotations.

In a two dimensional grid, x is always to the right and y is up. The two versions of handedness arise from the
question of whether z points into the screen or out of it and which axis in your computer model relates to up in
the real world.

Architectural CAD systems, like AutoCAD, tend to use theGod’s Eyeorientation that the z-axis is the elevation
and is the model’s up direction. This approach makes sense if you are an architect looking at a building blueprint
on a computer screen. z means up, and it increases towards you, with x and y still across and up the screen.
This is the basic right handed system.

Stand alone rendering systems, like POV-Ray, tend to consider you as a participant. You are looking at the
screen as if you were a photographer standing in the scene. The up direction in the model is now y, the same
as up in the real world and x is still to the right, so z must be depth, which increases away from you into the
screen. This is the basic left handed system.

Transforming the Camera

The various transformations such astranslate and rotate modifiers can re-position the camera once you have
defined it. For example:

camera {
location < 0, 0, 0>
direction < 0, 0, 1>
up < 0, 1, 0>
right < 1, 0, 0>
rotate <30, 60, 30>
translate < 5, 3, 4>

}

In this example, the camera is created, then rotated by 30 degrees about the x-axis, 60 degrees about the y-axis
and 30 degrees about the z-axis, then translated to another point in space.

3.1 Camera 93

3.1.2 Types of Projection

The following list explains the different projection types that can be used with the camera. The most common
types are the perspective and orthographic projections. TheCAMERATYPEshould be thefirst item in acamera
statement. If none is specified, theperspective camera is the default.

You should note that the vista buffer can only be used with the perspective and orthographic camera.

Perspective projection

Theperspective keyword specifies the default perspective camera which simulates the classic pinhole camera.
The (horizontal) viewing angle is either determined by the ratio between the length of thedirection vector and
the length of theright vector or by the optional keywordangle, which is the preferred way. The viewing angle
has to be larger than 0 degrees and smaller than 180 degrees. See the figure in ”Placing the Camera” for the
geometry of the perspective camera.

Orthographic projection

The orthographic camera offers two modes of operation:

The pureorthographic projection. This projection uses parallel camera rays to create an image of the scene.
The area of view is determined by the lengths of theright andup vectors. One of these has to be specified, they
are not taken from the default camera. If omitted the second method of the camera is used.

If, in a perspective camera, you replace theperspective keyword byorthographic and leave all other param-
eters the same, you will get an orthographic view with the same image area, i.e. the size of the image is the
same. The same can be achieved by adding theangle keyword to an orthographic camera. A value for the angle
is optional. So this second mode is active if no up and right are within the camera statement, or when the angle
keyword is within the camera statement.

You should be aware though that the visible parts of the scene change when switching from perspective to
orthographic view. As long as all objects of interest are near the lookat point they will be still visible if the
orthographic camera is used. Objects farther away may get out of view while nearer objects will stay in view.

If objects are too close to the camera location they may disappear. Too close here means, behind the orthographic
camera projection plane (the plane that goes through thelook at point).

Fisheye projection

This is a spherical projection. The viewing angle is specified by theangle keyword. An angle of 180 degrees
creates the ”standard” fisheye while an angle of 360 degrees creates a super-fisheye (”I-see-everything-view”).
If you use this projection you should get a circular image. If this is not the case, i.e. you get an elliptical image,
you should read ”Aspect Ratio”.

Ultra wide angle projection

This projection is somewhat similar to the fisheye but it projects the image onto a rectangle instead of a circle.
The viewing angle can be specified using theangle keyword.

94 Scene Settings

Omnimax projection

The omnimax projection is a 180 degrees fisheye that has a reduced viewing angle in the vertical direction. In
reality this projection is used to make movies that can be viewed in the dome-like Omnimax theaters. The image
will look somewhat elliptical. Theangle keyword is not used with this projection.

Panoramic projection

This projection is called ”cylindrical equirectangular projection”. It overcomes the degeneration problem of the
perspective projection if the viewing angle approaches 180 degrees. It uses a type of cylindrical projection to
be able to use viewing angles larger than 180 degrees with a tolerable lateral-stretching distortion. Theangle

keyword is used to determine the viewing angle.

Cylindrical projection

Using this projection the scene is projected onto a cylinder. There are four different types of cylindrical projec-
tions depending on the orientation of the cylinder and the position of the viewpoint. A float value in the range 1
to 4 must follow the cylinder keyword. The viewing angle and the length of theup or right vector determine
the dimensions of the camera and the visible image. The camera to use is specified by a number. The types are:

1. vertical cylinder, fixed viewpoint

2. horizontal cylinder, fixed viewpoint

3. vertical cylinder, viewpoint moves along the cylinder’s axis

4. horizontal cylinder, viewpoint moves along the cylinder’s axis

Spherical projection

Using this projection the scene is projected onto a sphere.
Syntax:

camera {
spherical
[angle HORIZONTAL [VERTICAL]]
[CAMERA_ITEMS...]

}

The first value afterangle sets the horizontal viewing angle of the camera. With the optional second value,
the vertical viewing angle is set: both in degrees. If the vertical angle is not specified, it defaults to half the
horizontal angle.

The spherical projection is similar to the fisheye projection, in that the scene is projected on a sphere. But unlike
the fisheye camera, it uses rectangular coordinates instead of polar coordinates; in this it works the same way as
spherical mapping (maptype 1).

This has a number of uses. Firstly, it allows an image rendered with the spherical camera to be mapped on a
sphere without distortion (with the fisheye camera, you first have to convert the image from polar to rectangular
coordinates in some image editor). Also, it allows effects such as ”environment mapping”, often used for
simulating reflections in scanline renderers.

3.1 Camera 95

3.1.3 Focal Blur

POV-Ray can simulate focal depth-of-field by shooting a number of sample rays from jittered points within each
pixel and averaging the results.

To turn on focal blur, you must specify theaperture keyword followed by a float value which determines the
depth of the sharpness zone. Large apertures give a lot of blurring, while narrow apertures will give a wide zone
of sharpness.

Note: while this behaves as a real camera does, the values for aperture are purely arbitrary and are not related
to f -stops.

You must also specify theblur samples keyword followed by an integer value specifying the maximum number
of rays to use for each pixel. More rays give a smoother appearance but is slower. By default no focal blur is
used, i. e. the default aperture is 0 and the default number of samples is 0.

The center of thezone of sharpnessis specified by thefocal point vector. Thezone of sharpnessis a plane
through thefocal point and is parallel to the camera. Objects close to this plane of focus are in focus and those
farther from that plane are more blurred. The default value isfocal point<0,0,0>.

Althoughblur samples specifies the maximum number of samples, there is an adaptive mechanism that stops
shooting rays when a certain degree of confidence has been reached. At that point, shooting more rays would
not result in a significant change.

The confidence and variance keywords are followed by float values to control the adaptive function. The
confidence value is used to determine when the samples seem to beclose enoughto the correct color. The
variance value specifies an acceptable tolerance on the variance of the samples taken so far. In other words, the
process of shooting sample rays is terminated when the estimated color value is very likely (as controlled by the
confidence probability) near the real color value.

Since theconfidence is a probability its values can range from 0 to<1 (the default is 0.9, i. e. 90%). The value
for the variance should be in the range of the smallest displayable color difference (the default is 1/128). If 1
is used POV-Ray will issue a warning and then use the default instead.

Rendering with the default settings can result in quite grainy images. This can be improved by using a lower
variance. A value of 1/10000 gives a fairly good result (with default confidence and blursamples set to
something like 100) without being unacceptably slow.

Larger confidence values will lead to more samples, slower traces and better images. The same holds for
smallervariance thresholds.

3.1.4 Camera Ray Perturbation

The optionalnormal may be used to assign a normal pattern to the camera. For example:

camera{
location Here
look_at There
normal { bumps 0.5 }

}

All camera rays will be perturbed using this pattern. The image will be distorted as though you were looking
through bumpy glass or seeing a reflection off of a bumpy surface. This lets you create special effects. See the
animated scenecamera2.pov for an example. See ”Normal” for information on normal patterns.

96 Scene Settings

3.1.5 Camera Identifiers

Camera identifiers may be declared to make scene files more readable and to parameterize scenes so that
changing a single declaration changes many values. You may declare several camera identifiers if you wish.
This makes it easy to quickly change cameras. An identifier is declared as follows.

CAMERA_DECLARATION:
#declare IDENTIFIER = CAMERA |
#local IDENTIFIER = CAMERA

WhereIDENTIFIER is the name of the identifier up to 40 characters long andCAMERAis any valid camera
statement. See ”#declare vs. #local” for information on identifier scope. Here is an example...

#declare Long_Lens = camera {
location -z*100
look_at <0,0,0>
angle 3

}

#declare Short_Lens = camera {
location -z*50
look_at <0,0,0>
angle 15

}

camera {
Long_Lens // edit this line to change lenses
translate <33,2,0>

}

Note: only camera transformations can be added to an already declared camera. Camera behaviour changing
keywords are not allowed, as they are needed in an earlier stage for resolving the keyword order dependencies.

3.2 Atmospheric Effects

Atmospheric effects are a loosely-knit group of features that affect the background and/or the atmosphere
enclosing the scene. POV-Ray includes the ability to render a number of atmospheric effects, such as fog,
haze, mist, rainbows and skies.

3.2.1 Atmospheric Media

Atmospheric effects such as fog, dust, haze, or visible gas may be simulated by amedia statement specified in
the scene but not attached to any object. All areas not inside a non-hollow object in the entire scene. A very
simple approach to add fog to a scene is explained in section ”Fog” however this kind of fog does not interact
with any light sources likemedia does. It will not show light beams or other effects and is therefore not very
realistic.

The atmosphere media effect overcomes some of the fog’s limitations by calculating the interaction between
light and the particles in the atmosphere using volume sampling. Thus shafts of light beams will become visible
and objects will cast shadows onto smoke or fog.

3.2 Atmospheric Effects 97

Note: POV-Ray cannot sample media along an infinitely long ray. The ray must be finite in order to be possible
to sample. This means that sampling media is only possible for rays that hit an object. So no atmospheric media
will show up againstbackground or sky sphere.
Another way of being able to sample media is using spotlights because also in this case the ray is not infinite (it
is sampled only inside the spotlight cone).

With spotlights you will be able to create the best results because their cone of light will become visible.
Pointlights can be used to create effects like street lights in fog. Lights can be made to not interact with the
atmosphere by addingmedia interaction off to the light source. They can be used to increase the overall light
level of the scene to make it look more realistic.

Complete details onmedia are given in the section ”Media”. Earlier versions of POV-Ray used anatmosphere

statement for atmospheric effects but that system was incompatible with the old objecthalo system. So
atmosphere has been eliminated and replaced with a simpler and more powerful media feature. The user now
only has to learn onemedia system for either atmospheric or object use.

If you only want media effects in a particular area, you should use object media rather than only relying upon the
media pattern. In general it will be faster and more accurate because it only calculates inside the constraining
object.

Note: the atmosphere feature will not work if the camera is inside a non-hollow object (see section ”Empty and
Solid Objects” for a detailed explanation).

3.2.2 Background

A background color can be specified if desired. Any ray that does not hit an object will be colored with this
color. The default background is black. The syntax forbackground is:

BACKGROUND:
background {COLOR}

3.2.3 Fog

If it is not necessary for light beams to interact with atmospheric media, thenfog may be a faster way to simulate
haze or fog. This feature artificially adds color to every pixel based on the distance the ray has traveled. The
syntax for fog is:

FOG:
fog { [FOG_IDENTIFIER] [FOG_ITEMS...] }

FOG_ITEMS:
fog_type Fog_Type | distance Distance | COLOR |
turbulence <Turbulence> | turb_depth Turb_Depth |
omega Omega | lambda Lambda | octaves Octaves |
fog_offset Fog_Offset | fog_alt Fog_Alt |
up <Fog_Up> | TRANSFORMATION

Fog default values:

lambda : 2.0
fog_type : 1
fog_offset : 0.0

98 Scene Settings

fog_alt : 0.0
octaves : 6
omega : 0.5
turbulence : <0,0,0>
turb_depth : 0.5
up : <0,1,0>

Currently there are two fog types, the defaultfog type 1 is a constant fog andfog type 2 is ground fog. The
constant fog has a constant density everywhere while the ground fog has a constant density for all heights below
a given point on the up axis and thins out along this axis.

The color of a pixel with an intersection depthd is calculated by

PIXEL COLOR = exp(-d/D) * OBJECTCOLOR + (1-exp(-d/D)) * FOGCOLOR

whereD is the specified value of the required fogdistance keyword. At depth 0 the final color is the object’s
color. If the intersection depth equals the fog distance the final color consists of 64% of the object’s color and
36% of the fog’s color.

Note: for this equation, a distance of zero is undefined. In practice, povray will treat this value as ”fog is off”.
To use an extremely thick fog, use a small nonzero number such as 1e-6 or 1e-10.

For ground fog, the height below which the fog has constant density is specified by thefog offset keyword.
Thefog alt keyword is used to specify the rate by which the fog fades away. The default values for both are
0.0 so be sure to specify them if ground fog is used. At an altitude ofFog Offset+Fog Alt the fog has a
density of 25%. The density of the fog at height less than or equal toFog Offsetis 1.0 and for height larger than
thanFog Offsetis calculated by:

1/(1 + (y - Fog Offset) / Fog Alt) ˆ2

The total density along a ray is calculated by integrating from the height of the starting point to the height of the
end point.

The optionalup vector specifies a direction pointing up, generally the same as the camera’s up vector. All
calculations done during the ground fog evaluation are done relative to this up vector, i. e. the actual heights
are calculated along this vector. The up vector can also be modified using any of the known transformations
described in ”Transformations”. Though it may not be a good idea to scale the up vector - the results are hardly
predictable - it is quite useful to be able to rotate it. You should also note that translations do not affect the up
direction (and thus do not affect the fog).

The required fog color has three purposes. First it defines the color to be used in blending the fog and the
background. Second it is used to specify a translucency threshold. By using a transmittance larger than zero
one can make sure that at least that amount of light will be seen through the fog. With a transmittance of 0.3
you will see at least 30% of the background. Third it can be used to make a filtering fog. With a filter value
larger than zero the amount of background light given by the filter value will be multiplied with the fog color.
A filter value of 0.7 will lead to a fog that filters 70% of the background light and leaves 30% unfiltered.

Fogs may be layered. That is, you can apply as many layers of fog as you like. Generally this is most effective
if each layer is a ground fog of different color, altitude and with different turbulence values. To use multiple
layers of fogs, just add all of them to the scene.

You may optionally stir up the fog by adding turbulence. Theturbulence keyword may be followed by a float
or vector to specify an amount of turbulence to be used. Theomega, lambda and octaves turbulence parameters
may also be specified. See section ”Pattern Modifiers” for details on all of these turbulence parameters.

3.2 Atmospheric Effects 99

Additionally the fog turbulence may be scaled along the direction of the viewing ray using theturb depth

amount. Typical values are from 0.0 to 1.0 or more. The default value is 0.5 but any float value may be used.

Note: the fog feature will not work if the camera is inside a non-hollow object (see section ”Empty and Solid
Objects” for a detailed explanation).

3.2.4 Sky Sphere

The sky sphere is used create a realistic sky background without the need of an additional sphere to simulate
the sky. Its syntax is:

SKY_SPHERE:
sky_sphere { [SKY_SPHERE_IDENTIFIER] [SKY_SPHERE_ITEMS...] }

SKY_SPHERE_ITEM:
PIGMENT | TRANSFORMATION

The sky sphere can contain several pigment layers with the last pigment being at the top, i. e. it is evaluated last,
and the first pigment being at the bottom, i. e. it is evaluated first. If the upper layers contain filtering and/or
transmitting components lower layers will shine through. If not lower layers will be invisible.

The sky sphere is calculated by using the direction vector as the parameter for evaluating the pigment patterns.
This leads to results independent from the view point which pretty good models a real sky where the distance
to the sky is much larger than the distances between visible objects.

If you want to add a nice color blend to your background you can easily do this by using the following example.

sky_sphere {
pigment {

gradient y
color_map {

[0.5 color CornflowerBlue]
[1.0 color MidnightBlue]

}
scale 2
translate -1

}
}

This gives a soft blend fromCornflowerBlue at the horizon toMidnightBlue at the zenith. The scale and translate
operations are used to map the direction vector values, which lie in the range from<-1, -1, -1> to <1, 1, 1>,
onto the range from<0, 0, 0> to <1, 1, 1>. Thus a repetition of the color blend is avoided for parts of the sky
below the horizon.

In order to easily animate a sky sphere you can transform it using the usual transformations described in
”Transformations”. Though it may not be a good idea to translate or scale a sky sphere - the results are hardly
predictable - it is quite useful to be able to rotate it. In an animation the color blendings of the sky can be made
to follow the rising sun for example.

Note: only one sky sphere can be used in any scene. It also will not work as you might expect if you use camera
types like the orthographic or cylindrical camera. The orthographic camera uses parallel rays and thus you will
only see a very small part of the sky sphere (you will get one color skies in most cases). Reflections in curved
surface will work though, e. g. you will clearly see the sky in a mirrored ball.

100 Scene Settings

3.2.5 Rainbow

Rainbows are implemented using fog-like, circular arcs. Their syntax is:

RAINBOW:
rainbow { [RAINBOW_IDENTIFIER] [RAINBOW_ITEMS...] }

RAINBOW_ITEM:
direction <Dir> | angle Angle | width Width |
distance Distance | COLOR_MAP | jitter Jitter | up <Up> |
arc_angle Arc_Angle | falloff_angle Falloff_Angle

Rainbow default values:

arc_angle : 180.0
falloff_angle : 180.0
jitter : 0.0
up : y

The requireddirection vector determines the direction of the (virtual) light that is responsible for the rainbow.
Ideally this is an infinitely far away light source like the sun that emits parallel light rays. The position and
size of the rainbow are specified by the requiredangle andwidth keywords. To understand how they work you
should first know how the rainbow is calculated.

For each ray the angle between the rainbow’s direction vector and the ray’s direction vector is calculated. If
this angle lies in the interval fromAngle-Width/2 to Angle+Width/2 the rainbow is hit by the ray. The
color is then determined by using the angle as an index into the rainbow’s colormap. After the color has been
determined it will be mixed with the background color in the same way like it is done for fogs.

Thus the angle and width parameters determine the angles under which the rainbow will be seen. The optional
jitter keyword can be used to add random noise to the index. This adds some irregularity to the rainbow that
makes it look more realistic.

The requireddistance keyword is the same like the one used with fogs. Since the rainbow is a fog-like effect
it is possible that the rainbow is noticeable on objects. If this effect is not wanted it can be avoided by using a
large distance value. By default a sufficiently large value is used to make sure that this effect does not occur.

Thecolor map statement is used to assign a color map that will be mapped onto the rainbow. To be able to create
realistic rainbows it is important to know that the index into the color map increases with the angle between the
ray’s and rainbow’s direction vector. The index is zero at the innermost ring and one at the outermost ring. The
filter and transmittance values of the colors in the color map have the same meaning as the ones used with fogs
(see section ”Fog”).

The default rainbow is a 360 degree arc that looks like a circle. This is no problem as long as you have a ground
plane that hides the lower, non-visible part of the rainbow. If this is not the case or if you do not want the full
arc to be visible you can use the optional keywordsup, arc angle andfalloff angle to specify a smaller arc.

Thearc angle keyword determines the size of the arc in degrees (from 0 to 360 degrees). A value smaller than
360 degrees results in an arc that abruptly vanishes. Since this does not look nice you can use thefalloff angle

keyword to specify a region in which the rainbow will smoothly blend into the background making it vanish
softly. The falloff angle has to be smaller or equal to the arc angle.

The up keyword determines were the zero angle position is. By changing this vector you can rotate the rainbow
about its direction. You should note that the arc goes from-Arc Angle/2to +Arc Angle/2. The soft regions go
from -Arc Angle/2to -Falloff Angle/2and from+Falloff Angle/2to +Arc Angle/2.

3.3 Global Settings 101

The following example generates a 120 degrees rainbow arc that has a falloff region of 30 degrees at both ends:

rainbow {
direction <0, 0, 1>
angle 42.5
width 5
distance 1000
jitter 0.01
color_map { Rainbow_Color_Map }
up <0, 1, 0>
arc_angle 120
falloff_angle 30

}

It is possible to use any number of rainbows and to combine them with other atmospheric effects.

3.3 Global Settings

The global settings statement is a catch-all statement that gathers together a number of global parameters.
The statement may appear anywhere in a scene as long as it is not inside any other statement. You may have
multiple global settings statements in a scene. Whatever values were specified in the lastglobal settings

statement override any previous settings.

Note: some items which were language directives in earlier versions of POV-Ray have been moved inside the
global settings statement so that it is more obvious to the user that their effect is global. The old syntax is
permitted but generates a warning.

The new syntax is:

GLOBAL_SETTINGS:
global_settings { [GLOBAL_SETTINGS_ITEMS...] }

GLOBAL_SETTINGS_ITEM:
adc_bailout Value | ambient_light COLOR | assumed_gamma Value |
hf_gray_16 [Bool] | irid_wavelength COLOR |
charset GLOBAL_CHARSET | max_intersections Number |
max_trace_level Number | number_of_waves Number |
noise_generator Number | radiosity { RADIOSITY_ITEMS... } |
photon { PHOTON_ITEMS... }

GLOBAL_CHARSET:
ascii | utf8 | sys

Global setting default values:

charset : ascii
adc_bailout : 1/255
ambient_light : <1,1,1>
assumed_gamma : No gamma correction
hf_gray_16 : off
irid_wavelength : <0.25,0.18,0.14>
max_trace_level : 5
max_intersections : 64
number_of_waves : 10
noise_generator : 2

102 Scene Settings

Radiosity:
adc_bailout : 0.01
always_sample : on
brightness : 1.0
count : 35 (max = 1600)
error_bound : 1.8
gray_threshold : 0.0
low_error_factor : 0.5
max_sample : non-positive value
minimum_reuse : 0.015
nearest_count : 5 (max = 20)
normal : off
pretrace_start : 0.08
pretrace_end : 0.04
recursion_limit : 3

Each item is optional and may appear in any order. If an item is specified more than once, the last setting
overrides previous values. Details on each item are given in the following sections.

3.3.1 ADC Bailout

In scenes with many reflective and transparent surfaces, POV-Ray can get bogged down tracing multiple reflec-
tions and refractions that contribute very little to the color of a particular pixel. The program uses a system called
Adaptive Depth Control(ADC) to stop computing additional reflected or refracted rays when their contribution
is insignificant.

You may use the global settingadc bailout keyword followed by float value to specify the point at which a
ray’s contribution is considered insignificant. For example:

global_settings { adc_bailout 0.01 }

The default value is 1/255, or approximately 0.0039, since a change smaller than that could not be visible in a
24 bit image. Generally this setting is perfectly adequate and should be left alone. Settingadc bailout to 0 will
disable ADC, relying completely onmax trace level to set an upper limit on the number of rays spawned.

See section ”MaxTraceLevel” for details on how ADC andmax trace level interact.

3.3.2 Ambient Light

Ambient light is used to simulate the effect of inter-diffuse reflection that is responsible for lighting areas that
partially or completely lie in shadow. POV-Ray provides theambient light keyword to let you easily change
the brightness of the ambient lighting without changing every ambient value in all finish statements. It also lets
you create interesting effects by changing the color of the ambient light source. The syntax is:

global_settings { ambient_light COLOR }

The default is a white ambient light source set atrgb <1,1,1>. Only the rgb components are used. The actual
ambient used is:Ambient = FinishAmbient * GlobalAmbient.

See section ”Ambient” for more information.

3.3 Global Settings 103

3.3.3 AssumedGamma

Many people may have noticed at one time or another that some images are too bright or dim when displayed
on their system. As a rule, Macintosh users find that images created on a PC are too bright, while PC users find
that images created on a Macintosh are too dim.

Theassumed gamma global setting works in conjunction with theDisplay Gamma INI setting (see section ”Display
Hardware Settings”) to ensure that scene files render the same way across the wide variety of hardware platforms
that POV-Ray is used on. The assumed gamma setting is used in a scene file by adding

global_settings { assumed_gamma Value }

where the assumed gamma value is the correction factor to be applied before the pixels are displayed and/or
saved to disk. For scenes created in older versions of POV-Ray, the assumed gamma value will be the same as
the display gamma value of the system the scene was created on. For PC systems, the most common display
gamma is 2.2, while for scenes created on Macintosh systems should use a scene gamma of 1.8. Another gamma
value that sometimes occurs in scenes is 1.0.

Scenes that do not have anassumed gamma global setting will not have any gamma correction performed on them,
for compatibility reasons. If you are creating new scenes or rendering old scenes, it is strongly recommended
that you put in an appropriateassumed gamma global setting. For new scenes, you should use an assumed gamma
value of 1.0 as this models how light appears in the real world more realistically.

Before we go to the following sections, that explain more thoroughly what gamma is and why it is important, a
short overview of how gamma works in POV-Ray:

noassumed gamma in scene :
No gamma correction is applied to output file.

assumed gamma 1 :
GammaDisplay Gamma is applied to output file.
If Display Gamma is not specified, 2.2 is used.

assumed gamma G :
GammaDisplay Gamma/G is applied to output file.
If Display Gamma is not specified, 2.2/G is used.

Recommended value forassumed gamma is 1.

Monitor Gamma

The differences in how images are displayed is a result of how a computer actually takes an image and displays
it on the monitor. In the process of rendering an image and displaying it on the screen, several gamma values
are important, including the POV scene file or image file gamma and the monitor gamma.

Most image files generated by POV-Ray store numbers in the range from 0 to 255 for each of the red, green and
blue components of a pixel. These numbers represent the intensity of each color component, with 0 being black
and 255 being the brightest color (either 100% red, 100% green or 100% blue). When an image is displayed, the
graphics card converts each color component into a voltage which is sent to the monitor to light up the red, green
and blue phosphors on the screen. The voltage is usually proportional to the value of each color component.

Gamma becomes important when displaying intensities that are not the maximum or minimum possible values.
For example, 127 should represent 50% of the maximum intensity for pixels stored as numbers between 0 and

104 Scene Settings

255. On systems that do not do gamma correction, 127 will be converted to 50% of the maximum voltage,
but because of the way the phosphors and the electron guns in a monitor work, this may be only 22% of the
maximum color intensity on a monitor with a gamma of 2.2. To display a pixel which is 50% of the maximum
intensity on this monitor, we would need a voltage of 73% of the maximum voltage, which translates to storing
a pixel value of 186.

The relationship between the input pixel value and the displayed intensity can be approximated by an expo-
nential function obright = ibright ˆ display gammawhere obright is the output intensity and ibright
is the input pixel intensity. Both values are in the range from 0 to 1 (0% to 100%). Most monitors have a
fixed gamma value in the range from 1.8 to 2.6. Using the above formula with displaygamma values greater
than 1 means that the output brightness will be less than the input brightness. In order to have the output and
input brightness be equal an overall system gamma of 1 is needed. To do this, we need to gamma correct the
input brightness in the same manner as above but with a gamma value of 1/displaygamma before it is sent to
the monitor. To correct for a display gamma of 2.2, this pre-monitor gamma correction uses a gamma value of
1.0/2.2 or approximately 0.45.

How the pre-monitor gamma correction is done depends on what hardware and software is being used. On
Macintosh systems, the operating system has taken it upon itself to insulate applications from the differences in
display hardware. Through a gamma control panel the user may be able to set the actual monitor gamma and
Mac will then convert all pixel intensities so that the monitor will appear to have the specified gamma value. On
Silicon Graphics machines, the display adapter has built-in gamma correction calibrated to the monitor which
gives the desired overall gamma (the default is 1.7). Unfortunately, on PCs and most UNIX systems, it is up to
the application to do any gamma correction needed.

Image File Gamma

Since most PC and UNIX applications and image file formats do not understand display gamma, they do not do
anything to correct for it. As a result, users creating images on these systems adjust the image in such a way
that it has the correct brightness when displayed. This means that the data values stored in the files are made
brighter to compensate for the darkening effect of the monitor. In essence, the 0.45 gamma correction is built in
to the image files created and stored on these systems. When these files are displayed on a Macintosh system,
the gamma correction built in to the file, in addition to gamma correction built into MacOS, means that the
image will be too bright. Similarly, files that look correct on Macintosh or SGI systems because of the built-in
gamma correction will be too dark when displayed on a PC.

The PNG format files generated by POV-Ray overcome the problem of too much or not enough gamma correc-
tion by storing the image file gamma (which is 1.0/displaygamma) inside the PNG file when it is generated by
POV-Ray. When the PNG file is later displayed by a program that has been set up correctly, it uses this gamma
value as well as the current display gamma to correct for the potentially different display gamma used when
originally creating the image.

Unfortunately, of all the image file formats POV-Ray supports, PNG is the only one that has any gamma
correction features and is therefore preferred for images that will be displayed on a wide variety of platforms.

Scene File Gamma

The image file gamma problem itself is just a result of how scenes themselves are generated in POV-Ray. When
you start out with a new scene and are placing light sources and adjusting surface textures and colors, you
generally make several attempts before the lighting is how you like it. How you choose these settings depends

3.3 Global Settings 105

upon the preview image or the image file stored to disk, which in turn is dependent upon the overall gamma of
the display hardware being used.

This means that as the artist you are doing gamma correction in the POV-Ray scene file for your particular
hardware. This scene file will generate an image file that is also gamma corrected for your hardware and will
display correctly on systems similar to your own. However, when this scene is rendered on another platform,
it may be too bright or too dim, regardless of the output file format used. Rather than have you change all the
scene files to have a single fixed gamma value (heaven forbid!), POV-Ray allows you to specify in the scene file
the display gamma of the system that the scene was created on.

Theassumed gamma global setting, in conjunction with theDisplay Gamma INI setting lets POV-Ray know how
to do gamma correction on a given scene so that the preview and output image files will appear the correct
brightness on any system. Since the gamma correction is done internally to POV-Ray, it will produce output
image files that are the correct brightness for the current display, regardless of what output format is used. As
well, since the gamma correction is performed in the high-precision data format that POV-Ray uses internally,
it produces better results than gamma correction done after the file is written to disk.

Although you may not notice any difference in the output on your system with and without anassumed gamma

setting, the assumed gamma is important if the scene is ever rendered on another platform.

3.3.4 HF Gray 16

Thehf gray 16 setting is useful when using POV-Ray to generate heightfields for use in other POV-Ray scenes.
The syntax is... globalsettings{ hf gray 16 [Bool] }

The boolean value turns the option on or off. If the keyword is specified without the boolean value then the
option is turned on. If hf gray 16 is not specified in anyglobal settings statement in the entire scene then
the default is off.

When hf gray 16 is on, the output file will be in the form of a heightfield, with the height at any point being
dependent on the brightness of the pixel. The brightness of a pixel is calculated in the same way that color
images are converted to grayscale images:height = 0.3 * red + 0.59 * green + 0.11 * blue .

Setting the hf gray 16 option will cause the preview display, if used, to be grayscale rather than color. This
is to allow you to see how the heightfield will look because some file formats store heightfields in a way that
is difficult to understand afterwards. See section ”Height Field” for a description of how POV-Ray heightfields
are stored for each file type.

3.3.5 Irid Wavelength

Iridescence calculations depend upon the dominant wavelengths of the primary colors of red, green and blue
light. You may adjust the values using the global settingirid wavelength as follows...

global_settings { irid_wavelength COLOR }

The default value isrgb <0.25,0.18,0.14> and any filter or transmit values are ignored. These values are
proportional to the wavelength of light but they represent no real world units.

In general, the default values should prove adequate but we provide this option as a means to experiment with
other values.

106 Scene Settings

3.3.6 Charset

This allows you to specify the assumed character set of all text strings. If you specifyascii only standard
ASCII character codes in the range from 0 to 127 are valid. You can easily find a table of ASCII characters
on the internet. The optionutf8 is a special Unicode text encoding and it allows you to specify characters of
nearly all languages in use today. We suggest you use a text editor with the capability to export text to UTF8
to generate input files. You can find more information, including tables with codes of valid characters on the
Unicode website1 The last possible option is to use a system specific character set. For details about thesys

character set option refer to the platform specific documentation.

3.3.7 Max Trace Level

In scenes with many reflective and transparent surfaces POV-Ray can get bogged down tracing multiple reflec-
tions and refractions that contribute very little to the color of a particular pixel. The global settingmax trace -

level defines the integer maximum number of recursive levels that POV-Ray will trace a ray.

global_settings { max_trace_level Level }

This is used when a ray is reflected or is passing through a transparent object and when shadow rays are cast.
When a ray hits a reflective surface, it spawns another ray to see what that point reflects. That is trace level one.
If it hits another reflective surface another ray is spawned and it goes to trace level two. The maximum level by
default is five.

One speed enhancement added to POV-Ray in version 3.0 isAdaptive Depth Control(ADC). Each time a new
ray is spawned as a result of reflection or refraction its contribution to the overall color of the pixel is reduced
by the amount of reflection or the filter value of the refractive surface. At some point this contribution can be
considered to be insignificant and there is no point in tracing any more rays. Adaptive depth control is what
tracks this contribution and makes the decision of when to bail out. On scenes that use a lot of partially reflective
or refractive surfaces this can result in a considerable reduction in the number of rays fired and makes it safer to
use much highermax trace level values.

This reduction in color contribution is a result of scaling by the reflection amount and/or the filter values of each
surface, so a perfect mirror or perfectly clear surface will not be optimizable by ADC. You can see the results
of ADC by watching the Rays Saved andHighest Trace Level displays on the statistics screen.

The point at which a ray’s contribution is considered insignificant is controlled by theadc bailout value. The
default is 1/255 or approximately 0.0039 since a change smaller than that could not be visible in a 24 bit image.
Generally this setting is perfectly adequate and should be left alone. Settingadc bailout to 0 will disable ADC,
relying completely on max trace level to set an upper limit on the number of rays spawned.

If max trace level is reached before a non-reflecting surface is found and if ADC has not allowed an early exit
from the ray tree the color is returned as black. Raisemax trace level if you see black areas in a reflective
surface where there should be a color.

The other symptom you could see is with transparent objects. For instance, try making a union of concentric
spheres with a clear texture on them. Make ten of them in the union with radius’s from 1 to 10 and render the
scene. The image will show the first few spheres correctly, then black. This is because a new level is used every
time you pass through a transparent surface. Raisemax trace level to fix this problem.

1http://www.unicode.org/

3.3 Global Settings 107

Note: that raisingmax trace level will use more memory and time and it could cause the program to crash
with a stack overflow error, although ADC will alleviate this to a large extent.

Values formax trace level can be set up to a maximum of 256. If there is nomax trace level set and during
rendering the default value is reached, a warning is issued.

3.3.8 Max Intersections

POV-Ray uses a set of internal stacks to collect ray/object intersection points. The usual maximum number of
entries in theseI-Stacksis 64. Complex scenes may cause these stacks to overflow. POV-Ray does not stop but
it may incorrectly render your scene. When POV-Ray finishes rendering, a number of statistics are displayed.
If you seeI-Stack Overflows reported in the statistics you should increase the stack size. Add a global setting
to your scene as follows:

global_settings { max_intersections Integer }

If the I-Stack Overflows remain increase this value until they stop.

3.3.9 NumberOf Waves

The waves andripples patterns are generated by summing a series of waves, each with a slightly different
center and size. By default, ten waves are summed but this amount can be globally controlled by changing the
number of waves setting.

global_settings { number_of_waves Integer }

Changing this value affects both waves and ripples alike on all patterns in the scene.

3.3.10 Noisegenerator

There are three noise generators implemented.

• noise generator 1 the noise that was used in POVRay 3.1

• noise generator 2 ’range corrected’ version of the old noise, it does not show the plateaus seen with
noise generator 1

• noise generator 3 generates Perlin noise

The default isnoise generator 2

Note: The noisegenerators can also be used within the pigment/normal/etc. statement.

3.3.11 Radiosity Basics

Important notice:The radiosity features in POV-Ray are somewhat experimental. There is a high probability
that the design and implementation of these features will be changed in future versions. We cannot guarantee
that scenes using these features in this version will render identically in future releases or that full backwards
compatibility of language syntax can be maintained.

108 Scene Settings

Radiosity is an extra calculation that more realistically computes the diffuse interreflection of light. This diffuse
interreflection can be seen if you place a white chair in a room full of blue carpet, blue walls and blue curtains.
The chair will pick up a blue tint from light reflecting off of other parts of the room. Also notice that the
shadowed areas of your surroundings are not totally dark even if no light source shines directly on the surface.
Diffuse light reflecting off of other objects fills in the shadows. Typically ray-tracing uses a trick calledambient
light to simulate such effects but it is not very accurate.

Radiosity calculations are only made when aradiosity{} block is used inside theglobal settings{} block.

The following sections describes how radiosity works, how to control it with various global settings and tips on
trading quality vs. speed.

3.4 Radiosity

3.4.1 How Radiosity Works

The problem of ray-tracing is to figure out what the light level is at each point that you can see in a scene.
Traditionally, in ray tracing, this is broken into the sum of these components:

Diffuse
the effect that makes the side of things facing the light brighter;

Specular
the effect that makes shiny things have dings or sparkles on them;

Reflection
the effect that mirrors give; and

Ambient
the general all-over light level that any scene has, which keeps things in shadow from being pure
black.

POV-Ray’s radiosity system, based on a method by Greg Ward, provides a way to replace the last term - the
constant ambient light value - with a light level which is based on what surfaces are nearby and how bright in
turn they are.

The first thing you might notice about this definition is that it is circular: the brightness and color of everything
is dependent on everything else and vice versa. This is true in real life but in the world of ray-tracing, we can
make an approximation. The approximation that is used is: the objects you are looking at have theirambient

values calculated for you by checking the other objects nearby. When those objects are checked during this
process, however, theirdiffuse term is used. The brightness of radiosity in POV-Ray is based on two things:

1. the amount of light ”gathered”

2. the ’diffuse’ property of the surface finish

An object can have both radiosity and an ambient term. However, it is suggested that if you use radiosity in
a scene, you either setambient light to 0 in global settings, or useambient 0 in each object’s finish. This
lighting model is much more realistic, and POV-Ray will not try to adjust the overall brightness of the radiosity
to match the ambient level specified by the user.

3.4 Radiosity 109

How does POV-Ray calculate the ambient term for each point? By sending out more rays, in many different
directions, and averaging the results. A typical point might use 200 or more rays to calculate its ambient light
level correctly.

Now this sounds like it would make the ray-tracer 200 times slower. This is true, except that the software
takes advantage of the fact that ambient light levels change quite slowly (remember, shadows are calculated
separately, so sharp shadow edges are not a problem). Therefore, these extra rays are sent out onlyonce in a
while (about 1 time in 50), then these calculated values are saved and reused for nearby pixels in the image
when possible.

This process of saving and reusing values is what causes the need for a variety of tuning parameters, so you can
get the scene to look just the way you want.

3.4.2 Adjusting Radiosity

As described earlier, radiosity is turned on by using theradiosity{} block in global setting. Radiosity has
many parameters that are specified as follows:

global_settings { radiosity { [RADIOSITY_ITEMS...] } }
RADIOSITY_ITEMS:

adc_bailout Float | always_sample Bool | brightness Float |
count Integer | error_bound Float | gray_threshold Float |
load_file Filename | low_error_factor Float | max_sample Float |
media Bool | minimum_reuse Float | nearest_count Integer |
normal Bool | pretrace_end Float | pretrace_start Float |
recursion_limit Integer | save_file Filename

Each item is optional and may appear in any order. If an item is specified more than once the last setting
overrides previous values. Details on each item is given in the following sections.

Note: Considerable changes have been made to the way radiosity works in POV-Ray 3.5 compared to POV-Ray
3.1. Old scene will not render to the same result, if they render at all. It is not possible to use the#version

directive to get backward compatibility for radiosity.

radiosity adc bailout

You can specify an adcbailout for radiosity rays. Useadc bailout = 0.01 / brightest ambient object for
good results. Default is 0.01.

always sample

You can force POV-Ray to only use the data from the pretrace step and not gather any new samples during the
final radiosity pass. This may reduce splotchiness. To do this, usealways sample off, by default it ison. It can
also be usefully when reusing previously saved radiosity data.

brightness

Thebrightness keyword specifies a float value that is the degree to which objects are brightened before being
returned upwards to the rest of the system. The default value is 1.0. In cases where you would raise the

110 Scene Settings

global settings{ambient light value} to increase the over all brightness in a non-radiosity scene, you can
usebrightness in a radiosity scene.

count

The integer number of rays that are sent out whenever a new radiosity value has to be calculated is given by
count. A value of 35 is the default, the maximum is 1600. When this value is too low, the light level will tend
to look a little bit blotchy, as if the surfaces you are looking at were slightly warped. If this is not important to
your scene (as in the case that you have a bump map or if you have a strong texture) then by all means use a
lower number.

error bound

Theerror bound float value is one of the two main speed/quality tuning values (the other is of course the number
of rays shot). In an ideal world, this would be theonly value needed. It is intended to mean the fraction of error
tolerated. For example, if it were set to 1 the algorithm would not calculate a new value until the error on the
last one was estimated at as high as 100%. Ignoring the error introduced by rotation for the moment, on flat
surfaces this is equal to the fraction of the reuse distance, which in turn is the distance to the closest item hit. If
you have an old sample on the floor 10 inches from a wall, an error bound of 0.5 will get you a new sample at a
distance of about 5 inches from the wall.

The default value of 1.8 is good for a smooth general lighting effect. Using lower values is more accurate, but it
will strongly increase the danger of artifacts and therefore require highercount. You can use values even lower
than 0.1 but both render time and memory use can become extremely high then.

gray threshold

Diffusely interreflected light is a function of the objects around the point in question. Since this is recursively
defined to millions of levels of recursion, in any real life scene, every point is illuminated at least in part by
every other part of the scene. Since we cannot afford to compute this, if we only do one bounce, the calculated
ambient light is very strongly affected by the colors of the objects near it. This is known as color bleed and it
really happens but not as much as this calculation method would have you believe. Thegray threshold float
value grays it down a little, to make your scene more believable. A value of .6 means to calculate the ambient
value as 60% of the equivalent gray value calculated, plus 40% of the actual value calculated. At 0%, this
feature does nothing. At 100%, you always get white/gray ambient light, with no hue.

Note: this does not change the lightness/darkness, only the strength of hue/grayness (in HLS terms, it changes
S only). The default value is 0.0

low error factor

If you calculate just enough samples, but no more, you will get an image which has slightly blotchy lighting.
What you want is just a few extra interspersed, so that the blending will be nice and smooth. The solution to this
is the mosaic preview, controlled bypretrace: it goes over the image one or more times beforehand, calculating
radiosity values. To ensure that you get a few extra, the radiosity algorithm lowers the error bound during the
pre-final passes, then sets it back just before the final pass. Thelow error factor is a float tuning value which
sets the amount that the error bound is dropped during the preliminary image passes. If your low error factor is

3.4 Radiosity 111

0.8 and your error bound is set to 0.4 it will really use an error bound of 0.32 during the first passes and 0.4 on
the final pass. The default value is 0.5.

max sample

Sometimes there can be problems with splotchiness that is caused by objects that are very bright. This can be
sometimes avoided by using themax sample keyword. max sample takes a float parameter which specifies the
brightest that any gathered sample is allowed to be. Any samples brighter than this will have their brightness
decreased (without affecting color). Specifying a non-positive value formax sample will allow any brightness
of samples (which is the default).

Media and Radiosity

Radiosity estimation can be affected by media. To enable this feature, addmedia on to theradiosity{} block.
The default isoff

minimum reuse

The minimum effective radius ratio is set byminimum reuse float value. This is the fraction of the screen width
which sets the minimum radius of reuse for each sample point (actually, it is the fraction of the distance from
the eye but the two are roughly equal). For example, if the value is 0.02, the radius of maximum reuse for every
sample is set to whatever ground distance corresponds to 2% of the width of the screen. Imagine you sent a ray
off to the horizon and it hits the ground at a distance of 100 miles from your eye point. The reuse distance for
that sample will be set to 2 miles. At a resolution of 300*400 this will correspond to (very roughly) 8 pixels.
The theory is that you do not want to calculate values for every pixel into every crevice everywhere in the scene,
it will take too long. This sets a minimum bound for the reuse. If this value is too low, (which it should be in
theory) rendering gets slow, and inside corners can get a little grainy. If it is set too high, you do not get the
natural darkening of illumination near inside edges, since it reuses. At values higher than 2% you start getting
more just plain errors, like reusing the illumination of the open table underneath the apple. Remember that this
is a unit less ratio. The default value is 0.015.

nearest count

Thenearest count integer value is the minimum number of old ambient values blended together to create a new
interpolated value. The total number blended will vary depending onerror bound. All previous values that fit
within the specified errorbound will be used in the average.

It will always be the n geometrically closest reusable points that get used. If you go lower than 4, things can get
pretty patchy. This can be good for debugging, though. Must be no more than 20, since that is the size of the
array allocated. The default value is 5.

Normal and Radiosity

Radiosity estimation can be affected by normals. To enable this feature, addnormal on to theradiosity{}
block. The default isoff

112 Scene Settings

Pretrace

To control the radiosity pre-trace gathering step, use the keywordspretrace start andpretrace end within the
radiosity{} block. Each of these is followed by a decimal value between 0.0 and 1.0 which specifies the size
of the blocks in the mosaic preview as a percentage of the image size. The defaults are 0.08 forpretrace start

and 0.04 forpretrace end

recursion limit

Therecursion limit is an integer value which determines how many recursion levels are used to calculate the
diffuse inter-reflection. The default value is 3, the upper limit is 20.

Save and load radiosity data

You can save the radiosity data usingsave file "file name" and load the same data later usingload file

"file name". In general, it is not a good idea to save and load radiosity data if scene objects are moving. Even
if data are loaded, more samples may be taken during rendering (which produces a better approximation). You
can disable samples from being taken during the final rendering phase by specifyingalways sample off.

3.4.3 Tips on Radiosity

Have a look at the ”Radiosity Tutorial” in the ”Advanced Tutorial” section, to get a feel for what the visual
result of changing radiosity parameters is.

If you want to see where your values are being calculated set radiositycount down to about 20, set radiosity
nearest count to 1 and setgray threshold to 0. This will make everything maximally patchy, so you will be
able to see the borders between patches. There will have been a radiosity calculation at the center of most
patches. As a bonus, this is quick to run. You can then change theerror bound up and down to see how it
changes things. Likewise modifyminimum reuse.

One way to get extra smooth results: crank up the sample count (we have gone as high as 1300) and drop the
low error factor to something small like 0.6. Bump up thenearest count to 7 or 8. This will get better
values, and more of them, then interpolate among more of them on the last pass. This is not for people with a
lack of patience since it is like a squared function. If your blotchiness is only in certain corners or near certain
objects try tuning the error bound instead. Never drop it by more than a little at a time, since the run time will
get very long.

Sometimes extra samples are taken during the final rendering pass. These newer samples can cause disconti-
nuities in the radiosity in some scenes. To decrease these artefacts, use a pretraceend of 0.04 (or even 0.02 if
you are really patient and picky). This will cause the majority of the samples to be taken during the preview
passes, and decrease the artefacts created during the final rendering pass. You can force POV-Ray to only use
the data from the pretrace step and not gather any new samples during the final radiosity pass. To do this, use
”always sample no” within the radiosity block inside globalsettings.

If your scene uses ambient objects (especially small ambient objects) as light sources, you should probably use
a higher count (100-150 and higher). For such scenes, an errorbound of 1.0 is usually good. Higher causes too
much error, but lower causes very slow rendering. And it is important to adapt adcbailout.

Chapter 4

Objects

Objects are the building blocks of your scene. There are a lot of different types of objects supported by POV-
Ray. In the sections which follows, we describe ”Finite Solid Primitives”, ”Finite Patch Primitives”, ”Infinite
Solid Primitives”, ”Isosurface Object”, ”Parametric Object”, and ”Light Sources”. These primitive shapes may
be combined into complex shapes using ”Constructive Solid Geometry” (also known as CSG).

The basic syntax of an object is a keyword describing its type, some floats, vectors or other parameters which
further define its location and/or shape and some optional object modifiers such as texture, interiortexture,
pigment, normal, finish, interior, bounding, clipping or transformations. Specifically the syntax is:

OBJECT:
FINITE_SOLID_OBJECT | FINITE_PATCH_OBJECT |
INFINITE_SOLID_OBJECT | ISOSURFACE_OBJECT | PARAMETRIC_OBJECT |
CSG_OBJECT | LIGHT_SOURCE |
object { OBJECT_IDENTIFIER [OBJECT_MODIFIERS...] }

FINITE_SOLID_OBJECT:
BLOB | BOX | CONE | CYLINDER | HEIGHT_FIELD | JULIA_FRACTAL |
LATHE | PRISM | SPHERE | SPHERESWEEP | SUPERELLIPSOID | SOR |
TEXT | TORUS

FINITE_PATCH_OBJECT:
BICUBIC_PATCH | DISC | MESH | MESH2 | POLYGON | TRIANGLE |
SMOOTH_TRIANGLE

INFINITE_SOLID_OBJECT:
PLANE | POLY | CUBIC | QUARTIC | QUADRIC

ISOSURFACE_OBJECT:
ISOSURFACE
PARAMETRIC_OBJECT:
PARAMETRIC
CSG_OBJECT:

UNION | INTERSECTION | DIFFERENCE | MERGE

Object identifiers may be declared to make scene files more readable and to parameterize scenes so that changing
a single declaration changes many values. An identifier is declared as follows.

OBJECT_DECLARATION:
#declare IDENTIFIER = OBJECT |
#local IDENTIFIER = OBJECT

114 Objects

WhereIDENTIFIER is the name of the identifier up to 40 characters long andOBJECTis any valid object. To
invoke an object identifier, you wrap it in anobject{...} statement. You use theobject statement regardless
of what type of object it originally was. Although early versions of POV-Ray required thisobject wrapper all
of the time, now it is only used withOBJECTIDENTIFIERS.

Object modifiers are covered in detail later. However here is a brief overview.

The texture describes the surface properties of the object. Complete details are in ”Textures”. Textures are
combinations of pigments, normals, and finishes. In the section ”Pigment” you will learn how to specify the
color or pattern of colors inherent in the material. In ”Normal” we describe a method of simulating various
patterns of bumps, dents, ripples or waves by modifying the surface normal vector. The section on ”Finish”
describes the reflective properties of the surface. The ”Interior” is a feature introduced in POV-Ray 3.1. It
contains information about the interior of the object which was formerly contained in the finish and halo parts
of a texture. Interior items are no longer part of the texture. Instead, they attach directly to the objects. The
halo feature has been discontinued and replaced with a new feature called ”Media” which replaces both halo
and atmosphere.

Bounding shapes are finite, invisible shapes which wrap around complex, slow rendering shapes in order to
speed up rendering time. Clipping shapes are used to cut away parts of shapes to expose a hollow interior.
Transformations tell the ray-tracer how to move, size or rotate the shape and/or the texture in the scene.

4.1 Finite Solid Primitives

There are fourteen different solid finite primitive shapes: blob, box, cone, cylinder, height field, Julia fractal,
lathe, prism, sphere, spheresweep, superellipsoid, surface of revolution, text object and torus. These have a
well-definedinsideand can be used in CSG (see section ”Constructive Solid Geometry”). They are finite and
respond to automatic bounding. You may specify an interior for these objects.

4.1.1 Blob

Blobs are an interesting and flexible object type. Mathematically they are iso-surfaces of scalar fields, i.e. their
surface is defined by the strength of the field in each point. If this strength is equal to a threshold value you are
on the surface otherwise you are not.

Picture each blob component as an object floating in space. This object isfilled with a field that has its maximum
at the center of the object and drops off to zero at the object’s surface. The field strength of all those components
are added together to form the field of the blob. Now POV-Ray looks for points where this field has a given
value, the threshold value. All these points form the surface of the blob object. Points with a greater field value
than the threshold value are considered to be inside while points with a smaller field value are outside.

There’s another, simpler way of looking at blobs. They can be seen as a union of flexible components that
attract or repel each other to form a blobby organic looking shape. The components’ surfaces actually stretch
out smoothly and connect as if they were made of honey or something similar.

The syntax forblob is defined as follows:

BLOB:
blob { BLOB_ITEM... [BLOB_MODIFIERS...]}

BLOB_ITEM:
sphere{<Center>, Radius,

4.1 Finite Solid Primitives 115

[strength] Strength[COMPONENT_MODIFIER...] } |
cylinder{<End1>, <End2>, Radius,

[strength] Strength [COMPONENT_MODIFIER...] } |
component Strength, Radius, <Center> |
threshold Amount

COMPONENT_MODIFIER:
TEXTURE | PIGMENT | NORMAL | FINISH | TRANSFORMATION

BLOB_MODIFIER:
hierarchy [Boolean] | sturm [Boolean] | OBJECT_MODIFIER

Blob default values:

hierarchy : on
sturm : off
threshold : 1.0

Thethreshold keyword is followed by a float value which determines the total field strength value that POV-
Ray is looking for. The default value if none is specified isthreshold 1.0. By following the ray out into
space and looking at how each blob component affects the ray, POV-Ray will find the points in space where the
field strength is equal to the threshold value. The following list shows some things you should know about the
threshold value.

1. The threshold value must be positive.

2. A component disappears if the threshold value is greater than its strength.

3. As the threshold value gets larger, the surface you see gets closer to the centers of the components.

4. As the threshold value gets smaller, the surface you see gets closer to the surface of the components.

Cylindrical components are specified by acylinder statement. The center of the end-caps of the cylinder is
defined by the vectors<End1> and <End2>. Next is the float value of theRadiusfollowed by the float
Strength. These vectors and floats are required and should be separated by commas. The keywordstrength

may optionally precede the strength value. The cylinder has hemispherical caps at each end.

Spherical components are specified by asphere statement. The location is defined by the vector<Center >.
Next is the float value of theRadiusfollowed by the floatStrength. These vector and float values are required
and should be separated by commas. The keywordstrength may optionally precede the strength value.

You usually will apply a single texture to the entire blob object, and you typically use transformations to change
its size, location, and orientation. However both thecylinder and sphere statements may have individual
texture, pigment, normal, finish, and transformations applied to them. You may not apply separateinterior

statements to the components but you may specify one for the entire blob.

Note: by unevenly scaling a spherical component you can create ellipsoidal components. The tutorial section
on ”Blob Object” illustrates individually textured blob components and many other blob examples.

The component keyword is an obsolete method for specifying a spherical component and is only used for
compatibility with earlier POV-Ray versions. It may not have textures or transformations individually applied
to it.

The strength parameter of either type of blob component is a float value specifying the field strength at the
center of the object. The strength may be positive or negative. A positive value will make that component
attract other components while a negative value will make it repel other components. Components in different,
separate blob shapes do not affect each other.

You should keep the following things in mind.

116 Objects

1. The strength value may be positive or negative. Zero is a bad value, as the net result is that no field was
added – you might just as well have not used this component.

2. If strength is positive, then POV-Ray will add the component’s field to the space around the center of the
component. If this adds enough field strength to be greater than the threshold value you will see a surface.

3. If the strength value is negative, then POV-Ray will subtract the component’s field from the space around
the center of the component. This will only do something if there happen to be positive components
nearby. The surface around any nearby positive components will be dented away from the center of the
negative component.

After all components and the optionalthreshold value have been specified you may specify zero or more blob
modifiers. A blob modifier is any regular object modifier or thehierarchy or sturm keywords.

The components of each blob object are internally bounded by a spherical bounding hierarchy to speed up blob
intersection tests and other operations. Using the optional keywordhierarchy followed by an optional boolean
float value will turn it off or on. By default it is on.

The calculations for blobs must be very accurate. If this shape renders improperly you may add the keyword
sturm followed by an optional boolean float value to turn off or on POV-Ray’s slower-yet-more-accurate Stur-
mian root solver. By default it is off.

An example of a three component blob is:

BLOB:
blob {
threshold 0.6
sphere { <.75, 0, 0>, 1, 1 }
sphere { <-.375, .64952, 0>, 1, 1 }
sphere { <-.375, -.64952, 0>, 1, 1 }
scale 2

}

If you have a single blob component then the surface you see will just look like the object used, i.e. a sphere or
a cylinder, with the surface being somewhere inside the surface specified for the component. The exact surface
location can be determined from the blob equation listed below (you will probably never need to know this,
blobs are more for visual appeal than for exact modeling).

For the more mathematically minded, here’s the formula used internally by POV-Ray to create blobs. You do
not need to understand this to use blobs. The density of the blob field of a single component is:

density= strength·

(
1−
(

distance
radius

)2
)2

Table 4.1: Density of a blob field.

wheredistanceis the distance of a given point from the spherical blob’s center or cylinder blob’s axis. This
formula has the nice property that it is exactly equal to the strength parameter at the center of the component
and drops off to exactly 0 at a distance from the center of the component that is equal to the radius value. The
density formula for more than one blob component is just the sum of the individual component densities.

4.1 Finite Solid Primitives 117

4.1.2 Box

A simple box can be defined by listing two corners of the box using the following syntax for abox statement:

BOX:
box
{

<Corner_1>, <Corner_2>
[OBJECT_MODIFIERS...]

}

Figure 4.1: The geometry of a box.

Where<Corner 1> and <Corner 2> are vectors defining the x, y, z coordinates of the opposite corners of
the box.

Note: that all boxes are defined with their faces parallel to the coordinate axes. They may later be rotated to
any orientation using therotate keyword.

Boxes are calculated efficiently and make good bounding shapes (if manually bounding seems to be necessary).

4.1.3 Cone

Thecone statement creates a finite length cone or afrustum(a cone with the point cut off). The syntax is:

CONE:
cone
{

<Base_Point>, Base_Radius, <Cap_Point>, Cap_Radius
[open][OBJECT_MODIFIERS...]

}

Where<Base Point > and< Cap Point > are vectors defining the x, y, z coordinates of the center of the
cone’s base and cap andBase Radius andCap Radius are float values for the corresponding radii.

Normally the ends of a cone are closed by flat discs that are parallel to each other and perpendicular to the
length of the cone. Adding the optional keywordopen afterCap Radius will remove the end caps and results
in a tapered hollow tube like a megaphone or funnel.

118 Objects

Figure 4.2: The geometry of a cone.

4.1.4 Cylinder

Thecylinder statement creates a finite length cylinder with parallel end caps The syntax is:

CYLINDER:
cylinder
{

<Base_Point>, <Cap_Point>, Radius
[open][OBJECT_MODIFIERS...]

}

Figure 4.3: The geometry of a cylinder.

Where<Base Point > and <Cap Point > are vectors defining the x, y, z coordinates of the cylinder’s base
and cap andRadius is a float value for the radius.

Normally the ends of a cylinder are closed by flat discs that are parallel to each other and perpendicular to the
length of the cylinder. Adding the optional keywordopen after the radius will remove the end caps and results
in a hollow tube.

4.1 Finite Solid Primitives 119

4.1.5 Height Field

Height fields are fast, efficient objects that are generally used to create mountains or other raised surfaces out of
hundreds of triangles in a mesh. Theheight field statement syntax is:

HEIGHT_FIELD:
height_field{
[HF_TYPE]
"filename"
[HF_MODIFIER...]
[OBJECT_MODIFIER...]

}
HF_TYPE:

gif | tga | pot | png | pgm | ppm | jpeg | tiff | sys | function
HF_MODIFIER:

hierarchy [Boolean] |
smooth |
water_level Level

Height field default values:

hierarchy : on
smooth : off
water_level : 0.0

A height field is essentially a one unit wide by one unit long square with a mountainous surface on top. The
height of the mountain at each point is taken from the color number or palette index of the pixels in a graphic
image file. The maximum height is one, which corresponds to the maximum possible color or palette index
value in the image file.

Figure 4.4: The size and orientation of an un-scaled height field.

The mesh of triangles corresponds directly to the pixels in the image file. Each square formed by four neighbor-
ing pixels is divided into two triangles. An image with a resolution ofN*M pixels has(N-1)*(M-1) squares
that are divided into 2*(N-1)*(M-1) triangles.

The resolution of the height field is influenced by two factors: the resolution of the image and the resolution of
the color/index values. The size of the image determines the resolution in the x- and z-direction. A larger image
uses more triangles and looks smoother. The resolution of the color/index value determines the resolution along
the y-axis. A height field made from an 8-bit image can have 256 different height levels while one made from a

120 Objects

Figure 4.5: Relationship of pixels and triangles in a height field.

16-bit image can have up to 65536 different height levels. Thus the second height field will look much smoother
in the y-direction if the height field is created appropriately.

The size/resolution of the image does not affect the size of the height field. The un-scaled height field size will
always be 1 by 1 by 1. Higher resolution image files will create smaller triangles, not larger height fields.

There are eight or possibly nine types of files which can define a height field. The image file type used to create
a height field is specified by one of the keywordsgif, tga, pot, png, pgm, ppm, tiff, jpeg and possibly sys

which is a system specific (e. g. Windows BMP or Macintosh Pict) format file. Specifying the file type is
optional. If it is not defined the same file type will be assumed as the one that is set as the output file type. This
is useful when the source for theheight field is also generated with POV-Ray.

The GIF, PNG, PGM, TIFF and possibly SYS format files are the only ones that can be created using a standard
paint program. Though there are paint programs for creating TGA image files they will not be of much use for
creating the special 16 bit TGA files used by POV-Ray (see below and ”HFGray 16” for more details).

In an image file that uses a color palette, like GIF, the color number is the palette index at a given pixel. Use
a paint program to look at the palette of a GIF image. The first color is palette index zero, the second is index
one, the third is index two and so on. The last palette entry is index 255. Portions of the image that use low
palette entries will result in lower parts of the height field. Portions of the image that use higher palette entries
will result in higher parts of the height field.

Height fields created from GIF files can only have 256 different height levels because the maximum number of
colors in a GIF file is 256.

The color of the palette entry does not affect the height of the pixel. Color entry 0 could be red, blue, black or
orange but the height of any pixel that uses color entry 0 will always be 0. Color entry 255 could be indigo, hot
pink, white or sky blue but the height of any pixel that uses color entry 255 will always be 1.

You can create height field GIF images with a paint program or a fractal program likeFractint. You can
usually get Fractint from most of the same sources as POV-Ray.

A POT file is essentially a GIF file with a 16 bit palette. The maximum number of colors in a POT file is 65536.
This means a POT height field can have up to 65536 possible height values. This makes it possible to have
much smoother height fields.

Note: the maximum height of the field is still 1 even though more intermediate values are possible.

4.1 Finite Solid Primitives 121

At the time of this writing the only program that created POT files was a freeware MS-Dos/Windows program
calledFractint. POT files generated with this fractal program create fantastic landscapes.

The TGA and PPM file formats may be used as a storage device for 16 bit numbers rather than an image file.
These formats use the red and green bytes of each pixel to store the high and low bytes of a height value.
These files are as smooth as POT files but they must be generated with special custom-made programs. Several
programs can create TGA heightfields in the format POV uses, such asGforge andTerrain Maker.

PNG format heightfields are usually stored in the form of a grayscale image with black corresponding to lower
and white to higher parts of the height field. Because PNG files can store up to 16 bits in grayscale images they
will be as smooth as TGA and PPM images. Since they are grayscale images you will be able to view them
with a regular image viewer. gforge can create 16-bit heightfields in PNG format. Color PNG images will be
used in the same way as TGA and PPM images.

SYS format is a platform specific file format. See your platform specific documentation for details.

In addition to all the usual object modifiers, there are three additional height field modifiers available.

The optionalwater level parameter may be added after the file name. It consists of the keywordwater level

followed by a float value telling the program to ignore parts of the height field below that value. The default
value is zero and legal values are between zero and one. For examplewater level 0.5 tells POV-Ray to only
render the top half of the height field. The other half isbelow the waterand could not be seen anyway. Using
water level renders faster than cutting off the lower part using CSG or clipping. This term comes from the
popular use of height fields to render landscapes. A height field would be used to create islands and another
shape would be used to simulate water around the islands. A large portion of the height field would be obscured
by the water so thewater level parameter was introduced to allow the ray-tracer to ignore the unseen parts of
the height field.water level is also used to cut away unwanted lower values in a height field. For example if
you have an image of a fractal on a solid colored background, where the background color is palette entry 0,
you can remove the background in the height field by specifying,water level 0.001.

Normally height fields have a rough, jagged look because they are made of lots of flat triangles. Adding the
keyword smooth causes POV-Ray to modify the surface normal vectors of the triangles in such a way that the
lighting and shading of the triangles will give a smooth look. This may allow you to use a lower resolution file
for your height field than would otherwise be needed. However, smooth triangles will take longer to render. The
default value is off.

In order to speed up the intersection tests a one-level bounding hierarchy is available. By default it is always
used but it can be switched off usinghierarchy off to improve the rendering speed for small height fields (i.e.
low resolution images). You may optionally use a boolean value such ashierarchy on or hierarchy off.

4.1.6 Julia Fractal

A julia fractal object is a 3-Dsliceof a 4-D object created by generalizing the process used to create the classic
Julia sets. You can make a wide variety of strange objects using thejulia fractal statement including some
that look like bizarre blobs of twisted taffy. Thejulia fractal syntax is:

JULIA_FRACTAL:
julia_fractal
{

<4D_Julia_Parameter>
[JF_ITEM...] [OBJECT_MODIFIER...]

}

122 Objects

JF_ITEM:
ALGEBRA_TYPE | FUNCTION_TYPE | max_iteration Count |
precision Amt | slice <4D_Normal>, Distance

ALGEBRA_TYPE:
quaternion | hypercomplex

FUNCTION_TYPE:
QUATERNATION:

sqr | cube
HYPERCOMPLEX:

sqr | cube | exp | reciprocal | sin | asin | sinh |
asinh | cos | acos | cosh | acosh | tan | atan |tanh |
atanh | ln | pwr(X_Val, Y_Val)

Julia Fractal default values:

ALGEBRA_TYPE : quaternion
FUNCTION_TYPE : sqr
max_iteration : 20
precision : 20
slice, DISTANCE : <0,0,0,1>, 0.0

The required 4-D vector<4D Julia Parameter > is the classic Julia parameterp in the iterated formulaf(h)

+ p. The julia fractal object is calculated by using an algorithm that determines whether an arbitrary pointh(0)

in 4-D space is inside or outside the object. The algorithm requires generating the sequence of vectorsh(0),

h(1), ... by iterating the formulah(n+1) = f(h(n)) + p (n = 0, 1, ..., max iteration-1)

where p is the fixed 4-D vector parameter of the julia fractal andf() is one of the functionssqr, cube,
... specified by the presence of the corresponding keyword. The pointh(0) that begins the sequence is
considered inside the julia fractal object if none of the vectors in the sequence escapes a hypersphere of radius
4 about the origin before the iteration number reaches the integermax iteration value. As you increasemax -

iteration, some points escape that did not previously escape, forming the julia fractal. Depending on the
<4D Julia Parameter >, the julia fractal object is not necessarily connected; it may be scattered fractal dust.
Using a low max iteration can fuse together the dust to make a solid object. A highmax iteration is more
accurate but slows rendering. Even though it is not accurate, the solid shapes you get with a lowmax iteration

value can be quite interesting. If none is specified, the default ismax iteration 20.

Since the mathematical object described by this algorithm is four-dimensional and POV-Ray renders three
dimensional objects, there must be a way to reduce the number of dimensions of the object from four dimensions
to three. This is accomplished by intersecting the 4-D fractal with a 3-D ”plane” defined by theslice modifier
and then projecting the intersection to 3-D space. The keyword is followed by 4-D vector and a float separated
by a comma. The slice plane is the 3-D space that is perpendicular to<4D Normal > and is Distance units
from the origin. Zero length<4D Normal > vectors or a <4D Normal > vector with a zero fourth component
are illegal. If none is specified, the default isslice <0,0,0,1>,0.

You can get a good feel for the four dimensional nature of a julia fractal by using POV-Ray’s animation feature
to vary a slice’s Distance parameter. You can make the julia fractal appear from nothing, grow, then shrink
to nothing as Distance changes, much as the cross section of a 3-D object changes as it passes through a
plane.

The precision parameter is a tolerance used in the determination of whether points are inside or outside the
fractal object. Larger values give more accurate results but slower rendering. Use as low a value as you can
without visibly degrading the fractal object’s appearance but note values less than 1.0 are clipped at 1.0. The
default if none is specified isprecision 20.

The presence of the keywordsquaternion or hypercomplex determine which 4-D algebra is used to calculate

4.1 Finite Solid Primitives 123

the fractal. The default isquaternion. Both are 4-D generalizations of the complex numbers but neither
satisfies all the field properties (all the properties of real and complex numbers that many of us slept through in
high school). Quaternions have non-commutative multiplication and hypercomplex numbers can fail to have a
multiplicative inverse for some non-zero elements (it has been proved that you cannot successfully generalize
complex numbers to four dimensions with all the field properties intact, so something has to break). Both of
these algebras were discovered in the 19th century. Of the two, the quaternions are much better known, but one
can argue that hypercomplex numbers are more useful for our purposes, since complex valued functions such
as sin, cos, etc. can be generalized to work for hypercomplex numbers in a uniform way.

For the mathematically curious, the algebraic properties of these two algebras can be derived from the multi-
plication properties of the unit basis vectors 1 =<1,0,0,0>, i=< 0,1,0,0>, j=<0,0,1,0> and k=< 0,0,0,1>. In
both algebras 1 x = x 1 = x for any x (1 is the multiplicative identity). The basis vectors 1 and i behave exactly
like the familiar complex numbers 1 and i in both algebras.

ij = k jk = i ki = j

ji = -k kj = -i ik = -j

ii = jj = kk = -1 ijk = -1

Table 4.1: Quaternion basis vector multiplication rules

ij = k jk = -i ki = -j

ji = k kj = -i ik = -j

ii = jj = kk = -1 ijk = 1

Table 4.2: Hypercomplex basis vector multiplication rules

A distance estimation calculation is used with the quaternion calculations to speed them up. The proof that this
distance estimation formula works does not generalize from two to four dimensions but the formula seems to
work well anyway, the absence of proof notwithstanding!

The presence of one of the function keywordssqr, cube, etc. determines which function is used forf(h)

in the iteration formulah(n+1) = f(h(n)) + p . The default issqr. Most of the function keywords work
only if thehypercomplex keyword is present. Onlysqr andcube work with quaternion. The functions are all
familiar complex functions generalized to four dimensions. Function Keyword Maps 4-D value h to:

A simple example of a julia fractal object is:

julia_fractal {
<-0.083,0.0,-0.83,-0.025>
quaternion
sqr
max_iteration 8
precision 15

}

The first renderings of julia fractals using quaternions were done by Alan Norton and later by John Hart in
the ’80’s. This POV-Ray implementation followsFractint in pushing beyond what is known in the literature
by using hypercomplex numbers and by generalizing the iterating formula to use a variety of transcendental
functions instead of just the classic Mandelbrotz2 + c formula. With an extra two dimensions and eighteen
functions to work with, intrepid explorers should be able to locate some new fractal beasts in hyperspace, so
have at it!

124 Objects

sqr h*h
cube h*h*h
exp e raised to the power h
reciprocal 1/h
sin sine of h
asin arcsine of h
sinh hyperbolic sine of h
asinh inverse hyperbolic sine of h
cos cosine of h
acos arccosine of h
cosh hyperbolic cos of h
acosh inverse hyperbolic cosine of h
tan tangent of h
atan arctangent of h
tanh hyperbolic tangent of h
atanh inverse hyperbolic tangent of h
ln natural logarithm of h
pwr(x,y) h raised to the complex power x+iy

Table 4.3: Function Keyword Maps 4-D value of h

4.1.7 Lathe

Thelathe is an object generated from rotating a two-dimensional curve about an axis. This curve is defined by
a set of points which are connected by linear, quadratic, cubic or bezier spline curves. The syntax is:

LATHE:
lathe
{

[SPLINE_TYPE] Number_Of_Points, <Point_1>
<Point_2>... <Point_n>
[LATHE_MODIFIER...]

}
SPLINE_TYPE:

linear_spline | quadratic_spline | cubic_spline | bezier_spline
LATHE_MODIFIER:

sturm | OBJECT_MODIFIER

Lathe default values:

SPLINE_TYPE : linear_spline
sturm : off

The first item is a keyword specifying the type of spline. The default if none is specified islinear spline. The
required integer valueNumber Of Points specifies how many two-dimensional points are used to define the
curve. The points follow and are specified by 2-D vectors. The curve is not automatically closed, i.e. the first
and last points are not automatically connected. You will have to do this yourself if you want a closed curve.
The curve thus defined is rotated about the y-axis to form the lathe object, centered at the origin.

The following examples creates a simple lathe object that looks like a thick cylinder, i.e. a cylinder with a thick
wall:

lathe {

4.1 Finite Solid Primitives 125

linear_spline
5,
<2, 0>, <3, 0>, <3, 5>, <2, 5>, <2, 0>
pigment {Red}

}

The cylinder has an inner radius of 2 and an outer radius of 3, giving a wall width of 1. It’s height is 5 and it’s
located at the origin pointing up, i.e. the rotation axis is the y-axis.

Note: the first and last point are equal to get a closed curve.

The splines that are used by the lathe and prism objects are a little bit difficult to understand. The basic concept
of splines is to draw a curve through a given set of points in a determined way. The defaultlinear spline is
the simplest spline because it’s nothing more than connecting consecutive points with a line. This means the
curve that is drawn between two points only depends on those two points. No additional information is taken
into account. The other splines are different in that they do take other points into account when connecting two
points. This creates a smooth curve and, in the case of the cubic spline, produces smoother transitions at each
point.

Thequadratic spline keyword creates splines that are made of quadratic curves. Each of them connects two
consecutive points. Since those two points (call them second and third point) are not sufficient to describe a
quadratic curve, the predecessor of the second point is taken into account when the curve is drawn. Mathemat-
ically, the relationship (their relative locations on the 2-D plane) between the first and second point determines
the slope of the curve at the second point. The slope of the curve at the third point is out of control. Thus
quadratic splines look much smoother than linear splines but the transitions at each point are generally not
smooth because the slopes on both sides of the point are different.

Thecubic spline keyword creates splines which overcome the transition problem of quadratic splines because
they also take a fourth point into account when drawing the curve between the second and third point. The slope
at the fourth point is under control now and allows a smooth transition at each point. Thus cubic splines produce
the most flexible and smooth curves.

Thebezier spline is an alternate kind of cubic spline. Points 1 and 4 specify the end points of a segment and
points 2 and 3 are control points which specify the slope at the endpoints. Points 2 and 3 do not actually lie on
the spline. They adjust the slope of the spline. If you draw an imaginary line between point 1 and 2, it represents
the slope at point 1. It is a line tangent to the curve at point 1. The greater the distance between 1 and 2, the
flatter the curve. With a short tangent the spline can bend more. The same holds true for control point 3 and
endpoint 4. If you want the spline to be smooth between segments, points 3 and 4 on one segment and points 1
and 2 on the next segment must form a straight line and point 4 of one segment must be the same as point 1 on
the next segment.

You should note that the number of spline segments, i. e. curves between two points, depends on the spline
type used. For linear splines you get n-1 segments connecting the points P[i], i=1,...,n. A quadratic spline gives
you n-2 segments because the last point is only used for determining the slope, as explained above (thus you
will need at least three points to define a quadratic spline). The same holds for cubic splines where you get n-3
segments with the first and last point used only for slope calculations (thus needing at least four points). The
bezier spline requires 4 points per segment, creating n/4 segments.

If you want to get a closed quadratic and cubic spline with smooth transitions at the end points you have to
make sure that in the cubic case P[n-1] = P[2] (to get a closed curve), P[n] = P[3] and P[n-2] = P[1] (to smooth
the transition). In the quadratic case P[n-1] = P[1] (to close the curve) and P[n] = P[2].

Thesturm keyword can be used to specify that the slower, but more accurate, Sturmian root solver should be
used. Use it, if the shape does not render properly. Since a quadratic polynomial has to be solved for the linear

126 Objects

spline lathe, the Sturmian root solver is not needed.

4.1.8 Prism

Theprism is an object generated specifying one or more two-dimensional, closed curves in the x-z plane and
sweeping them along y axis. These curves are defined by a set of points which are connected by linear, quadratic,
cubic or bezier splines. The syntax for the prism is:

PRISM:
prism
{

[PRISM_ITEMS...] Height_1, Height_2, Number_Of_Points,
<Point_1>, <Point_2>, ... <Point_n>
[open] [PRISM_MODIFIERS...]

}
PRISM_ITEM:

linear_spline | quadratic_spline | cubic_spline |
bezier_spline | linear_sweep | conic_sweep

PRISM_MODIFIER:
sturm | OBJECT_MODIFIER

Prism default values:

SPLINE_TYPE : linear_spline
SWEEP_TYPE : linear_sweep
sturm : off

The first items specify the spline type and sweep type. The defaults if none is specified islinear spline and
linear sweep. This is followed by two float valuesHeight 1 and Height 2 which are the y coordinates of
the top and bottom of the prism. This is followed by a float value specifying the number of 2-D points you will
use to define the prism. (This includes all control points needed for quadratic, cubic and bezier splines). This is
followed by the specified number of 2-D vectors which define the shape in the x-z plane.

The interpretation of the points depends on the spline type. The prism object allows you to use any number of
sub-prisms inside one prism statement (they are of the same spline and sweep type). Wherever an even number
of sub-prisms overlaps a hole appears.

Note: you need not have multiple sub-prisms and they need not overlap as these examples do.

In the linear spline the first point specified is the start of the first sub-prism. The following points are con-
nected by straight lines. If you specify a value identical to the first point, this closes the sub-prism and next point
starts a new one. When you specify the value of that sub-prism’s start, then it is closed. Each of the sub-prisms
has to be closed by repeating the first point of a sub-prism at the end of the sub-prism’s point sequence. In this
example, there are two rectangular sub-prisms nested inside each other to create a frame.

prism {
linear_spline
0, 1, 10,
<0,0>, <6,0>, <6,8>, <0,8>, <0,0>, //outer rim
<1,1>, <5,1>, <5,7>, <1,7>, <1,1> //inner rim

}

The last sub-prism of a linear spline prism is automatically closed - just like the last sub-polygon in the polygon
statement - if the first and last point of the sub-polygon’s point sequence are not the same. This make it very easy

4.1 Finite Solid Primitives 127

to convert between polygons and prisms. Quadratic, cubic and bezier splines are never automatically closed.

In the quadratic spline, each sub-prism needs an additional control point at the beginning of each sub-prisms’
point sequence to determine the slope at the start of the curve. The first point specified is the control point which
is not actually part of the spline. The second point is the start of the spline. The sub-prism ends when this second
point is duplicated. The next point is the control point of the next sub-prism. The point after that is the first
point of the second sub-prism. Here is an example:

prism {
quadratic_spline
0, 1, 12,
<1,-1>, <0,0>, <6,0>, //outer rim; <1,-1> is control point and
<6,8>, <0,8>, <0,0>, //<0,0> is first \& last point

<2,0>, <1,1>, <5,1>, //inner rim; <2,0> is control point and
<5,7>, <1,7>, <1,1> //<1,1> is first \& last point

}

In the cubic spline, each sub-prism needs two additional control points – one at the beginning of each sub-
prisms’ point sequence to determine the slope at the start of the curve and one at the end. The first point
specified is the control point which is not actually part of the spline. The second point is the start of the spline.
The sub-prism ends when this second point is duplicated. The next point is the control point of the end of the
first sub-prism. Next is the beginning control point of the next sub-prism. The point after that is the first point
of the second sub-prism.

Here is an example:

prism {
cubic_spline
0, 1, 14,
<1,-1>, <0,0>, <6,0>, //outer rim; First control is <1,-1> and
<6,8>, <0,8>, <0,0>, //<0,0> is first \& last point.
<-1,1>, //Last control of first spline is <-1,1>

<2,0>, <1,1>, <5,1>, //inner rim; First control is <2,0> and
<5,7>, <1,7>, <1,1>, //<1,1> is first \& last point
<0,2> //Last control of first spline is <0,2>

}

Thebezier spline is an alternate kind of cubic spline. Points 1 and 4 specify the end points of a segment and
points 2 and 3 are control points which specify the slope at the endpoints. Points 2 and 3 do not actually lie on
the spline. They adjust the slope of the spline. If you draw an imaginary line between point 1 and 2, it represents
the slope at point 1. It is a line tangent to the curve at point 1. The greater the distance between 1 and 2, the
flatter the curve. With a short tangent the spline can bend more. The same holds true for control point 3 and
endpoint 4. If you want the spline to be smooth between segments, point 3 and 4 on one segment and point 1
and 2 on the next segment must form a straight line and point 4 of one segment must be the same as point one
on the next segment.

By default linear sweeping is used to create the prism, i.e. the prism’s walls are perpendicular to the x-z-plane
(the size of the curve does not change during the sweep). You can also useconic sweep that leads to a prism
with cone-like walls by scaling the curve down during the sweep.

Like cylinders the prism is normally closed. You can remove the caps on the prism by using theopen keyword.
If you do so you should not use it with CSG because the results may get wrong.

128 Objects

For an explanation of the spline concept read the description of the ”Lathe” object. Also see the tutorials on
”Lathe Object” and ”Prism Object”.

The sturm keyword specifies the slower but more accurate Sturmian root solver which may be used with the
cubic or bezier spline prisms if the shape does not render properly. The linear and quadratic spline prisms do
not need the Sturmian root solver.

4.1.9 Sphere

The syntax of thesphere object is:

SPHERE:
sphere
{

<Center>, Radius
[OBJECT_MODIFIERS...]

}

Figure 4.6: The geometry of a sphere.

Where<Center > is a vector specifying the x, y, z coordinates of the center of the sphere andRadius is a
float value specifying the radius. Spheres may be scaled unevenly giving an ellipsoid shape.

Because spheres are highly optimized they make good bounding shapes (if manual bounding seems to be
necessary).

4.1.10 Sphere Sweep

The syntax of thesphere sweep object is:

SPHERE_SWEEP:
sphere_sweep {

linear_spline | b_spline | cubic_spline
NUM_OF_SPHERES,

CENTER, RADIUS,
CENTER, RADIUS,
...

4.1 Finite Solid Primitives 129

CENTER, RADIUS
[tolerance DEPTH_TOLERANCE]
[OBJECT_MODIFIERS]

}

Spheresweep default values:

tolerance : 1.0e-6 (0.000001)

A Sphere Sweep is the envelope of a moving sphere with varying radius, or, in other words, the space a sphere
occupies during its movement along a spline.
Sphere Sweeps are modeled by specifying a list of single spheres which are then interpolated.
Three kinds of interpolation are supported:

• linear spline : Interpolating the input data with a linear function, which means that the single spheres
are connected by straight tubes.

• b spline : Approximating the input data using a cubic b-spline function, which results in a curved object.

• cubic spline : Approximating the input data using a cubic spline, which results in a curved object.

The sphere list (center and radius of each sphere) can take as many spheres as you like to describe the object,
but you will need at least two spheres for alinear spline, and four spheres forb spline or cubic spline.

Optional: The depth tolerance that should be used for the intersection calculations. This is done by adding the
tolerance keyword and the desired value: the default distance is 1.0e-6 (0.000001) and should do for most
sphere sweep objects.
You should change this when you see dark spots on the surface of the object. These are probably caused by
an effect called ”Self-Shading”. This means that the object casts shadows onto itself at some points because
of calculation errors. A ray tracing program usually defines the minimal distance a ray must travel before it
actually hits another (or the same) object to avoid this effect. If this distance is chosen too small, Self-Shading
may occur.
If so, specifytolerance 1.0e-4 or higher.

Note: if these dark spots remain after raising the tolerance, you might get rid of these spots by using Adaptive
Supersampling (Method 2) for antialiasing. Images look better with antialiasing anyway.

Note: the merge CSG operation is not recommended with Sphere Sweeps: there could be a small gap between
the merged objects!

4.1.11 Superquadric Ellipsoid

Thesuperellipsoid object creates a shape known as asuperquadric ellipsoidobject. It is an extension of the
quadric ellipsoid. It can be used to create boxes and cylinders with round edges and other interesting shapes.
Mathematically it is given by the equation:

f (x,y,z) =
(
|x|(

2
e) + |y|(

2
e)
)(e

n) + |z|(
2
n)−1 = 0

Table 4.2:

130 Objects

The values ofe andn, called theeast-westandnorth-southexponent, determine the shape of the superquadric
ellipsoid. Both have to be greater than zero. The sphere is given bye = 1 andn = 1.

The syntax of the superquadric ellipsoid is:

SUPERELLIPSOID:
superellipsoid
{

<Value_E, Value_N>
[OBJECT_MODIFIERS...]

}

The 2-D vector specifies thee and n values in the equation above. The object sits at the origin and occupies a
space about the size of abox{<-1,-1,-1>,<1,1,1>}.

Two useful objects are the rounded box and the rounded cylinder. These are declared in the following way.

#declare Rounded_Box = superellipsoid { <Round, Round> }
#declare Rounded_Cylinder = superellipsoid { <1, Round> }

The roundedness valueRound determines the roundedness of the edges and has to be greater than zero and
smaller than one. The smaller you choose the values, the smaller and sharper the edges will get.

Very small values ofe andn might cause problems with the root solver (the Sturmian root solver cannot be
used).

4.1.12 Surface of Revolution

The sor object is asurface of revolutiongenerated by rotating the graph of a function about the y-axis. This
function describes the dependence of the radius from the position on the rotation axis. The syntax is:

SOR:
sor
{

Number_Of_Points, <Point_1>, <Point_2>, ... <Point_n>
[open] [SOR_MODIFIERS...]

}
SOR_MODIFIER:

sturm | OBJECT_MODIFIER

SOR default values:

sturm : off

The float valueNumber Of Points specifies the number of 2-D vectors which follow. The points<Point 1>

through<Point n> are two-dimensional vectors consisting of the radius and the corresponding height, i.e. the
position on the rotation axis. These points are smoothly connected (the curve is passing through the specified
points) and rotated about the y-axis to form the SOR object. The first and last points are only used to determine
the slopes of the function at the start and end point. They do not actually lie on the curve. The function used
for the SOR object is similar to the splines used for the lathe object. The difference is that the SOR object is
less flexible because it underlies the restrictions of any mathematical function, i.e. to any given point y on the
rotation axis belongs at most one function value, i.e. one radius value. You cannot rotate closed curves with the
SOR object. Also, make sure that the curve does not cross zero (y-axis) as this can result in ’less than perfect’
bounding cylinders. POV-Ray will very likely fail to render large chunks of the part of the spline contained in
such an interval.

4.1 Finite Solid Primitives 131

The optional keywordopen allows you to remove the caps on the SOR object. If you do this you should not
use it with CSG because the results may be wrong.

The SOR object is useful for creating bottles, vases, and things like that. A simple vase could look like this:

#declare Vase = sor {
7,
<0.000000, 0.000000>
<0.118143, 0.000000>
<0.620253, 0.540084>
<0.210970, 0.827004>
<0.194093, 0.962025>
<0.286920, 1.000000>
<0.468354, 1.033755>
open

}

One might ask why there is any need for a SOR object if there is already a lathe object which is much more
flexible. The reason is quite simple. The intersection test with a SOR object involves solving a cubic polynomial
while the test with a lathe object requires to solve a 6th order polynomial (you need a cubic spline for the same
smoothness). Since most SOR and lathe objects will have several segments this will make a great difference in
speed. The roots of the 3rd order polynomial will also be more accurate and easier to find.

Thesturm keyword may be added to specify the slower but more accurate Sturmian root solver. It may be used
with the surface of revolution object if the shape does not render properly.

The following explanations are for the mathematically interested reader who wants to know how the surface of
revolution is calculated. Though it is not necessary to read on it might help in understanding the SOR object.

The function that is rotated about the y-axis to get the final SOR object is given by

r2 = f (h) = A·h3 +B·h2 +C ·h+D

Table 4.3:

with radiusr and heighth. Since this is a cubic function in h it has enough flexibility to allow smooth curves.

The curve itself is defined by a set of n points P(i), i=0...n-1, which are interpolated using one function for every
segment of the curve. A segment j, j=1...n-3, goes from point P(j) to point P(j+1) and uses points P(j-1) and
P(j+2) to determine the slopes at the endpoints. If there are n points we will have n-3 segments. This means
that we need at least four points to get a proper curve. The coefficients A(j), B(j), C(j) and D(j) are calculated
for every segment using the equation

where r(j) is the radius and h(j) is the height of point P(j).

The figure below shows the configuration of the points P(i), the location of segment j, and the curve that is
defined by this segment.

4.1.13 Text

A text object creates 3-D text as an extruded block letter. Currently only TrueType fonts (ttf) and TrueType
Collections (ttc) are supported but the syntax allows for other font types to be added in the future. If TrueType

132 Objects

b = M ·x,with :

b =

r(j)2

r(j +1)2

2· r(j) · (r(j +1)− r(j −1))
h(j +1)−h(j −1)

2· r(j +1) · (r(j +2)− r(j))
h(j +2)−h(j)

M =

h(j)3 h(j)2 h(j) 1

h(j +1)3 h(j +1)2 h(j +1) 1
3·h(j)2 2·h(j) 1 0

3·h(j +1)2 2·h(j +1) 1 0

x =

A(j)
B(j)
C(j)
D(j)

Table 4.4:

Figure 4.7: Points on a surface of revolution.

Collections are used, the first font found in the collection will be used. The syntax is:

TEXT_OBECT:
text {

ttf "fontname.ttf/ttc" "String_of_Text"
Thickness, <Offset>

[OBJECT_MODIFIERS...]
}

Wherefontname.ttf or fontname.ttc is the name of the TrueType font file. It is a quoted string literal or string
expression. The string expression which follows is the actual text of the string object. It too may be a quoted
string literal or string expression. See section ”Strings” for more on string expressions.

4.1 Finite Solid Primitives 133

The text will start with the origin at the lower left, front of the first character and will extend in the +x-direction.
The baseline of the text follows the x-axis and descender drop into the -y-direction. The front of the character
sits in the x-y-plane and the text is extruded in the +z-direction. The front-to-back thickness is specified by the
required value Thickness .

Characters are generally sized so that 1 unit of vertical spacing is correct. The characters are about 0.5 to 0.75
units tall.

The horizontal spacing is handled by POV-Ray internally including any kerning information stored in the font.
The required vector<Offset > defines any extra translation between each character. Normally you should
specify a zero for this value. Specifying0.1*x would put additional 0.1 units of space between each character.
Here is an example:

text {
ttf "timrom.ttf" "POV-Ray" 1, 0
pigment { Red }

}

Only printable characters are allowed in text objects. Characters such as return, line feed, tabs, backspace etc.
are not supported.

For easy access to your fonts, set the LibraryPath to the directory that contains your font collection.

4.1.14 Torus

A torus is a 4th order quartic polynomial shape that looks like a donut or inner tube. Because this shape is so
useful and quartics are difficult to define, POV-Ray lets you take a short-cut and define a torus by:

TORUS:
torus
{

Major, Minor
[TORUS_MODIFIER...]

}
TORUS_MODIFIER:

sturm | OBJECT_MODIFIER

Torus default values:

sturm : off

whereMajor is a float value giving the major radius andMinor is a float specifying the minor radius. The
major radius extends from the center of the hole to the mid-line of the rim while the minor radius is the radius of
the cross-section of the rim. The torus is centered at the origin and lies in the x-z-plane with the y-axis sticking
through the hole.

The torus is internally bounded by two cylinders and two rings forming a thick cylinder. With this bounding
cylinder the performance of the torus intersection test is vastly increased. The test for a valid torus intersection,
i.e. solving a 4th order polynomial, is only performed if the bounding cylinder is hit. Thus a lot of slow root
solving calculations are avoided.

Calculations for all higher order polynomials must be very accurate. If the torus renders improperly you may
add the keywordsturm to use POV-Ray’s slower-yet-more-accurate Sturmian root solver.

134 Objects

Figure 4.8: Major and minor radius of a torus.

4.2 Finite Patch Primitives

There are six totally thin, finite objects which have no well-defined inside. They are bicubic patch, disc, smooth
triangle, triangle, polygon and mesh / mesh2. They may be combined in CSG union but cannot be used in other
types of CSG (or inside aclipped by statement). Because these types are finite POV-Ray can use automatic
bounding on them to speed up rendering time. As with all shapes they can be translated, rotated and scaled.

4.2.1 Bicubic Patch

A bicubic patch is a 3D curved surface created from a mesh of triangles. POV-Ray supports a type of bicubic
patch called aBezier patch. A bicubic patch is defined as follows:

BICUBIC_PATCH:
bicubic_patch
{

PATCH_ITEMS...
<Point_1>,<Point_2>,<Point_3>,<Point_4>,
<Point_5>,<Point_6>,<Point_7>,<Point_8>,
<Point_9>,<Point_10>,<Point_11>,<Point_12>,
<Point_13>,<Point_14>,<Point_15>,<Point_16>
[OBJECT_MODIFIERS...]

}
PATCH_ITEMS:

type Patch_Type | u_steps Num_U_Steps | v_steps Num_V_Steps |
flatness Flatness

Bicubic patch default values:

flatness : 0.0
u_steps : 0
v_steps : 0

The keywordtype is followed by a float Patch Type which currently must be either 0 or 1. For type 0 only
the control points are retained within POV-Ray. This means that a minimal amount of memory is needed but
POV-Ray will need to perform many extra calculations when trying to render the patch. Type 1 preprocesses
the patch into many subpatches. This results in a significant speedup in rendering at the cost of memory.

4.2 Finite Patch Primitives 135

The four parameterstype, flatness, u steps andv steps may appear in any order. Onlytype is required.
They are followed by 16 vectors (4 rows of 4) that define the x, y, z coordinates of the 16 control points which
define the patch. The patch touches the four corner points<Point 1>, <Point 4>, <Point 13> and
<Point 16> while the other 12 points pull and stretch the patch into shape. The Bezier surface is enclosed by
the convex hull formed by the 16 control points, this is known as theconvex hull property.

The keywordsu steps andv steps are each followed by integer values which tell how many rows and columns
of triangles are the minimum to use to create the surface, both default to 0. The maximum number of individual
pieces of the patch that are tested by POV-Ray can be calculated from the following:pieces = 2ˆusteps *
2ˆv steps.

This means that you really should keepu steps and v steps under 4. Most patches look just fine withu steps

3 andv steps 3, which translates to 64 subpatches (128 smooth triangles).

As POV-Ray processes the Bezier patch it makes a test of the current piece of the patch to see if it is flat enough
to just pretend it is a rectangle. The statement that controls this test is specified with theflatness keyword
followed by a float. Typical flatness values range from 0 to 1 (the lower the slower). The default if none is
specified is 0.0.

If the value for flatness is 0 POV-Ray will always subdivide the patch to the extend specified byu steps and
v steps. If flatness is greater than 0 then every time the patch is split, POV-Ray will check to see if there is any
need to split further.

There are both advantages and disadvantages to using a non-zero flatness. The advantages include:

- If the patch is not very curved, then this will be detected and POV-Ray will not waste a lot of time looking at
the wrong pieces.

- If the patch is only highly curved in a couple of places, POV-Ray will keep subdividing there and concentrate
its efforts on the hard part.

The biggest disadvantage is that if POV-Ray stops subdividing at a particular level on one part of the patch and
at a different level on an adjacent part of the patch there is the potential for cracking. This is typically visible
as spots within the patch where you can see through. How bad this appears depends very highly on the angle at
which you are viewing the patch.

Like triangles, the bicubic patch is not meant to be generated by hand. These shapes should be created by a
special utility. You may be able to acquire utilities to generate these shapes from the same source from which
you obtained POV-Ray. Here is an example:

bicubic_patch {
type 0
flatness 0.01
u_steps 4
v_steps 4
<0, 0, 2>, <1, 0, 0>, <2, 0, 0>, <3, 0,-2>,
<0, 1 0>, <1, 1, 0>, <2, 1, 0>, <3, 1, 0>,
<0, 2, 0>, <1, 2, 0>, <2, 2, 0>, <3, 2, 0>,
<0, 3, 2>, <1, 3, 0>, <2, 3, 0>, <3, 3, -2>

}

The triangles in a POV-Raybicubic patch are automatically smoothed using normal interpolation but it is up to
the user (or the user’s utility program) to create control points which smoothly stitch together groups of patches.

136 Objects

4.2.2 Disc

Another flat, finite object available with POV-Ray is thedisc. The disc is infinitely thin, it has no thickness. If
you want a disc with true thickness you should use a very short cylinder. A disc shape may be defined by:

DISC:
disc
{

<Center>, <Normal>, Radius [, Hole_Radius]
[OBJECT_MODIFIERS...]

}

Disc default values:

HOLE RADIUS : 0.0

The vector<Center > defines the x, y, z coordinates of the center of the disc. The<Normal > vector describes
its orientation by describing its surface normal vector. This is followed by a float specifying theRadius . This
may be optionally followed by another float specifying the radius of a hole to be cut from the center of the disc.

Note: The inside of a disc is the inside of the plane that contains the disc. Also note that it is not constrained by
the radius of the disc.

4.2.3 Mesh

Themesh object can be used to efficiently store large numbers of triangles. Its syntax is:

MESH:
mesh
{

MESH_TRIANGLE...
[MESH_MODIFIER...]

}
MESH_TRIANGLE:

triangle
{

<Corner_1>, <Corner_2>, <Corner_3>
[uv_vectors <uv_Corner_1>, <uv_Corner_2>, <uv_Corner_3>]
[MESH_TEXTURE]

} |
smooth_triangle
{

<Corner_1>, <Normal_1>,
<Corner_2>, <Normal_2>,
<Corner_3>, <Normal_3>
[uv_vectors <uv_Corner_1>, <uv_Corner_2>, <uv_Corner_3>]
[MESH_TEXTURE]

}
MESH_TEXTURE:

texture { TEXTURE_IDENTIFIER }
texture_list {

TEXTURE_IDENTIFIER TEXTURE_IDENTIFIER TEXTURE_IDENTIFIER
}

4.2 Finite Patch Primitives 137

MESH_MODIFIER:
inside_vector <direction> | hierarchy [Boolean] |
OBJECT_MODIFIER

Mesh default values:

hierarchy : on

Any number oftriangle and/orsmooth triangle statements can be used and each of those triangles can be
individually textured by assigning a texture identifier to it. The texture has to be declared before the mesh is
parsed. It is not possible to use texture definitions inside the triangle or smooth triangle statements. This is a
restriction that is necessary for an efficient storage of the assigned textures. See ”Triangle and Smooth Triangle”
for more information on triangles.

Themesh object can supportuv mapping. For this, per triangle the keyworduv vectors has to be given, together
with three 2D uv-vectors. Each vector specifies a location in the xy-plane from which the texture has to be
mapped to the matching points of the triangle. Also see the section uvmapping.

The mesh’s components are internally bounded by a bounding box hierarchy to speed up intersection testing.
The bounding hierarchy can be turned off with thehierarchy off keyword. This should only be done if memory
is short or the mesh consists of only a few triangles. The default ishierarchy on.

Copies of a mesh object refer to the same triangle data and thus consume very little memory. You can easily
trace a hundred copies of a 10000 triangle mesh without running out of memory (assuming the first mesh
fits into memory). The mesh object has two advantages over a union of triangles: it needs less memory and
it is transformed faster. The memory requirements are reduced by efficiently storing the triangles vertices
and normals. The parsing time for transformed meshes is reduced because only the mesh object has to be
transformed and not every single triangle as it is necessary for unions.

The mesh object can currently only include triangle and smooth triangle components. That restriction may
change, allowing polygonal components, at some point in the future.

Solid Mesh

Triangle mesh objects (mesh and mesh2) can now be used in CSG objects such as difference and intersect,
because, after addinginside vector, they do have a defined ’inside’. This will only work for well-behaved
meshes, which are completely closed volumes. If meshes have any holes in them, this might work, but the
results are not guaranteed.

To determine if a point is inside a triangle mesh, POV-Ray shoots a ray from the point in some arbitrary direction.
If this vector intersects an odd number of triangles, the point is inside the mesh. If it intersects an even number
of triangles, the point is outside of the mesh. You can specify the direction of this vector. For example, to use
+z as the direction, you would add the following line to the triangle mesh description (following all other mesh
data, but before the object modifiers).

inside_vector <0, 0, 1>

This change does not have any effect on unions of triangles... these will still be always hollow.

4.2.4 Mesh2

The new mesh syntax is designed for use in conversion from other file formats.

138 Objects

MESH2 :
mesh2{

VECTORS...
LISTS... |
INDICES... |
MESH_MODIFIERS

}
VECTORS :

vertex_vectors
{

number_of_vertices,
<vertex1>, <vertex2>, ...

}|
normal_vectors
{

number_of_normals,
<normal1>, <normal2>, ...

}|
uv_vectors
{

number_of_uv_vectors,
<uv_vect1>, <uv_vect2>, ...

}
LISTS :

texture_list
{

number_of_textures,
texture { Texture1 },
texture { Texture2 }, ...

}|
INDICES :

face_indices
{

number_of_faces,
<index_a, index_b, index_c> [,texture_index [,

texture_index, texture_index]],
<index_d, index_e, index_f> [,texture_index [,

texture_index, texture_index]],
...

}|
normal_indices
{

number_of_faces,
<index_a, index_b, index_c>,
<index_d, index_e, index_f>,
...

}|
uv_indices {

number_of_faces,
<index_a, index_b, index_c>,
<index_d, index_e, index_f>,
...

}

4.2 Finite Patch Primitives 139

MESH_MODIFIER :
inside_vector <direction> | OBJECT_MODIFIERS

mesh2 has to be specified in the orderVECTORS..., LISTS..., INDICES.... Thenormal vectors, uv vectors, and
texture list sections are optional. If the number of normals equals the number of vertices then the normal-
indices section is optional and the indexes from theface indices section are used instead. Likewise for the
uv indices section.

Note: that the numbers of uvindices must equal number of faces.

The indexes are ZERO-BASED! So the first item in each list has an index of zero.

Smooth and Flat triangles in the same mesh

You can specify both flat and smooth triangles in the same mesh. To do this, specify the smooth triangles first
in theface indices section, followed by the flat triangles. Then, specify normal indices (in thenormal indices

section) for only the smooth triangles. Any remaining triangles that do not have normal indices associated with
them will be assumed to be flat triangles.

Mesh Triangle Textures

To specify a texture for an individual mesh triangle, specify a single integer texture index following the face-
index vector for that triangle.

To specify three textures for vertex-texture interpolation, specify three integer texture indices (separated by
commas) following the face-index vector for that triangle.

Vertex-texture interpolation and textures for an individual triangle can be mixed in the same mesh

4.2.5 Polygon

Thepolygon object is useful for creating rectangles, squares and other planar shapes with more than three edges.
Their syntax is:

POLYGON:
polygon
{

Number_Of_Points, <Point_1> <Point_2>... <Point_n>
[OBJECT_MODIFIER...]

}

The floatNumber Of Points tells how many points are used to define the polygon. The points<Point 1>

through<Point n> describe the polygon or polygons. A polygon can contain any number of sub-polygons,
either overlapping or not. In places where an even number of polygons overlaps a hole appears. When you
repeat the first point of a sub-polygon, it closes it and starts a new sub-polygon’s point sequence. This means
that all points of a sub-polygon are different.

If the last sub-polygon is not closed a warning is issued and the program automatically closes the polygon. This
is useful because polygons imported from other programs may not be closed, i.e. their first and last point are
not the same.

140 Objects

All points of a polygon are three-dimensional vectors that have to lay on the same plane. If this is not the case
an error occurs. It is common to use two-dimensional vectors to describe the polygon. POV-Ray assumes that
the z value is zero in this case.

A square polygon that matches the default planar image map is simply:

polygon {
4,
<0, 0>, <0, 1>, <1, 1>, <1, 0>
texture {

finish { ambient 1 diffuse 0 }
pigment { image_map { gif "test.gif" } }

}
//scale and rotate as needed here

}

The sub-polygon feature can be used to generate complex shapes like the letter ”P”, where a hole is cut into
another polygon:

#declare P = polygon {
12,
<0, 0>, <0, 6>, <4, 6>, <4, 3>, <1, 3>, <1,0>, <0, 0>,
<1, 4>, <1, 5>, <3, 5>, <3, 4>, <1, 4>

}

The first sub-polygon (on the first line) describes the outer shape of the letter ”P”. The second sub-polygon (on
the second line) describes the rectangular hole that is cut in the top of the letter ”P”. Both rectangles are closed,
i.e. their first and last points are the same.

The feature of cutting holes into a polygon is based on the polygon inside/outside test used. A point is considered
to be inside a polygon if a straight line drawn from this point in an arbitrary direction crosses an odd number of
edges (this is known asJordan’s curve theorem).

Another very complex example showing one large triangle with three small holes and three separate, small
triangles is given below:

polygon {
28,
<0, 0> <1, 0> <0, 1> <0, 0> // large outer triangle
<.3, .7> <.4, .7> <.3, .8> <.3, .7> // small outer triangle #1
<.5, .5> <.6, .5> <.5, .6> <.5, .5> // small outer triangle #2
<.7, .3> <.8, .3> <.7, .4> <.7, .3> // small outer triangle #3
<.5, .2> <.6, .2> <.5, .3> <.5, .2> // inner triangle #1
<.2, .5> <.3, .5> <.2, .6> <.2, .5> // inner triangle #2
<.1, .1> <.2, .1> <.1, .2> <.1, .1> // inner triangle #3

}

4.2.6 Triangle and Smooth Triangle

Thetriangle primitive is available in order to make more complex objects than the built-in shapes will permit.
Triangles are usually not created by hand but are converted from other files or generated by utilities. A triangle
is defined by

TRIANGLE:

4.3 Infinite Solid Primitives 141

triangle
{

<Corner_1>, <Corner_2>, <Corner_3>
[OBJECT_MODIFIER...]

}

where<Corner n> is a vector defining the x, y, z coordinates of each corner of the triangle.

Because triangles are perfectly flat surfaces it would require extremely large numbers of very small triangles
to approximate a smooth, curved surface. However much of our perception of smooth surfaces is dependent
upon the way light and shading is done. By artificially modifying the surface normals we can simulate a smooth
surface and hide the sharp-edged seams between individual triangles.

Thesmooth triangle primitive is used for just such purposes. The smooth triangles use a formula called Phong
normal interpolation to calculate the surface normal for any point on the triangle based on normal vectors which
you define for the three corners. This makes the triangle appear to be a smooth curved surface. A smooth
triangle is defined by

SMOOTH_TRIANGLE:
smooth_triangle
{

<Corner_1>, <Normal_1>, <Corner_2>,
<Normal_2>, <Corner_3>, <Normal_3>
[OBJECT_MODIFIER...]

}

where the corners are defined as in regular triangles and<Normal n> is a vector describing the direction of
the surface normal at each corner.

These normal vectors are prohibitively difficult to compute by hand. Therefore smooth triangles are almost
always generated by utility programs. To achieve smooth results, any triangles which share a common vertex
should have the same normal vector at that vertex. Generally the smoothed normal should be the average of all
the actual normals of the triangles which share that point.

The mesh object is a way to combine manytriangle andsmooth triangle objects together in a very efficient
way. See ”Mesh” for details.

4.3 Infinite Solid Primitives

There are five polynomial primitive shapes that are possibly infinite and do not respond to automatic bounding.
They are plane, cubic, poly, quadric and quartic. They do have a well defined inside and may be used in CSG
and inside aclipped by statement. As with all shapes they can be translated, rotated and scaled.

4.3.1 Plane

Theplane primitive is a simple way to define an infinite flat surface. The plane is not a thin boundary or can
be compared to a sheet of paper. A plane is a solid object of infinite size that divides POV-space in two parts,
inside and outside the plane. The plane is specified as follows:

PLANE:
plane

142 Objects

{
<Normal>, Distance
[OBJECT_MODIFIERS...]

}

The<Normal > vector defines the surface normal of the plane. A surface normal is a vector which points up
from the surface at a 90 degree angle. This is followed by a float value that gives the distance along the normal
that the plane is from the origin (that is only true if the normal vector has unit length; see below). For example:

plane { <0, 1, 0>, 4 }

This is a plane where straight up is defined in the positive y-direction. The plane is 4 units in that direction away
from the origin. Because most planes are defined with surface normals in the direction of an axis you will often
see planes defined using thex, y or z built-in vector identifiers. The example above could be specified as:

plane { y, 4 }

The plane extends infinitely in the x- and z-directions. It effectively divides the world into two pieces. By
definition the normal vector points to the outside of the plane while any points away from the vector are defined
as inside. This inside/outside distinction is important when using planes in CSG andclipped by. It is also
important when using fog or atmospheric media. If you place a camera on the ”inside” half of the world, then
the fog or media will not appear. Such issues arise in any solid object but it is more common with planes.
Users typically know when they have accidentally placed a camera inside a sphere or box but ”inside a plane”
is an unusual concept. In general you can reverse the inside/outside properties of an object by adding the object
modifier inverse. See ”Inverse” and ”Empty and Solid Objects” for details.

A plane is called apolynomialshape because it is defined by a first order polynomial equation. Given a plane:

plane { <A, B, C>, D }

it can be represented by the equationA*x + B*y + C*z - D*sqrt(Aˆ2 + Bˆ2 + Cˆ2) = 0 .

Therefore our exampleplane{y,4} is actually the polynomial equation y=4. You can think of this as a set of
all x, y, z points where all have y values equal to 4, regardless of the x or z values.

This equation is a first order polynomial because each term contains only single powers of x, y or z. A second
order equation has terms like xˆ2, yˆ2, zˆ2, xy, xz and yz. Another name for a 2nd order equation is a quadric
equation. Third order polys are called cubics. A 4th order equation is a quartic. Such shapes are described in
the sections below.

4.3.2 Poly, Cubic and Quartic

Higher order polynomial surfaces may be defined by the use of apoly shape. The syntax is

POLY:
poly
{

Order, <A1, A2, A3,... An>
[POLY_MODIFIERS...]

}
POLY_MODIFIERS:

sturm | OBJECT_MODIFIER

Poly default values:

sturm : off

4.3 Infinite Solid Primitives 143

whereOrder is an integer number from 2 to 15 inclusively that specifies the order of the equation.A1,

A2, ... An are float values for the coefficients of the equation. There aren such terms where n =

((Order+1)*(Order+2)*(Order+3))/6.

Thecubic object is an alternate way to specify 3rd order polys. Its syntax is:

CUBIC:
cubic
{

<A1, A2, A3,... A20>
[POLY_MODIFIERS...]

}

Also 4th order equations may be specified with thequartic object. Its syntax is:

QUARTIC:
quartic
{

<A1, A2, A3,... A35>
[POLY_MODIFIERS...]

}

The following table shows which polynomial terms correspond to which x,y,z factors for the orders 2 to 7.
Remembercubic is actually a 3rd order polynomial andquartic is 4th order.

Polynomial shapes can be used to describe a large class of shapes including the torus, the lemniscate, etc. For
example, to declare a quartic surface requires that each of the coefficients (A1 ... A35) be placed in order
into a single long vector of 35 terms. As an example let’s define a torus the hard way. A Torus can be represented
by the equation:x4 + y4 + z4 + 2 x2 y2 + 2 x2 z2 + 2 y2 z2 - 2 (r 02 + r 12) x2 + 2 (r 02 - r 12) y2

- 2 (r 02 + r 12) z2 + (r 02 - r 12)2 = 0

Where r0 is the major radius of the torus, the distance from the hole of the donut to the middle of the ring of
the donut, and r1 is the minor radius of the torus, the distance from the middle of the ring of the donut to the
outer surface. The following object declaration is for a torus having major radius 6.3 minor radius 3.5 (Making
the maximum width just under 20).

// Torus having major radius sqrt(40), minor radius sqrt(12)
quartic {

< 1, 0, 0, 0, 2, 0, 0, 2, 0,
-104, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 2, 0, 56, 0,
0, 0, 0, 1, 0, -104, 0, 784 >

sturm
}

Poly, cubic and quartics are just like quadrics in that you do not have to understand one to use one. The file
shapesq.inc has plenty of pre-defined quartics for you to play with.

Polys use highly complex computations and will not always render perfectly. If the surface is not smooth, has
dropouts, or extra random pixels, try using the optional keywordsturm in the definition. This will cause a slower
but more accurate calculation method to be used. Usually, but not always, this will solve the problem. If sturm
does not work, try rotating or translating the shape by some small amount.

There are really so many different polynomial shapes, we cannot even begin to list or describe them all. We
suggest you find a good reference or text book if you want to investigate the subject further.

144 Objects

2nd 3rd 4th 5th 6th 7th 5th 6th 7th 6th 7th

A1 x2 x3 x4 x5 x6 x7 A41 y3 xy3 x2y3 A81 z3 xz3

A2 xy x2y x3y x4y x5y x6y A42 y2z3 xy2z3 x2y2z3 A82 z2 xz2

A3 xz x2z x3z x4z x5z x6z A43 y2z2 xy2z2 x2y2z2 A83 z xz
A4 x x2 x3 x4 x5 x6 A44 y2z xy2z x2y2z A84 1 x
A5 y2 xy2 x2y2 x3y2 x4y2 x5y2 A45 y2 xy2 x2y2 A85 y7

A6 yz xyz x2yz x3yz x4yz x5yz A46 yz4 xyz4 x2yz4 A86 y6z
A7 y xy x2y x3y x4y x5y A47 yz3 xyz3 x2yz3 A87 y6

A8 z2 xz2 x2z2 x3z2 x4z2 x5z2 A48 yz2 xyz2 x2yz2 A88 y5z2

A9 z xz x2z x3z x4z x5z A49 yz xyz x2yz A89 y5z
A10 1 x x2 x3 x4 x5 A50 y xy x2y A90 y5

A11 y3 xy3 x2y3 x3y3 x4y3 A51 z5 xz5 x2z5 A91 y4z3

A12 y2z xy2z x2y2z x3y2z x4y2z A52 z4 xz4 x2z4 A92 y4z2

A13 y2 xy2 x2y2 x3y2 x4y2 A53 z3 xz3 x2z3 A93 y4z
A14 yz2 xyz2 x2yz2 x3yz2 x4yz2 A54 z2 xz2 x2z2 A94 y4

A15 yz xyz x2yz x3yz x4yz A55 z xz x2z A95 y3z4

A16 y xy x2y x3y x4y A56 1 x x2 A96 y3z3

A17 z3 xz3 x2z3 x3z3 x4z3 A57 y6 xy6 A97 y3z2

A18 z2 xz2 x2z2 x3z2 x4z2 A58 y5z xy5z A98 y3z
A19 z xz x2z x3z x4z A59 y5 xy5 A99 y3

A20 1 x x2 x3 x4 A60 y4z2 xy4z2 A100 y2z5

A21 y4 xy4 x2y4 x3y4 A61 y4z xy4z A101 y2z4

A22 y3z xy3z x2y3z x3y3z A62 y4 xy4 A102 y2z3

A23 y3 xy3 x2y3 x3y3 A63 y3z3 xy3z3 A103 y2z2

A24 y2z2 xy2z2 x2y2z2 x3y2z2 A64 y3z2 xy3z2 A104 y2z
A25 y2z xy2z x2y2z x3y2z A65 y3z xy3z A105 y2

A26 y2 xy2 x2y2 x3y2 A66 y3 xy3 A106 yz6

A27 yz3 xyz3 x2yz3 x3yz3 A67 y2z4 xy2z4 A107 yz5

A28 yz2 xyz2 x2yz2 x3yz2 A68 y2z3 xy2z3 A108 yz4

A29 yz xyz x2yz x3yz A69 y2z2 xy2z2 A109 yz3

A30 y xy x2y x3y A70 y2z xy2z A110 yz2

A31 z4 xz4 x2z4 x3z4 A71 y2 xy2 A111 yz
A32 z3 xz3 x2z3 x3z3 A72 yz5 xyz5 A112 y
A33 z2 xz2 x2z2 x3z2 A73 yz4 xyz4 A113 z7

A34 z xz x2z x3z A74 yz3 xyz3 A114 z6

A35 1 x x2 x3 A75 yz2 xyz2 A115 z5

A36 y5 xy5 x2y5 A76 yz xyz A116 z4

A37 y4z xy4z x2y4z A77 y xy A117 z3

A38 y4 xy4 x2y4 A78 z6 xz6 A118 z2

A39 y3z2 xy3z2 x2y3z2 A79 z5 xz5 A119 z
A40 y3z xy3z x2y3z A80 z4 xz4 A120 1

Table 4.4: Cubic and quartic polynomial terms

4.4 Isosurface Object 145

4.3.3 Quadric

The quadric object can produce shapes like paraboloids (dish shapes) and hyperboloids (saddle or hourglass
shapes). It can also produce ellipsoids, spheres, cones, and cylinders but you should use thesphere, cone, and
cylinder objects built into POV-Ray because they are faster than the quadric version.

Note: do not confuse ”quaDRic” with ”quaRTic”. A quadric is a 2nd order polynomial while a quartic is 4th
order.

Quadrics render much faster and are less error-prone but produce less complex objects. The syntax is:

QUADRIC:
quadric
{

<A,B,C>,<D,E,F>,<G,H,I>,J
[OBJECT_MODIFIERS...]

}

Although the syntax actually will parse 3 vector expressions followed by a float, we traditionally have written
the syntax as above whereA throughJ are float expressions. These 10 float that define a surface of x, y, z
points which satisfy the equation A x2 + B y2 + C z2 + D xy + E xz + F yz + G x + H y + I z + J = 0

Different values ofA, B, C, ... J will give different shapes. If you take any three dimensional point and
use its x, y and z coordinates in the above equation the answer will be 0 if the point is on the surface of the
object. The answer will be negative if the point is inside the object and positive if the point is outside the object.
Here are some examples:

X2 + Y2 + Z2 - 1 = 0 Sphere
X2 + Y2 - 1 = 0 Infinite cylinder along the Z axis
X2 + Y2 - Z2 = 0 Infinite cone along the Z axis

Table 4.5: Some quartic shapes

The easiest way to use these shapes is to include the standard fileshapes.inc into your program. It contains
several pre-defined quadrics and you can transform these pre-defined shapes (using translate, rotate and scale)
into the ones you want. For a complete list, see the fileshapes.inc.

4.4 Isosurface Object

Details about many of the things that can be done with the isosurface object are discussed in the isosurface
tutorial section. Below you will only find the syntax basics:

isosurface {
function { FUNCTION_ITEMS }
[contained_by { SPHERE | BOX }]
[threshold FLOAT_VALUE]
[accuracy FLOAT_VALUE]
[max_gradient FLOAT_VALUE]
[evaluate P0, P1, P2]
[open]
[max_trace INTEGER] | [all_intersections]
[OBJECT_MODIFIERS...]

146 Objects

}

Isosurface default values:

contained_by : box{-1,1}
threshold : 0.0
accuracy : 0.001
max_gradient : 1.1

function { ... } This must be specified and be the first item of theisosurface statement. Here you place all
the mathematical functions that will describe the surface.

contained by { ... } The contained by ’object’ limits the area where POV-Ray samples for the surface of
the function. This container can either be a sphere or a box, both of which use the standard POV-Ray syntax. If
not specified abox {<-1,-1,-1>, <1,1,1>} will be used as default.

contained_by { sphere { CENTER, RADIUS } }
contained_by { box { CORNER1, CORNER2 } }

threshold This specifies how much strength, or substance to give theisosurface. The surface appears where
thefunction value equals thethreshold value. The default threshold is 0.

function = threshold

accuracy The isosurface finding method is a recursive subdivision method. This subdivision goes on until the
length of the interval where POV-Ray finds a surface point is less than the specifiedaccuracy. The default value
is 0.001.
Smaller values produces more accurate surfaces, but it takes longer to render.

max gradient POV-Ray can find the first intersecting point between a ray and theisosurface of any continuous
function if the maximum gradient of the function is known. Therefore you can specify amax gradient for the
function. The default value is 1.1. When themax gradient used to find the intersecting point is too high, the
render slows down considerably. When it is too low, artefacts or holes may appear on the isosurface. When it
is way too low, the surface does not show at all. While rendering the isosurface POV-Ray records the found
gradient values and prints a warning if these values are higher or much lower than the specifiedmax gradient:

Warning: The maximum gradient found was 5.257, but max_gradient of
the isosurface was set to 5.000. The isosurface may contain holes!
Adjust max_gradient to get a proper rendering of the isosurface.

Warning: The maximum gradient found was 5.257, but max_gradient of
the isosurface was set to 7.000. Adjust max_gradient to
get a faster rendering of the isosurface.

For best performance you should specify a value close to the real maximum gradient.

evaluate POV-Ray can also dynamically adapt the used maxgradient. To activate this technique you have to
specify theevaluate keyword followed by three parameters:

• P0: the minimum maxgradient in the estimation process,

• P1: an over-estimating factor. This means that the maxgradient is multiplied by the P1 parameter.

• P2: an attenuation parameter (1 or less)

In this case POV-Ray starts with themax gradient valueP0 and dynamically changes it during the render using
P1 andP2. In the evaluation process, the P1 and P2 parameters are used in quadratic functions. This means that

4.5 Parametric Object 147

over-estimation increases more rapidly with higher values and attenuation more rapidly with lower values. Also
with dynamicmax gradient, there can be artefacts and holes.

If you are unsure what values to use, start a render withoutevaluate to get a value formax gradient. Now you
can use it withevaluate like this:

• P0 : found maxgradient * minfactor
’min factor’ being a float between 0 and 1 to reduce themax gradient to a ’minimum maxgradient’. The
ideal value for P0 would be the average of the found maxgradients, but we do not have access to that
information.
A good starting point is 0.6 for the minfactor

• P1 : sqrt(found maxgradient/(found maxgradient * minfactor))
’min factor’ being the same as used in P0 this will give an over-estimation factor of more than 1, based
on your minimum maxgradient and the found maxgradient.

• P2 : 1 or less
0.7 is a good starting point.

When there are artifacts / holes in the isosurface, increase the minfactor and / or P2 a bit. Example: when the
first run gives a found maxgradient of 356, start with

#declare Min_factor= 0.6;
isosurface {

...
evaluate 356*Min_factor, sqrt(356/(356*Min_factor)), 0.7
//evaluate 213.6, 1.29, 0.7
...

}

This method is only an approximation of what happens internally, but it gives faster rendering speeds with the
majority of isosurfaces.

open When the isosurface is not fully contained within the containedby object, there will be a cross section.
Where this happens, you will see the surface of the container. With theopen keyword, these cross section
surfaces are removed. The inside of the isosurface becomes visible.

Note: thatopen slows down the render speed. Also, it is not recommended to use it with CSG operations.

max trace Isosurfaces can be used in CSG shapes since they are solid finite objects - if not finite by themselves,
they are through the cross section with the container.
By default POV-Ray searches only for the first surface which the ray intersects. But when using anisosurface

in CSG operations, the other surfaces must also be found. Therefore, the keywordmax trace must be added to
theisosurface statement. It must be followed by an integer value. To check for all surfaces, use the keyword
all intersections instead.
With all intersections POV-Ray keeps looking until all surfaces are found. With amax trace it only checks
until that number is reached.

4.5 Parametric Object

Where the isosurface object uses implicit surface functions, F(x,y,z)=0, the parametric object is a set of equa-
tions for a surface expressed in the form of the parameters that locate points on the surface, x(u,v), y(u,v), z(u,v).
Each pair of values for u and v gives a single point<x,y,z> in 3d space

148 Objects

The parametric object is not a solid object it is ”hollow”, like a thin shell.

Syntax:

parametric {
function { FUNCTION_ITEMS },
function { FUNCTION_ITEMS },
function { FUNCTION_ITEMS }
<u1,v1>, <u2,v2>
[contained_by { SPHERE | BOX }]
[max_gradient FLOAT_VALUE]
[accuracy FLOAT_VALUE]
[precompute DEPTH, VarList]

}

Parametric default values:

accuracy : 0.001

The first function calculates thex value of the surface, the secondy and the third thez value. Allowed is any
function that results in a float.

<u1,v1>,<u2,v2> boundaries of the(u,v) space, in which the surface has to be calculated

contained by { ... } The containedby ’object’ limits the area where POV-Ray samples for the surface of
the function. This container can either be a sphere or a box, both of which use the standard POV-Ray syntax. If
not specified abox {<-1,-1,-1>, <1,1,1>} will be used as default.

max gradient, It is not really the maximum gradient. It’s the maximum magnitude of all six partial derivatives
over the specified ranges of u and v. That is, if you takedx/du, dx/dv, dy/du, dy/dv, dz/du, anddz/dv and
calculate them over the entire range, themax gradient is the maximum of the absolute values of all of those
values.

accuracy The default value is 0.001. Smaller values produces more accurate surfaces, but take longer to render.

precompute can speedup rendering of parametric surfaces. It simply divides parametric surfaces into small ones
(2ˆdepth) and precomputes ranges of the variables(x,y,z) which you specify after depth. The maximum depth is
20. High values of depth can produce arrays that use a lot of memory, take longer to parse and render faster. If
you declare a parametric surface with the precompute keyword and then use it twice, all arrays are in memory
only once.

Example, a unit sphere:

parametric {
function { sin(u)*cos(v) }
function { sin(u)*sin(v) }
function { cos(u) }

<0,0>, <2*pi,pi>
contained_by { sphere{0, 1.1} }
max_gradient ??
accuracy 0.0001
precompute 10 x,y,z
pigment {rgb 1}

}

4.6 Constructive Solid Geometry 149

4.6 Constructive Solid Geometry

In addition to all of the primitive shapes POV-Ray supports, you can also combine multiple simple shapes into
complex shapes usingConstructive Solid Geometry(CSG). There are four basic types of CSG operations:
union, intersection, difference, and merge. CSG objects can be composed of primitives or other CSG objects to
create more, and more complex shapes.

4.6.1 Inside and Outside

Most shape primitives, like spheres, boxes and blobs divide the world into two regions. One region is inside
the object and one is outside. Given any point in space you can say it is either inside or outside any particular
primitive object. Well, it could be exactly on the surface but this case is rather hard to determine due to numerical
problems.

Even planes have an inside and an outside. By definition, the surface normal of the plane points towards the
outside of the plane. You should note that triangles cannot be used as solid objects in CSG since they have no
well defined inside and outside. Triangle-based shapes (mesh, mesh2) can only be used in CSG when they are
closed objects and have an inside vector specified.

Note:: Although triangles, bicubicpatches and some other shapes have no well defined inside and outside, they
have a front- and backside which makes it possible to use a texture on the front side and an interiortexture on
the back side.

CSG uses the concepts of inside and outside to combine shapes together as explained in the following sections.

Imagine you have two objects that partially overlap like shown in the figure below. Four different areas of points
can be distinguished: points that are neither in objectA nor in objectB, points that are in objectA but not in object
B, points that are not in objectA but in objectB and last not least points that are in objectA and objectB.

Figure 4.9: Two overlapping objects.

Keeping this in mind it will be quite easy to understand how the CSG operations work.

When using CSG it is often useful to invert an object so that it will be inside-out. The appearance of the object
is not changed, just the way that POV-Ray perceives it. When theinverse keyword is used theinsideof the
shape is flipped to become theoutsideand vice versa.

The inside/outside distinction is not important for aunion, but is important for intersection, difference,
and merge.Therefore any objects may be combined usingunion but only solid objects, i.e. objects that have a
well-defined interior can be used in the other kinds of CSG. The objects described in ”Finite Patch Primitives”

150 Objects

have no well defined inside/outside. All objects described in the sections ”Finite Solid Primitives” and ”Infinite
Solid Primitives”.

4.6.2 Union

Figure 4.10: The union of two objects.

The simplest kind of CSG is theunion. The syntax is:

UNION:
union
{

OBJECTS...
[OBJECT_MODIFIERS...]

}

Unions are simply glue used to bind two or more shapes into a single entity that can be manipulated as a single
object. The image above shows the union ofA andB. The new object created by the union operation can be
scaled, translated and rotated as a single shape. The entire union can share a single texture but each object
contained in the union may also have its own texture, which will override any texture statements in the parent
object.

You should be aware that the surfaces inside the union will not be removed. As you can see from the figure this
may be a problem for transparent unions. If you want those surfaces to be removed you will have to use the
merge operations explained in a later section.

The following union will contain a box and a sphere.

union {
box { <-1.5, -1, -1>, <0.5, 1, 1> }
cylinder { <0.5, 0, -1>, <0.5, 0, 1>, 1 }

}

Earlier versions of POV-Ray placed restrictions on unions so you often had to combine objects withcomposite

statements. Those earlier restrictions have been lifted socomposite is no longer needed. It is still supported for
backwards compatibility.

Split Union

split union is a boolean keyword that can be added to a union. It has two stateson/off, its default ison.

4.6 Constructive Solid Geometry 151

split union is used when photons are shot at the CSG-object. The object is split up in its compound parts,
photons are shot at each part separately. This is to prevent photons from being shot at ’empty spaces’ in the
object, for example the holes in a grid. With compact objects, without ’empty spaces’split union off can
improve photon gathering.

union {
object {...}
object {...}
split_union off

}

4.6.3 Intersection

Theintersection object creates a shape containing only those areas where all components overlap. A point is
part of an intersection if it is inside both objects,A andB, as show in the figure below.

Figure 4.11: The intersection of two objects.

The syntax is:

INTERSECTION:
intersection
{

SOLID_OBJECTS...
[OBJECT_MODIFIERS...]

}

The component objects must have well defined inside/outside properties. Patch objects are not allowed.

Note: if all components do not overlap, the intersection object disappears.

Here is an example that overlaps:

intersection {
box { <-1.5, -1, -1>, <0.5, 1, 1> }
cylinder { <0.5, 0, -1>, <0.5, 0, 1>, 1 }

}

152 Objects

4.6.4 Difference

The CSGdifference operation takes the intersection between the first object and the inverse of all subsequent
objects. Thus only points inside objectA and outside objectB belong to the difference of both objects.

The result is a subtraction of the 2nd shape from the first shape as shown in the figure below.

Figure 4.12: The difference between two objects.

The syntax is:

DIFFERENCE:
difference
{

SOLID_OBJECTS...
[OBJECT_MODIFIERS...]

}

The component objects must have well defined inside/outside properties. Patch objects are not allowed.

Note: if the first object is entirely inside the subtracted objects, the difference object disappears.

Here is an example of a properly formed difference:

difference {
box { <-1.5, -1, -1>, <0.5, 1, 1> }
cylinder { <0.5, 0, -1>, <0.5, 0, 1>, 1 }

}

Note: internally, POV-Ray simply adds theinverse keyword to the second (and subsequent) objects and then
performs an intersection.

The example above is equivalent to:

intersection {
box { <-1.5, -1, -1>, <0.5, 1, 1> }
cylinder { <0.5, 0, -1>, <0.5, 0, 1>, 1 inverse }

}

4.6.5 Merge

Theunion operation just glues objects together, it does not remove the objects’ surfaces inside theunion. Under
most circumstances this does not matter. However if a transparentunion is used, those interior surfaces will be

4.7 Light Sources 153

visible. The merge operations can be used to avoid this problem. It works just likeunion but it eliminates the
inner surfaces like shown in the figure below.

Figure 4.13: Merge removes inner surfaces.

The syntax is:

MERGE:
merge
{

SOLID_OBJECTS...
[OBJECT_MODIFIERS...]

}

The component objects must have well defined inside/outside properties. Patch objects are not allowed.

Note: that in generalmerge is slower rendering thanunion when used with non transparent objects. A small test
may be needed to determine what is the optimal solution regarding speed and visual result.

4.7 Light Sources

Thelight source is not really an object. Light sources have no visible shape of their own. They are just points
or areas which emit light. They are categorized as objects so that they can be combined with regular objects
usingunion. Their full syntax is:

LIGHT_SOURCE:
light_source
{

<Location>, COLOR
[LIGHT_MODIFIERS...]

}
LIGHT_MODIFIER:

LIGHT_TYPE | SPOTLIGHT_ITEM | AREA_LIGHT_ITEMS |
GENERAL_LIGHT_MODIFIERS

LIGHT_TYPE:
spotlight | shadowless | cylinder | parallel

SPOTLIGHT_ITEM:
radius Radius | falloff Falloff | tightness Tightness |
point_at <Spot>

PARALLEL_ITEM:

154 Objects

point_at <Spot>
AREA_LIGHT_ITEM:

area_light <Axis_1>, <Axis_2>, Size_1, Size_2 |
adaptive Adaptive | jitter Jitter | circular | orient

GENERAL_LIGHT_MODIFIERS:
looks_like { OBJECT } |
TRANSFORMATION fade_distance Fade_Distance |
fade_power Fade_Power | media_attenuation [Bool] |
media_interaction [Bool] | projected_through

Light source default values:

LIGHT_TYPE : pointlight
falloff : 70
media_interaction : on
media_attenuation : off
point_at : <0,0,0>
radius : 70
tightness : 10

The different types of light sources and the optional modifiers are described in the following sections.

The first two items are common to all light sources. The<Location > vector gives the location of the light.
TheCOLORgives the color of the light. Only the red, green, and blue components are significant. Any transmit
or filter values are ignored.

Note: you vary the intensity of the light as well as the color using this parameter. A color such asrgb <0.5,

0.5,0.5> gives a white light that is half the normal intensity.

All of the keywords or items in the syntax specification above may appear in any order. Some keywords only
have effect if specified with other keywords. The keywords are grouped into functional categories to make it
clear which keywords work together. TheGENERALLIGHT MODIFIERSwork with all types of lights and all
options.

Note: that TRANSFORMATIONSsuch astranslate, rotate etc. may be applied but no otherOBJECT-
MODIFIERSmay be used.

There are three mutually exclusive light types. If noLIGHT TYPE is specified it is a point light. The other
choices arespotlight andcylinder.

4.7.1 Point Lights

The simplest kind of light is a point light. A point light source sends light of the specified color uniformly in all
directions. The default light type is a point source. The<Location > and COLORis all that is required. For
example:

light_source {
<1000,1000,-1000>, rgb <1,0.75,0> //an orange light

}

4.7 Light Sources 155

4.7.2 Spotlights

Normally light radiates outward equally in all directions from the source. However thespotlight keyword can
be used to create a cone of light that is bright in the center and falls of to darkness in a soft fringe effect at the
edge.

Although the cone of light fades to soft edges, objects illuminated by spotlights still cast hard shadows. The
syntax is:

SPOTLIGHT_SOURCE:
light_source
{

<Location>, COLOR spotlight
[LIGHT_MODIFIERS...]

}
LIGHT_MODIFIER:

SPOTLIGHT_ITEM | AREA_LIGHT_ITEMS | GENERAL_LIGHT_MODIFIERS
SPOTLIGHT_ITEM:

radius Radius | falloff Falloff | tightness Tightness |
point_at <Spot>

Default values:

radius: 30 degrees
falloff: 45 degrees
tightness: 0

Thepoint at keyword tells the spotlight to point at a particular 3D coordinate. A line from the location of the
spotlight to thepoint at coordinate forms the center line of the cone of light. The following illustration will be
helpful in understanding how these values relate to each other.

Figure 4.14: The geometry of a spotlight.

Thefalloff, radius, and tightness keywords control the way that light tapers off at the edges of the cone.
These four keywords apply only when thespotlight or cylinder keywords are used.

Thefalloff keyword specifies the overall size of the cone of light. This is the point where the light falls off
to zero intensity. The float value you specify is the angle, in degrees, between the edge of the cone and center
line. The radius keyword specifies the size of the ”hot-spot” at the center of the cone of light. The ”hot-spot”
is a brighter cone of light inside the spotlight cone and has the same center line. Theradius value specifies the

156 Objects

angle, in degrees, between the edge of this bright, inner cone and the center line. The light inside the inner cone
is of uniform intensity. The light between the inner and outer cones tapers off to zero.

For example, assuming atightness 0, with radius 10 andfalloff 20 the light from the center line out to 10
degrees is full intensity. From 10 to 20 degrees from the center line the light falls off to zero intensity. At 20
degrees or greater there is no light.

Note: if the radius and falloff values are close or equal the light intensity drops rapidly and the spotlight has a
sharp edge.

The values for theradius, andtightness parameters are half the opening angles of the corresponding cones,
both angles have to be smaller than 90 degrees. The light smoothly falls off between the radius and the falloff
angle like shown in the figures below (as long as the radius angle is not negative).

Figure 4.15: Intensity multiplier curve with a fixed falloff angle of 45 degrees.

Figure 4.16: Intensity multiplier curve with a fixed radius angle of 45 degrees.

Thetightness keyword is used to specify anadditionalexponential softening of the edges. A value other than
0, will affect light within the radius cone as well as light in the falloff cone. The intensity of light at an angle
from the center line is given by:intensity * cos(angle)tightness . The default value for tightness is 0.
Lower tightness values will make the spotlight brighter, making the spot wider and the edges sharper. Higher
values will dim the spotlight, making the spot tighter and the edges softer. Values from 0 to 100 are acceptable.

You should note from the figures that the radius and falloff angles interact with the tightness parameter. To give
the tightness value full control over the spotlight’s appearance use radius 0 falloff 90. As you can see from

4.7 Light Sources 157

Figure 4.17: Intensity multiplier curve with fixed angle and falloff angles of 30 and 60 degrees respectively and
different tightness values.

the figure below. In that case the falloff angle has no effect and the lit area is only determined by the tightness
parameter.

Figure 4.18: Intensity multiplier curve with a negative radius angle and different tightness values.

Spotlights may be used anyplace that a normal light source is used. Like any light sources, they are invisible.
They may also be used in conjunction with area lights.

4.7.3 Cylindrical Lights

Thecylinder keyword specifies a cylindrical light source that is great for simulating laser beams. Cylindrical
light sources work pretty much like spotlights except that the light rays are constrained by a cylinder and not a
cone. The syntax is:

CYLINDER_LIGHT_SOURCE:
light_source
{

<Location>, COLOR cylinder
[LIGHT_MODIFIERS...]

}

158 Objects

LIGHT_MODIFIER:
SPOTLIGHT_ITEM | AREA_LIGHT_ITEMS | GENERAL_LIGHT_MODIFIERS

SPOTLIGHT_ITEM:
radius Radius | falloff Falloff | tightness Tightness |
point_at <Spot>

Default values:

radius: 0.75 degrees
falloff: 1 degrees
tightness: 0

The point at, radius, falloff andtightness keywords control the same features as with the spotlight. See
”Spotlights” for details.

You should keep in mind that the cylindrical light source is still a point light source. The rays are emitted from
one point and are only constraint by a cylinder. The light rays are not parallel.

4.7.4 Parallel Lights

syntax:

light_source {
LOCATION_VECTOR, COLOR
[LIGHT_SOURCE_ITEMS...]
parallel
point_at VECTOR

}

Theparallel keyword can be used with any type of light source.

Note: for normal point lights,point at must come afterparallel.

Parallel lights are useful for simulating very distant light sources, such as sunlight. As the name suggests, it
makes the light rays parallel.

Technically this is done by shooting rays from the closest point on a plane to the object intersection point. The
plane is determined by a perpendicular defined by the lightlocation and thepoint at vector.

Two things must be considered when choosing the light location (specifically, its distance):

1. Any parts of an object ”above” the light plane still get illuminated according to the light direction, but
they will not cast or receive shadows.

2. fade distance andfade power use the lightlocation to determine distance for light attenuation, so the
attenuation still looks like that of a point source.
Area light also uses the light location in its calculations.

4.7.5 Area Lights

Area light sources occupy a finite, one- or two-dimensional area of space. They can cast soft shadows because
an object can partially block their light. Point sources are either totally blocked or not blocked.

4.7 Light Sources 159

The area light keyword in POV-Ray creates sources that are rectangular in shape, sort of like a flat panel
light. Rather than performing the complex calculations that would be required to model a true area light, it is
approximated as an array of point light sources spread out over the area occupied by the light. The array-effect
applies to shadows only. The object’s illumination is still that of a point source. The intensity of each individual
point light in the array is dimmed so that the total amount of light emitted by the light is equal to the light color
specified in the declaration. The syntax is:

AREA_LIGHT_SOURCE:

light_source {
LOCATION_VECTOR, COLOR
area_light
AXIS_1_VECTOR, AXIS_2_VECTOR, Size_1, Size_2
[adaptive Adaptive] [jitter]
[circular] [orient]
[[LIGHT_MODIFIERS...]

}

Any type of light source may be an area light.

The arealight command defines the location, the size and orientation of the area light as well as the number
of lights in the light source array. The location vector is the centre of a rectangle defined by the two vectors
<Axis 1> and<Axis 2>. These specify the lengths and directions of the edges of the light.

Figure 4.19: 4x4 Area light, location and vectors.

Since the area lights are rectangular in shape these vectors should be perpendicular to each other. The larger the
size of the light the thicker the soft part of shadows will be. The integers Size1 and Size2 specify the number
of rows and columns of point sources of the. The more lights you use the smoother your shadows will be but
the longer they will take to render.

Note: it is possible to specify spotlight parameters along with the area light parameters to create area spotlights.
Using area spotlights is a good way to speed up scenes that use area lights since you can confine the lengthy
soft shadow calculations to only the parts of your scene that need them.

An interesting effect can be created using a linear light source. Rather than having a rectangular shape, a linear
light stretches along a line sort of like a thin fluorescent tube. To create a linear light just create an area light
with one of the array dimensions set to 1.

The jitter command is optional. When used it causes the positions of the point lights in the array to be

160 Objects

randomly jittered to eliminate any shadow banding that may occur. The jittering is completely random from
render to render and should not be used when generating animations.

Theadaptive command is used to enable adaptive sampling of the light source. By default POV-Ray calculates
the amount of light that reaches a surface from an area light by shooting a test ray at every point light within
the array. As you can imagine this is very slow. Adaptive sampling on the other hand attempts to approximate
the same calculation by using a minimum number of test rays. The number specified after the keyword controls
how much adaptive sampling is used. The higher the number the more accurate your shadows will be but the
longer they will take to render. If you are not sure what value to use a good starting point isadaptive 1. The
adaptive keyword only accepts integer values and cannot be set lower than 0.

When performing adaptive sampling POV-Ray starts by shooting a test ray at each of the four corners of the
area light. If the amount of light received from all four corners is approximately the same then the area light
is assumed to be either fully in view or fully blocked. The light intensity is then calculated as the average
intensity of the light received from the four corners. However, if the light intensity from the four corners differs
significantly then the area light is partially blocked. The area light is split into four quarters and each section
is sampled as described above. This allows POV-Ray to rapidly approximate how much of the area light is in
view without having to shoot a test ray at every light in the array. Visually the sampling goes like shown below.

Figure 4.20: Area light adaptive samples.

While the adaptive sampling method is fast (relatively speaking) it can sometimes produce inaccurate shadows.
The solution is to reduce the amount of adaptive sampling without completely turning it off. The number after
the adaptive keyword adjusts the number of times that the area light will be split before the adaptive phase
begins. For example if you useadaptive 0 a minimum of 4 rays will be shot at the light. If you useadaptive
1 a minimum of 9 rays will be shot (adaptive 2 gives 25 rays,adaptive 3 gives 81 rays, etc). Obviously the
more shadow rays you shoot the slower the rendering will be so you should use the lowest value that gives
acceptable results.

The number of rays never exceeds the values you specify for rows and columns of points. For examplearea -

light x,y,4,4 specifies a 4 by 4 array of lights. If you specifyadaptive 3 it would mean that you should start
with a 9 by 9 array. In this case no adaptive sampling is done. The 4 by 4 array is used.

The circular command has been added to area lights in order to better create circular soft shadows. With
ordinary area lights the pseudo-lights are arranged in a rectangular grid and thus project partly rectangular
shadows around all objects, including circular objects.
By including thecircular tag in an area light, the light is stretched and squashed so that it looks like a circle:
this way, circular or spherical light sources are better simulated.

A few things to remember:

4.7 Light Sources 161

• Circular area lights can be ellipses: the AXIS1 VECTOR and AXIS2 VECTOR define the shape and
orientation of the circle; if the vectors are not equal, the light source is elliptical in shape.

• Rectangular artefacts may still show up with very large area grids.

• There is no point in usingcircular with linear area lights or area lights which have a 2x2 size.

• The area of a circular light is roughly 78.5 per cent of a similar size rectangular area light. Increase your
axis vectors accordingly if you wish to keep the light source area constant.

Theorient command has been added to area lights in order to better create soft shadows. Without this modifier,
you have to take care when choosing the axis vectors of an arealight, since they define both its area and
orientation.
Area lights are two dimensional: shadows facing the area light receive light from a larger surface area than
shadows at the sides of the area light.

Figure 4.21: Area light facing object

Actually, the area from which light is emitted at the sides of the area light is reduced to a single line, only casting
soft shadows in one direction.

Figure 4.22: Area light not facing object

Between these two extremes the surface area emitting light progresses gradually.
By including theorient modifier in an area light, the light is rotated so that for every shadow test, it always
faces the point being tested. The initial orientation is no longer important, so you only have to consider the
desired dimensions (area) of the light source when specifying the axis vectors.
In effect, this makes the area light source appear 3-dimensional (e.g. an arealight with perpendicular axis
vectors of the same size and dimensions usingcircular andorient simulates a spherical light source).

162 Objects

Orient has a few restrictions:

1. It can be used with ”circular” lights only.

2. The two axes of the area light must be of equal length.

3. The two axes of the area light should use an equal number of samples, and that number should be greater
than one

These three rules exist because without them, you can get unpredictable results from the orient feature.

If one of the first two rules is broken, POV will issue a warning and correct the problem. If the third rule is
broken, you will only get the error message, and POV will not automatically correct the problem.

4.7.6 Shadowless Lights

Using theshadowless keyword you can stop a light source from casting shadows. These lights are sometimes
called ”fill lights”. They are another way to simulate ambient light however shadowless lights have a definite
source. The syntax is:

SHADOWLESS_LIGHT_SOURCE:
light_source
{

<Location>, COLOR shadowless
[LIGHT_MODIFIERS...]

}
LIGHT_MODIFIER:

AREA_LIGHT_ITEMS | GENERAL_LIGHT_MODIFIERS

shadowless may be used with all types of light sources. The only restriction is thatshadowless should be
before or afterall spotlight or cylinder option keywords. Do not mix or you get the message ”Keyword ’the
one following shadowless’ cannot be used with standard light source”. Also note that shadowless lights will not
cause highlights on the illuminated objects.

4.7.7 Lookslike

Normally the light source itself has no visible shape. The light simply radiates from an invisible point or area.
You may give a light source any shape by adding alooks like { OBJECT} statement.

There is an impliedno shadow attached to thelooks like object so that light is not blocked by the object.
Without the automaticno shadow the light inside the object would not escape. The object would, in effect, cast
a shadow over everything.

If you want the attached object to block light then you should attach it with aunion and not alooks like as
follows:

union {
light_source { <100, 200, -300> color White }
object { My_Lamp_Shape }

}

Presumably parts of the lamp shade are transparent to let some light out.

4.7 Light Sources 163

4.7.8 ProjectedThrough

Syntax:

light_source {
LOCATION_VECTOR, COLOR
[LIGHT_SOURCE_ITEMS...]
projected_through { OBJECT }

}

Projectedthrough can be used with any type of light source. Any object can be used, provided it has been
declared before.
Projecting a light through an object can be thought of as the opposite of shadowing: only the light rays that hit
the projectedthrough object will contribute to the scene.
This also works with arealights, producing spots of light with soft edges.
Any objects between the light and the projected through object will not cast shadows for this light. Also any
surface within the projected through object will not cast shadows.
Any textures or interiors on the object will be stripped and the object will not show up in the scene.

4.7.9 Light Fading

By default POV-Ray does not diminish light from any light source as it travels through space. In order to get
a more realistic effectfade distance andfade power keywords followed by float values can be used to model
the distance based falloff in light intensity.

Thefade distance is used to specify the distance at which the full light intensity arrives, i. e. the intensity which
was given by theCOLORspecification. The actual attenuation is described by thefade power Fade Power ,
which determines the falloff rate. For example linear or quadratic falloff can be used by settingfade power to 1
or 2 respectively. The complete formula to calculate the factor by which the light is attenuated is

attenuation=
2

1+
(

d
fade distance

)fade power

Table 4.5:

with d being the distance the light has traveled.

You should note two important facts: First, forFade Distance larger than one the light intensity at distances
smaller thanFade Distance actually increases. This is necessary to get the light source color if the distance
traveled equals theFade Distance . Second, only light coming directly from light sources is attenuated.
Reflected or refracted light is not attenuated by distance.

4.7.10 Atmospheric Media Interaction

By default light sources will interact with an atmosphere added to the scene. This behavior can be switched off
by usingmedia interaction off inside the light source statement.

Note: in POV-Ray 3.0 this feature was turned off and on with the atmosphere keyword.

164 Objects

Figure 4.23: Light fading functions for different fading powers.

4.7.11 Atmospheric Attenuation

Normally light coming from light sources is not influenced by fog or atmospheric media. This can be changed
by turning themedia attenuation on for a given light source on. All light coming from this light source will
now be diminished as it travels through the fog or media. This results in an distance-based, exponential intensity
falloff ruled by the used fog or media. If there is no fog or media no change will be seen.

Note:in POV-Ray 3.0 this feature was turned off and on with the atmosphericattenuation keyword.

4.8 Light Groups

Light groups make it possible to create a ’union’ of lightsources and objects, where the objects in the group
are illuminated by the lights in the group or, if desired, also by the global lightsources. The lightsources in the
group can only illuminate the objects that are in the group.

Light groups are for example useful when creating scenes in which some objects turn out to be too dark but
the average light is exactly how it should be, as the lightsources in the group do not contribute to the global
lighting.

Syntax :

light_group {
LIGHT_GROUP LIGHT |
LIGHT_GROUP OBJECT |
LIGHT_GROUP
[LIGHT_GROUP MODIFIER]

}

LIGHT_GROUP LIGHT:
light_source | light_source IDENTIFIER

LIGHT_GROUP OBJECT:
OBJECT | OBJECT IDENTIFIER

LIGHT_GROUP MODIFIER:
global_lights BOOL | TRANSFORMATION

4.8 Light Groups 165

global lights. Add this command to the lightgroup to have objects in the group also be illuminated by global
light sources.

Light groups may be nested. In this case light groups inherit the light sources of the light group they are
contained by.

Light groups can be seen as a ’union of an object with lightsource’ and can be used in CSG.

Examples, simple lightgroup:

#declare RedLight = light_source {
<-500,500,-500>
rgb <1,0,0>

}

light_group {
light_source {RedLight}
sphere {0,1 pigment {rgb 1}}
global_lights off

}

Nested lightgroup:

#declare L1 = light_group {
light_source {<10,10,0>, rgb <1,0,0>}
light_source {<0,0,-100>, rgb <0,0,1>}
sphere {0,1 pigment {rgb 1}}

}

light_group {
light_source {<0,100,0>, rgb 0.5}
light_group {L1}

}

Light groups in CSG:

difference {
light_group {

sphere {0,1 pigment {rgb 1}}
light_source {<-100,0,-100> rgb <1,0,0>}
global_lights off

}
light_group {

sphere {<0,1,0>,1 pigment {rgb 1}}
light_source {<100,100,0> rgb <0,0,1>}
global_lights off

}
rotate <-45,0,0>

}

In the last example the result will be a sphere illuminated red, where the part that is differenced away is
illuminated blue. In result comparable to the difference between two spheres with a different pigment.

166 Objects

4.9 Object Modifiers

A variety of modifiers may be attached to objects. The following items may be applied to any object:

OBJECT_MODIFIER:
clipped_by { UNTEXTURED_SOLID_OBJECT... } |
clipped_by { bounded_by } |
bounded_by { UNTEXTURED_SOLID_OBJECT... } |
bounded_by { clipped_by } |
no_shadow |
no_image [Bool] |
no_reflection [Bool] |
inverse |
sturm [Bool] |
hierarchy [Bool] |
double_illuminate [Bool] |
hollow [Bool] |
interior { INTERIOR_ITEMS... } |
material { [MATERIAL_IDENTIFIER][MATERIAL_ITEMS...] } |
texture { TEXTURE_BODY } |
interior_texture { TEXTURE_BODY } |
pigment { PIGMENT_BODY } |
normal { NORMAL_BODY } |
finish { FINISH_ITEMS... } |
photons { PHOTON_ITEMS...}
TRANSFORMATION

Transformations such as translate, rotate and scale have already been discussed. The modifiers ”Textures” and its
parts ”Pigment”, ”Normal”, and ”Finish” as well as ”Interior”, and ”Media” (which is part of interior) are each
in major chapters of their own below. In the sub-sections below we cover several other important modifiers:
clipped by, bounded by, material, inverse, hollow, no shadow, no image, no reflection, double illuminate

andsturm. Although the examples below use object statements and object identifiers, these modifiers may be
used on any type of object such as sphere, box etc.

4.9.1 ClippedBy

The clipped by statement is technically an object modifier but it provides a type of CSG similar to CSG
intersection. The syntax is:

CLIPPED_BY:
clipped_by { UNTEXTURED_SOLID_OBJECT... } |
clipped_by { bounded_by }

WhereUNTEXTUREDSOLID OBJECTis one or more solid objects which have had no texture applied. For
example:

object {
My_Thing
clipped_by{plane{y,0}}

}

Every part of the objectMy Thing that is inside the plane is retained while the remaining part is clipped off
and discarded. In anintersection object the hole is closed off. Withclipped by it leaves an opening. For

4.9 Object Modifiers 167

example the following figure shows objectA being clipped by objectB.

Figure 4.24: An object clipped by another object.

You may useclipped by to slice off portions of any shape. In many cases it will also result in faster rendering
times than other methods of altering a shape. Occasionally you will want to use theclipped by andbounded by

options with the same object. The following shortcut saves typing and uses less memory.

object {
My_Thing
bounded_by { box { <0,0,0>, <1,1,1> } }
clipped_by { bounded_by }

}

This tells POV-Ray to use the same box as a clip that was used as a bound.

4.9.2 BoundedBy

The calculations necessary to test if a ray hits an object can be quite time consuming. Each ray has to be tested
against every object in the scene. POV-Ray attempts to speed up the process by building a set of invisible boxes,
called bounding boxes, which cluster the objects together. This way a ray that travels in one part of the scene
does not have to be tested against objects in another, far away part of the scene. When a large number of objects
are present the boxes are nested inside each other. POV-Ray can use bounding boxes on any finite object and
even some clipped or bounded quadrics. However infinite objects (such as a planes, quartic, cubic and poly)
cannot be automatically bound. CSG objects are automatically bound if they contain finite (and in some cases
even infinite) objects. This works by applying the CSG set operations to the bounding boxes of all objects
used inside the CSG object. For difference and intersection operations this will hardly ever lead to an optimal
bounding box. It is sometimes better (depending on the complexity of the CSG object) to have you place a
bounding shape yourself using abounded by statement.

Normally bounding shapes are not necessary but there are cases where they can be used to speed up the rendering
of complex objects. Bounding shapes tell the ray-tracer that the object is totally enclosed by a simple shape.
When tracing rays, the ray is first tested against the simple bounding shape. If it strikes the bounding shape the
ray is further tested against the more complicated object inside. Otherwise the entire complex shape is skipped,
which greatly speeds rendering. The syntax is:

BOUNDED_BY:
bounded_by { UNTEXTURED_SOLID_OBJECT... } |
bounded_by { clipped_by }

168 Objects

WhereUNTEXTUREDSOLID OBJECTis one or more solid objects which have had no texture applied. For
example:

intersection {
sphere { <0,0,0>, 2 }
plane { <0,1,0>, 0 }
plane { <1,0,0>, 0 }
bounded_by { sphere { <0,0,0>, 2 } }

}

The best bounding shape is a sphere or a box since these shapes are highly optimized, although, any shape may
be used. If the bounding shape is itself a finite shape which responds to bounding slabs then the object which it
encloses will also be used in the slab system.

While it may a good idea to manually add abounded by to intersection, difference and merge, it is best tonever
bound a union. If a union has nobounded by POV-Ray can internally split apart the components of a union and
apply automatic bounding slabs to any of its finite parts. Note that some utilities such asraw2pov may be able
to generate bounds more efficiently than POV-Ray’s current system. However most unions you create yourself
can be easily bounded by the automatic system. For technical reasons POV-Ray cannot split a merge object. It
is maybe best to hand bound a merge, especially if it is very complex.

Note: if bounding shape is too small or positioned incorrectly it may clip the object in undefined ways or
the object may not appear at all. To do true clipping, useclipped by as explained in the previous section.
Occasionally you will want to use theclipped by andbounded by options with the same object. The following
shortcut saves typing and uses less memory.

object {
My_Thing
clipped_by{ box { <0,0,0>,<1,1,1 > }}
bounded_by{ clipped_by }

}

This tells POV-Ray to use the same box as a bound that was used as a clip.

4.9.3 Material

One of the changes in POV-Ray 3.1 was the removal of several items fromtexture { finish{...} } and to
move them to the newinterior statement. Thehalo statement, formerly part oftexture, is now renamed
media and made a part of theinterior.

This split was deliberate and purposeful (see ”Why are Interior and Media Necessary?”) however beta testers
pointed out that it made it difficult to entirely describe the surface properties and interior of an object in one
statement that can be referenced by a single identifier in a texture library.

The result is that we created a ”wrapper” aroundtexture and interior which we callmaterial.

The syntax is:

MATERIAL:
material { [MATERIAL_IDENTIFIER][MATERIAL_ITEMS...] }

MATERIAL_ITEMS:
TEXTURE | INTERIOR_TEXTURE | INTERIOR | TRANSFORMATIONS

For example:

4.9 Object Modifiers 169

#declare MyGlass=material{ texture{ Glass_T } interior{ Glass_I }}
object { MyObject material{ MyGlass}}

Internally, the ”material” is not attached to the object. The material is just a container that brings the texture and
interior to the object. It is the texture and interior itself that is attached to the object. Users should still consider
texture and interior as separate items attached to the object.

The material is just a ”bucket” to carry them. If the object already has a texture, then the material texture is
layered over it. If the object already has an interior, the material interior fully replaces it and the old interior
is destroyed. Transformations inside the material affect only the textures and interiors which are inside the
material{} wrapper and only those textures or interiors specified are affected. For example:

object {
MyObject
material {

texture { MyTexture }
scale 4 //affects texture but not object or interior
interior { MyInterior }
translate 5*x //affects texture and interior, not object

}
}

Note: Thematerial statement has nothing to do with thematerial map statement. Amaterial map is nota way
to create patterned material. See ”Material Maps” for explanation of this unrelated, yet similarly named, older
feature.

4.9.4 Inverse

When using CSG it is often useful to invert an object so that it will be inside-out. The appearance of the object
is not changed, just the way that POV-Ray perceives it. When theinverse keyword is used theinsideof the
shape is flipped to become theoutsideand vice versa. For example:

object { MyObject inverse }

The inside/outside distinction is also important when attachinginterior to an object especially ifmedia is also
used. Atmospheric media and fog also do not work as expected if your camera is inside an object. Using
inverse is useful to correct that problem.

4.9.5 Hollow

POV-Ray by default assumes that objects are made of a solid material that completely fills the interior of an
object. By adding thehollow keyword to the object you can make it hollow, also see the ”Empty and Solid
Objects” chapter. That is very useful if you want atmospheric effects to exist inside an object. It is even required
for objects containing an interior media. The keyword may optionally be followed by a float expression which
is interpreted as a boolean value. For examplehollow off may be used to force it off. When the keyword is
specified alone, it is the same ashollow on. By defaulthollow is off when not specified.

In order to get a hollow CSG object you just have to make the top level object hollow. All children will assume
the same hollow state except when their state is explicitly set. The following example will set both spheres
inside the union hollow

170 Objects

union {
sphere { -0.5*x, 1 }
sphere { 0.5*x, 1 }
hollow

}

while the next example will only set the second sphere hollow because the first sphere was explicitly set to be
not hollow.

union {
sphere { -0.5*x, 1 hollow off }
sphere { 0.5*x, 1 }
hollow on

}

4.9.6 NoShadow

You may specify theno shadow keyword in an object to make that object cast no shadow. This is useful for
special effects and for creating the illusion that a light source actually is visible. This keyword was necessary in
earlier versions of POV-Ray which did not have thelooks like statement. Now it is useful for creating things
like laser beams or other unreal effects. During test rendering it speeds things up ifno shadow is applied.

Simply attach the keyword as follows:

object {
My_Thing
no_shadow

}

4.9.7 NoImage, No Reflection

Syntax:

OBJECT {
[OBJECT_ITEMS...]
no_image
no_reflection

}

These two keywords are very similar in usage and function to theno shadow keyword, and control an object’s
visibility.
You can use any combination of the three with your object.

Whenno image is used, the object will not be seen by the camera, either directly or through transparent/refractive
objects. However, it will still cast shadows, and show up in reflections (unlessno reflection and/orno shadow

is used also).

Whenno reflection is used, the object will not show up in reflections. It will be seen by the camera (and
through transparent/refractive objects) and cast shadows, unlessno image and/orno shadow is used.

Using these three keywords you can produce interesting effects like a sphere casting a rectangular shadow, a
cube that shows up as a cone in mirrors, etc.

4.9 Object Modifiers 171

4.9.8 DoubleIlluminate

Syntax:

OBJECT {
[OBJECT_ITEMS...]
double_illuminate

}

A surface has two sides; usually, only the side facing the light source is illuminated, the other side remains in
shadow. Whendouble illuminate is used, the other side is also illuminated.
This is useful for simulating effects like translucency (as in a lamp shade, sheet of paper, etc).

Note: double illuminate only illuminates both sides of the same surface, so on a sphere, for example, you will
not see the effect unless the sphere is either partially transparent, or if the camera is inside and the light source
outside of the sphere (or vise versa).

4.9.9 Sturm

Some of POV-Ray’s objects allow you to choose between a fast but sometimes inaccurate root solver and a
slower but more accurate one. This is the case for all objects that involve the solution of a cubic or quartic
polynomial. There are analytic mathematical solutions for those polynomials that can be used.

Lower order polynomials are trivial to solve while higher order polynomials require iterative algorithms to solve
them. One of those algorithms is the Sturmian root solver. For example:

blob {
threshold .65
sphere { <.5,0,0>, .8, 1 }
sphere { <-.5,0,0>,.8, 1 }
sturm

}

The keyword may optionally be followed by a float expression which is interpreted as a boolean value. For
examplesturm off may be used to force it off. When the keyword is specified alone, it is the same assturm

on. By defaultsturm is off when not specified.

The following list shows all objects for which the Sturmian root solver can be used.

• blob

• cubic

• lathe (only with quadratic splines)

• poly

• prism (only with cubic splines)

• quartic

• sor

172 Objects

Chapter 5

Textures

The texture statement is an object modifier which describes what the surface of an object looks like, i.e. its
material. Textures are combinations of pigments, normals, and finishes. Pigment is the color or pattern of colors
inherent in the material. Normal is a method of simulating various patterns of bumps, dents, ripples or waves
by modifying the surface normal vector. Finish describes the reflective properties of a material.

Note: that in previous versions of POV-Ray, the texture also contained information about the interior of an
object. This information has been moved to a separate object modifier calledinterior. See ”Interior” for
details.

There are three basic kinds of textures: plain, patterned, and layered. Aplain textureconsists of a single
pigment, an optional normal, and a single finish. Apatterned texturecombines two or more textures using a
block pattern or blending function pattern. Patterned textures may be made quite complex by nesting patterns
within patterns. At the innermost levels however, they are made up from plain textures. Alayered texture
consists of two or more semi-transparent textures layered on top of one another.

Note: although we call a plain textureplain it may be a very complex texture with patterned pigments and
normals. The termplain only means that it has a single pigment, normal, and finish.

The syntax fortexture is as follows:

TEXTURE:
PLAIN_TEXTURE | PATTERNED_TEXTURE | LAYERED_TEXTURE

PLAIN_TEXTURE:
texture
{

[TEXTURE_IDENTIFIER]
[PNF_IDENTIFIER...]
[PNF_ITEMS...]

}
PNF_IDENTIFIER:

PIGMENT_IDENTIFIER | NORMAL_IDENTIFIER | FINISH_IDENTIFIER
PNF_ITEMS:

PIGMENT | NORMAL | FINISH | TRANSFORMATION
LAYERED_TEXTURE:

NON_PATTERNED_TEXTURE...
PATTERNED_TEXTURE:

174 Textures

texture
{

[PATTERNED_TEXTURE_ID]
[TRANSFORMATIONS...]

} |
texture
{

PATTERN_TYPE
[TEXTURE_PATTERN_MODIFIERS...]

} |
texture
{

tiles TEXTURE tile2 TEXTURE
[TRANSFORMATIONS...]

} |
texture
{

material_map
{

BITMAP_TYPE "bitmap.ext"
[MATERIAL_MODS...] TEXTURE... [TRANSFORMATIONS...]

}
}

TEXTURE_PATTERN_MODIFIER:
PATTERN_MODIFIER | TEXTURE_LIST |
texture_map { TEXTURE_MAP_BODY }

In the PLAIN TEXTURE, each of the items are optional but if they are present theTEXTUREIDENTIFIER
must be first. If no texture identifier is given, then POV-Ray creates a copy of the default texture. See ”The
#default Directive” for details.

Next are optional pigment, normal, and/or finish identifiers which fully override any pigment, normal and
finish already specified in the previous texture identifier or default texture. Typically this is used for backward
compatibility to allow things like:texture { MyPigment } whereMyPigment is a pigment identifier.

Finally we have optionalpigment, normal or finish statements which modify any pigment, normal and finish
already specified in the identifier. If no texture identifier is specified thepigment, normal andfinish statements
modify the current default values. This is the typical plain texture:

texture {
pigment { MyPigment }
normal { MyNormal }
finish { MyFinish }
scale SoBig
rotate SoMuch
translate SoFar

}

The TRANSFORMATIONSmay be interspersed between the pigment, normal and finish statements but are
generally specified last. If they are interspersed, then they modify only those parts of the texture already
specified. For example:

texture {
pigment { MyPigment }
scale SoBig //affects pigment only

5.1 Pigment 175

normal { MyNormal }
rotate SoMuch //affects pigment and normal
finish { MyFinish }
translate SoFar //finish is never transformable no matter what.

//Therefore affects pigment and normal only
}

Texture identifiers may be declared to make scene files more readable and to parameterize scenes so that chang-
ing a single declaration changes many values. An identifier is declared as follows.

TEXTURE_DECLARATION:
#declare IDENTIFIER = TEXTURE |
#local IDENTIFIER = TEXTURE

WhereIDENTIFIER is the name of the identifier up to 40 characters long andTEXTUREis any validtexture
statement. See ”#declare vs. #local” for information on identifier scope.

The sections below describe all of the options available in ”Pigment”, ”Normal”, and ”Finish” which are the
main part of plain textures.. There are also separate sections for ”Patterned Textures” and ”Layered Textures”
which are made up of plain textures.

Note: thetiles andmaterial map versions of patterned textures are obsolete and are only supported for back-
wards compatibility.

5.1 Pigment

The color or pattern of colors for an object is defined by apigment statement. All plain textures must have a
pigment. If you do not specify one the default pigment is used. The color you define is the way you want the
object to look if fully illuminated. You pick the basic color inherent in the object and POV-Ray brightens or
darkens it depending on the lighting in the scene. The parameter is calledpigment because we are defining the
basic color the object actually is rather than how it looks.

The syntax for pigment is:

PIGMENT:
pigment {

[PIGMENT_IDENTIFIER]
[PIGMENT_TYPE]
[PIGMENT_MODIFIER...]

}
PIGMENT_TYPE:

PATTERN_TYPE | COLOR |
image_map {

BITMAP_TYPE "bitmap.ext" [IMAGE_MAP_MODS...]
}

PIGMENT_MODIFIER:
PATTERN_MODIFIER | COLOR_LIST | PIGMENT_LIST |
color_map { COLOR_MAP_BODY } | colour_map { COLOR_MAP_BODY } |
pigment_map { PIGMENT_MAP_BODY } | quick_color COLOR |
quick_colour COLOR

Each of the items in a pigment are optional but if they are present, they must be in the order shown. Any items
after thePIGMENTIDENTIFIERmodify or override settings given in the identifier. If no identifier is specified

176 Textures

then the items modify the pigment values in the current default texture. ThePIGMENTTYPEfall into roughly
four categories. Each category is discussed the sub-sections which follow. The four categories are solid color
and image map patterns which are specific topigment statements or color list patterns, color mapped patterns
which use POV-Ray’s wide selection of general patterns. See ”Patterns” for details about specific patterns.

The pattern type is optionally followed by one or more pigment modifiers. In addition to general pattern mod-
ifiers such as transformations, turbulence, and warp modifiers, pigments may also have aCOLORLIST, PIG-
MENT LIST, color map, pigment map, andquick color which are specific to pigments. See ”Pattern Modifiers”
for information on general modifiers. The pigment-specific modifiers are described in sub-sections which fol-
low. Pigment modifiers of any kind apply only to the pigment and not to other parts of the texture. Modifiers
must be specified last.

A pigment statement is part of atexture specification. However it can be tedious to use atexture statement
just to add a color to an object. Therefore you may attach a pigment directly to an object without explicitly
specifying that it as part of a texture. For example instead of this:

object { My_Object texture {pigment { color Red } } }

you may shorten it to:

object { My_Object pigment {color Red } }

Doing so creates an entiretexture structure with defaultnormal and finish statements just as if you had
explicitly typed the full texture {...} around it.

Pigment identifiers may be declared to make scene files more readable and to parameterize scenes so that
changing a single declaration changes many values. An identifier is declared as follows.

PIGMENT_DECLARATION:
#declare IDENTIFIER = PIGMENT |
#local IDENTIFIER = PIGMENT

WhereIDENTIFIER is the name of the identifier up to 40 characters long andPIGMENT is any validpigment
statement. See ”#declare vs. #local” for information on identifier scope.

5.1.1 Solid Color Pigments

The simplest type of pigment is a solid color. To specify a solid color you simply put a color specification inside
a pigment statement. For example:

pigment { color Orange }

A color specification consists of the optional keywordcolor followed by a color identifier or by a specification
of the amount of red, green, blue, filtered and unfiltered transparency in the surface. See section ”Specifying
Colors” for more details about colors. Any pattern modifiers used with a solid color are ignored because there
is no pattern to modify.

5.1.2 Color List Pigments

There are four color list patterns:checker, hexagon, brick andobject. The result is a pattern of solid colors
with distinct edges rather than a blending of colors as with color mapped patterns. Each of these patterns is
covered in more detail in a later section. The syntax is:

5.1 Pigment 177

COLOR_LIST_PIGMENT:
pigment {brick [COLOR_1, [COLOR_2]] [PIGMENT_MODIFIERS...] }|
pigment {checker [COLOR_1, [COLOR_2]] [PIGMENT_MODIFIERS...]}|
pigment {

hexagon [COLOR_1, [COLOR_2, [COLOR_3]]] [PIGMENT_MODIFIERS...]
}|
pigment {object OBJECT_IDENTIFIER | OBJECT {} [COLOR_1, COLOR_2]}

EachCOLORn is any valid color specification. There should be a comma between each color or thecolor

keyword should be used as a separator so that POV-Ray can determine where each color specification starts and
ends. Thebrick andchecker pattern expects two colors andhexagon expects three. If an insufficient number of
colors is specified then default colors are used.

5.1.3 Color Maps

Most of the color patterns do not use abrupt color changes of just two or three colors like those in the brick,
checker or hexagon patterns. They instead use smooth transitions of many colors that gradually change from
one point to the next. The colors are defined in a pigment modifier called acolor map that describes how the
pattern blends from one color to the next.

Each of the various pattern types available is in fact a mathematical function that takes any x, y, z location and
turns it into a number between 0.0 and 1.0 inclusive. That number is used to specify what mix of colors to use
from the color map.

The syntax for color map is as follows:

COLOR_MAP:
color_map { COLOR_MAP_BODY } | colour_map { COLOR_MAP_BODY }

COLOR_MAP_BODY:
COLOR_MAP_IDENTIFIER | COLOR_MAP_ENTRY...

COLOR_MAP_ENTRY:
[Value COLOR] |
[Value_1, Value_2 color COLOR_1 color COLOR_2]

Where eachValue n is a float values between 0.0 and 1.0 inclusive and eachCOLORn, is color specifications.

Note: the[] brackets are part of the actualCOLORMAP ENTRY. They are not notational symbols denoting
optional parts. The brackets surround each entry in the color map.

There may be from 2 to 256 entries in the map. The alternate spellingcolour map may be used.

Here is an example:

sphere {
<0,1,2>, 2
pigment {

gradient x //this is the PATTERN_TYPE
color_map {

[0.1 color Red]
[0.3 color Yellow]
[0.6 color Blue]
[0.6 color Green]
[0.8 color Cyan]

}

178 Textures

}
}

The pattern functiongradient x is evaluated and the result is a value from 0.0 to 1.0. If the value is less than
the first entry (in this case 0.1) then the first color (red) is used. Values from 0.1 to 0.3 use a blend of red and
yellow using linear interpolation of the two colors. Similarly values from 0.3 to 0.6 blend from yellow to blue.

The 3rd and 4th entries both have values of 0.6. This causes an immediate abrupt shift of color from blue to
green. Specifically a value that is less than 0.6 will be blue but exactly equal to 0.6 will be green. Moving along,
values from 0.6 to 0.8 will be a blend of green and cyan. Finally any value greater than or equal to 0.8 will be
cyan.

If you want areas of unchanging color you simply specify the same color for two adjacent entries. For example:

color_map {
[0.1 color Red]
[0.3 color Yellow]
[0.6 color Yellow]
[0.8 color Green]

}

In this case any value from 0.3 to 0.6 will be pure yellow.

The first syntax version ofCOLORMAP ENTRYwith one float and one color is the current standard. The other
double entry version is obsolete and should be avoided. The previous example would look as follows using the
old syntax.

color_map {
[0.0 0.1 color Red color Red]
[0.1 0.3 color Red color Yellow]
[0.3 0.6 color Yellow color Yellow]
[0.6.0.8 color Yellow color Green]
[0.8 1.0 color Green color Green]

}

You may usecolor map with any patterns exceptbrick, checker, hexagon, object and image map. You may
declare and usecolor map identifiers. For example:

#declare Rainbow_Colors=
color_map {

[0.0 color Magenta]
[0.33 color Yellow]
[0.67 color Cyan]
[1.0 color Magenta]

}
object {

My_Object
pigment {

gradient x
color_map { Rainbow_Colors }

}
}

5.1 Pigment 179

5.1.4 Pigment Maps and Pigment Lists

In addition to specifying blended colors with a color map you may create a blend of pigments using apigment -

map. The syntax for a pigment map is identical to a color map except you specify a pigment in each map entry
(and not a color).

The syntax forpigment map is as follows:

PIGMENT_MAP:
pigment_map { PIGMENT_MAP_BODY }

PIGMENT_MAP_BODY:
PIGMENT_MAP_IDENTIFIER | PIGMENT_MAP_ENTRY...

PIGMENT_MAP_ENTRY:
[Value PIGMENT_BODY]

WhereValue is a float value between 0.0 and 1.0 inclusive and eachPIGMENTBODY is anything which can
be inside apigment{...} statement. Thepigment keyword and{} braces need not be specified.

Note: that the[] brackets are part of the actualPIGMENTMAP ENTRY. They are not notational symbols
denoting optional parts. The brackets surround each entry in the pigment map.

There may be from 2 to 256 entries in the map.

For example

sphere {
<0,1,2>, 2
pigment {

gradient x //this is the PATTERN_TYPE
pigment_map {

[0.3 wood scale 0.2]
[0.3 Jade] //this is a pigment identifier
[0.6 Jade]
[0.9 marble turbulence 1]

}
}

}

When thegradient x function returns values from 0.0 to 0.3 the scaled wood pigment is used. From 0.3 to 0.6
the pigment identifier Jade is used. From 0.6 up to 0.9 a blend of Jade and a turbulent marble is used. From 0.9
on up only the turbulent marble is used.

Pigment maps may be nested to any level of complexity you desire. The pigments in a map may have color
maps or pigment maps or any type of pigment you want. Any entry of a pigment map may be a solid color
however if all entries are solid colors you should use acolor map which will render slightly faster.

Entire pigments may also be used with the block patterns such aschecker, hexagon andbrick. For example...

pigment {
checker
pigment { Jade scale .8 }
pigment { White_Marble scale .5 }

}

Note: that in the case of block patterns thepigment wrapping is required around the pigment information.

A pigment map is also used with theaverage pigment type. See ”Average” for details.

180 Textures

You may not usepigment map or individual pigments with animage map. See section ”Texture Maps” for an
alternative way to do this.

You may declare and use pigment map identifiers but the only way to declare a pigment block pattern list is to
declare a pigment identifier for the entire pigment.

5.1.5 Image Maps

When all else fails and none of the above pigment pattern types meets your needs you can use animage map to
wrap a 2-D bit-mapped image around your 3-D objects.

Specifying an Image Map

The syntax for animage map is:

IMAGE_MAP:
pigment
{

image_map
{

[BITMAP_TYPE] "bitmap[.ext]"
[IMAGE_MAP_MODS...]

}
[PIGMENT_MODFIERS...]

}
BITMAP_TYPE:

gif | tga | iff | ppm | pgm | png | jpeg | tiff | sys
IMAGE_MAP_MOD:

map_type Type | once | interpolate Type |
filter Palette, Amount | filter all Amount |
transmit Palette, Amount | transmit all Amount

After the optionalBITMAP TYPEkeyword is a string expression containing the name of a bitmapped image file
of the specified type. If theBITMAP TYPEis not given, the same type is expected as the type set for output.
Example:

plane {
-z,0
pigment {

image_map {png "Eggs.png"}
}

}

plane {
-z,0
pigment {

image_map {"Eggs"}
}

}

The second method will look for, and use ”Eggs.png” if the output file type is set to bepng (OutputFile -
Type=N in INI-file or +FN on command line). It is particularly useful when the image used in theimage map is

5.1 Pigment 181

also rendered with POV-Ray.

Several optional modifiers may follow the file specification. The modifiers are described below.

Note: earlier versions of POV-Ray allowed some modifiers before theBITMAP TYPEbut that syntax is being
phased out in favor of the syntax described here.

Note: sys format is a system-specific format such as BMP for Windows or Pict for Macintosh.

Filenames specified in theimage map statements will be searched for in the home (current) directory first and,
if not found, will then be searched for in directories specified by any+L or Library Path options active. This
would facilitate keeping all your image maps files in a separate subdirectory and giving aLibrary Path option
to specify where your library of image maps are. See ”Library Paths” for details.

By default, the image is mapped onto the x-y-plane. The image isprojectedonto the object as though there were
a slide projector somewhere in the -z-direction. The image exactly fills the square area from (x,y) coordinates
(0,0) to (1,1) regardless of the image’s original size in pixels. If you would like to change this default you may
translate, rotate or scale the pigment or texture to map it onto the object’s surface as desired.

In the section ”Checker”, thechecker pigment pattern is explained. The checks are described as solid cubes
of colored clay from which objects are carved. With image maps you should imagine that each pixel is a long,
thin, square, colored rod that extends parallel to the z-axis. The image is made from rows and columns of these
rods bundled together and the object is then carved from the bundle.

If you would like to change this default orientation you may translate, rotate or scale the pigment or texture to
map it onto the object’s surface as desired.

The file name is optionally followed by one or moreBITMAP MODIFIERS. The filter, filter all,
transmit, and transmit all modifiers are specific to image maps and are discussed in the following sections.
An image map may also use generic bitmap modifiersmap type, once and interpolate described in ”Bitmap
Modifiers”

The Filter and Transmit Bitmap Modifiers

To make all or part of an image map transparent you can specifyfilter and/ortransmit values for the color
palette/registers of PNG, GIF or IFF pictures (at least for the modes that use palettes). You can do this by
adding the keywordfilter or transmit following the filename. The keyword is followed by two numbers. The
first number is the palette number value and the second is the amount of transparency. The values should be
separated by a comma. For example:

image_map {
gif "mypic.gif"
filter 0, 0.5 // Make color 0 50\% filtered transparent
filter 5, 1.0 // Make color 5 100\% filtered transparent
transmit 8, 0.3 // Make color 8 30\% non-filtered transparent

}

You can give the entire image afilter or transmit value usingfilter all Amount or transmit all

Amount . For example:

image_map {
gif "stnglass.gif"
filter all 0.9

}

182 Textures

Note: early versions of POV-Ray used the keywordalpha to specify filtered transparency however that word is
often used to describe non-filtered transparency. For this reasonalpha is no longer used.

See section ”Specifying Colors” for details on the differences between filtered and non-filtered transparency.

Using the Alpha Channel

Another way to specify non-filtered transmit transparency in an image map is by using thealpha channel.
POV-Ray will automatically use the alpha channel for transmittance when one is stored in the image. PNG file
format allows you to store a different transparency for each color index in the PNG file, if desired. If your paint
programs support this feature of PNG you can do the transparency editing within your paint program rather than
specifying transmit values for each color in the POV file. Since PNG and TGA image formats can also store
full alpha channel (transparency) information you can generate image maps that have transparency which is not
dependent on the color of a pixel but rather its location in the image.

Although POV usestransmit 0.0 to specify no transparency and1.0 to specify full transparency, the alpha
data ranges from 0 to 255 in the opposite direction. Alpha data 0 means the same astransmit 1.0 and alpha
data 255 producestransmit 0.0.

5.1.6 Quick Color

When developing POV-Ray scenes it is often useful to do low quality test runs that render faster. The+Q

command line switch orQuality INI option can be used to turn off some time consuming color pattern and
lighting calculations to speed things up. See ”Quality Settings” for details. However all settings of+Q5 or
Quality=5 or lower turns off pigment calculations and creates gray objects.

By adding aquick color to a pigment you tell POV-Ray what solid color to use for quick renders instead of a
patterned pigment. For example:

pigment {
gradient x
color_map{

[0.0 color Yellow]
[0.3 color Cyan]
[0.6 color Magenta]
[1.0 color Cyan]

}
turbulence 0.5
lambda 1.5
omega 0.75
octaves 8
quick_color Neon_Pink

}

This tells POV-Ray to use solidNeon Pink for test runs at quality+Q5 or lower but to use the turbulent gradient
pattern for rendering at+Q6 and higher. Solid color pigments such as

pigment {color Magenta}

automatically set thequick color to that value. You may override this if you want. Suppose you have 10
spheres on the screen and all are yellow. If you want to identify them individually you could give each a
differentquick color like this:

5.2 Normal 183

sphere {
<1,2,3>,4
pigment { color Yellow quick_color Red }

}
sphere {

<-1,-2,-3>,4
pigment { color Yellow quick_color Blue }

}

and so on. At+Q6 or higher they will all be yellow but at+Q5 or lower each would be different colors so you
could identify them.

The alternate spellingquick colour is also supported.

5.2 Normal

Ray-tracing is known for the dramatic way it depicts reflection, refraction and lighting effects. Much of our
perception depends on the reflective properties of an object. Ray tracing can exploit this by playing tricks on
our perception to make us see complex details that are not really there.

Suppose you wanted a very bumpy surface on the object. It would be very difficult to mathematically model lots
of bumps. We can however simulate the way bumps look by altering the way light reflects off of the surface.
Reflection calculations depend on a vector called asurface normalvector. This is a vector which points away
from the surface and is perpendicular to it. By artificially modifying (or perturbing) this normal vector you can
simulate bumps. This is done by adding an optionalnormal statement.

Note: that attaching a normal pattern does not really modify the surface. It only affects the way light reflects or
refracts at the surface so that it looks bumpy.

The syntax is:

NORMAL:
normal { [NORMAL_IDENTIFIER] [NORMAL_TYPE] [NORMAL_MODIFIER...] }

NORMAL_TYPE:
PATTERN_TYPE Amount |
bump_map { BITMAP_TYPE "bitmap.ext" [BUMP_MAP_MODS...]}

NORMAL_MODIFIER:
PATTERN_MODIFIER | NORMAL_LIST | normal_map { NORMAL_MAP_BODY } |
slope_map{ SLOPE_MAP_BODY } | bump_size Amount |
no_bump_scale Bool | accuracy Float

Each of the items in a normal are optional but if they are present, they must be in the order shown. Any items
after theNORMALIDENTIFIERmodify or override settings given in the identifier. If no identifier is specified
then the items modify the normal values in the current default texture. ThePATTERNTYPEmay optionally be
followed by a float value that controls the apparent depth of the bumps. Typical values range from 0.0 to 1.0 but
any value may be used. Negative values invert the pattern. The default value if none is specified is 0.5.

There are four basic types ofNORMALTYPEs. They are block pattern normals, continuous pattern normals,
specialized normals and bump maps. They differ in the types of modifiers you may use with them. The
pattern type is optionally followed by one or more normal modifiers. In addition to general pattern modifiers
such as transformations, turbulence, and warp modifiers, normals may also have aNORMALLIST, slope map,
normal map, andbump size which are specific to normals. See ”Pattern Modifiers” for information on general

184 Textures

modifiers. The normal-specific modifiers are described in sub-sections which follow. Normal modifiers of any
kind apply only to the normal and not to other parts of the texture. Modifiers must be specified last.

Originally POV-Ray had some patterns which were exclusively used for pigments while others were exclusively
used for normals. Since POV-Ray 3.0 you can use any pattern for either pigments or normals. For example it
is now valid to useripples as a pigment orwood as a normal type. The patternsbumps, dents, ripples, waves,
wrinkles, and bump map were once exclusively normal patterns which could not be used as pigments. Because
these six types use specialized normal modification calculations they cannot haveslope map, normal map or
wave shape modifiers. All other normal pattern types may use them. Because block patternschecker, hexagon,
object and brick do not return a continuous series of values, they cannot use these modifiers either. See
”Patterns” for details about specific patterns.

A normal statement is part of atexture specification. However it can be tedious to use atexture statement
just to add bumps to an object. Therefore you may attach a normal directly to an object without explicitly
specifying that it as part of a texture. For example instead of this:

object {My_Object texture { normal { bumps 0.5 } } }

you may shorten it to:

object { My_Object normal { bumps 0.5 } }

Doing so creates an entiretexture structure with defaultpigment and finish statements just as if you had
explicitly typed the full texture {...} around it. Normal identifiers may be declared to make scene files more
readable and to parameterize scenes so that changing a single declaration changes many values. An identifier is
declared as follows.

NORMAL_DECLARATION:
#declare IDENTIFIER = NORMAL |
#local IDENTIFIER = NORMAL

WhereIDENTIFIER is the name of the identifier up to 40 characters long andNORMALis any validnormal
statement. See ”#declare vs. #local” for information on identifier scope.

5.2.1 Slope Maps

A slope map is a normal pattern modifier which gives the user a great deal of control over the exact shape of the
bumpy features. Each of the various pattern types available is in fact a mathematical function that takes any x,
y, z location and turns it into a number between 0.0 and 1.0 inclusive. That number is used to specify where the
various high and low spots are. Theslope map lets you further shape the contours. It is best illustrated with a
gradient normal pattern. Suppose you have...

plane{ z, 0
pigment{ White }
normal { gradient x }

}

This gives a ramp wave pattern that looks like small linear ramps that climb from the points at x=0 to x=1 and
then abruptly drops to 0 again to repeat the ramp from x=1 to x=2. A slope map turns this simple linear ramp
into almost any wave shape you want. The syntax is as follows...

SLOPE_MAP:
slope_map { SLOPE_MAP_BODY }

SLOPE_MAP_BODY:

5.2 Normal 185

SLOPE_MAP_IDENTIFIER | SLOPE_MAP_ENTRY...
SLOPE_MAP_ENTRY:

[Value, <Height, Slope>]

Note: the[] brackets are part of the actualSLOPEMAP ENTRY. They are not notational symbols denoting
optional parts. The brackets surround each entry in the slope map.

There may be from 2 to 256 entries in the map.

EachValue is a float value between 0.0 and 1.0 inclusive and each<Height , Slope > is a 2 component
vector such as<0,1> where the first value represents the apparent height of the wave and the second value
represents the slope of the wave at that point. The height should range between 0.0 and 1.0 but any value could
be used.

The slope value is the change in height per unit of distance. For example a slope of zero means flat, a slope of
1.0 means slope upwards at a 45 degree angle and a slope of -1 means slope down at 45 degrees. Theoretically
a slope straight up would have infinite slope. In practice, slope values should be kept in the range -3.0 to +3.0.
Keep in mind that this is only the visually apparent slope. A normal does not actually change the surface.

For example here is how to make the ramp slope up for the first half and back down on the second half creating
a triangle wave with a sharp peak in the center.

normal {
gradient x // this is the PATTERN_TYPE
slope_map {

[0 <0, 1>] // start at bottom and slope up
[0.5 <1, 1>] // halfway through reach top still climbing
[0.5 <1,-1>] // abruptly slope down
[1 <0,-1>] // finish on down slope at bottom

}
}

The pattern function is evaluated and the result is a value from 0.0 to 1.0. The first entry says that at x=0 the
apparent height is 0 and the slope is 1. At x=0.5 we are at height 1 and slope is still up at 1. The third entry
also specifies that at x=0.5 (actually at some tiny fraction above 0.5) we have height 1 but slope -1 which is
downwards. Finally at x=1 we are at height 0 again and still sloping down with slope -1.

Although this example connects the points using straight lines the shape is actually a cubic spline. This example
creates a smooth sine wave.

normal {
gradient x // this is the PATTERN_TYPE
slope_map {

[0 <0.5, 1>] // start in middle and slope up
[0.25 <1.0, 0>] // flat slope at top of wave
[0.5 <0.5,-1>] // slope down at mid point
[0.75 <0.0, 0>] // flat slope at bottom
[1 <0.5, 1>] // finish in middle and slope up

}
}

This example starts at height 0.5 sloping up at slope 1. At a fourth of the way through we are at the top of the
curve at height 1 with slope 0 which is flat. The space between these two is a gentle curve because the start and
end slopes are different. At half way we are at half height sloping down to bottom out at 3/4ths. By the end we

186 Textures

are climbing at slope 1 again to complete the cycle. There are more examples inslopemap.pov in the sample
scenes.

A slope map may be used with any pattern exceptbrick, checker, object, hexagon, bumps, dents, ripples,
waves, wrinkles and bump map.

You may declare and use slope map identifiers. For example:

#declare Fancy_Wave =
slope_map { // Now let’s get fancy

[0.0 <0, 1>] // Do tiny triangle here
[0.2 <1, 1>] // down
[0.2 <1,-1>] // to
[0.4 <0,-1>] // here.
[0.4 <0, 0>] // Flat area
[0.5 <0, 0>] // through here.
[0.5 <1, 0>] // Square wave leading edge
[0.6 <1, 0>] // trailing edge
[0.6 <0, 0>] // Flat again
[0.7 <0, 0>] // through here.
[0.7 <0, 3>] // Start scallop
[0.8 <1, 0>] // flat on top
[0.9 <0,-3>] // finish here.
[0.9 <0, 0>] // Flat remaining through 1.0

}
object{ My_Object

pigment { White }
normal {

wood
slope_map { Fancy_Wave }

}
}

Normals, Accuracy

Surface normals that use patterns that were not designed for use with normals (anything other than bumps,
dents, waves, ripples, and wrinkles) uses aslope map whether you specify one or not. To create a perturbed
normal from a pattern, POV-Ray samples the pattern at four points in a pyramid surrounding the desired point
to determine the gradient of the pattern at the center of the pyramid. The distance that these points are from the
center point determines the accuracy of the approximation. Using points too close together causes floating-point
inaccuracies. However, using points too far apart can lead to artefacts as well as smoothing out features that
should not be smooth.

Usually, points very close together are desired. POV-Ray currently uses a delta or accuracy distance of 0.02.
Sometimes it is necessary to decrease this value to get better accuracy if you are viewing a close-up of the
texture. Other times, it is nice to increase this value to smooth out sharp edges in the normal (for example, when
using a ’solid’ crackle pattern). For this reason, a new property,accuracy, has been added to normals. It only
makes a difference if the normal uses aslope map (either specified or implied).

You can specify the value of this accuracy (which is the distance between the sample points when determining
the gradient of the pattern for slopemap) by addingaccuracy <float> to your normal. For all patterns, the
default is 0.02.

5.2 Normal 187

5.2.2 Normal Maps and Normal Lists

Most of the time you will apply single normal pattern to an entire surface but you may also create a pattern or
blend of normals using anormal map. The syntax for anormal map is identical to apigment map except you
specify a normal in each map entry. The syntax fornormal map is as follows:

NORMAL_MAP:
normal_map { NORMAL_MAP_BODY }

NORMAL_MAP_BODY:
NORMAL_MAP_IDENTIFIER | NORMAL_MAP_ENTRY...

NORMAL_MAP_ENTRY:
[Value NORMAL_BODY]

WhereValue is a float value between 0.0 and 1.0 inclusive and eachNORMALBODY is anything which can
be inside anormal{...} statement. Thenormal keyword and{} braces need not be specified.

Note: that the[] brackets are part of the actualNORMALMAP ENTRY. They are not notational symbols
denoting optional parts. The brackets surround each entry in the normal map.

There may be from 2 to 256 entries in the map.

For example

normal {
gradient x //this is the PATTERN_TYPE
normal_map {

[0.3 bumps scale 2]
[0.3 dents]
[0.6 dents]
[0.9 marble turbulence 1]

}
}

When thegradient x function returns values from 0.0 to 0.3 then the scaled bumps normal is used. From 0.3
to 0.6 dents pattern is used. From 0.6 up to 0.9 a blend of dents and a turbulent marble is used. From 0.9 on up
only the turbulent marble is used.

Normal maps may be nested to any level of complexity you desire. The normals in a map may have slope maps
or normal maps or any type of normal you want.

A normal map is also used with theaverage normal type. See ”Average” for details.

Entire normals in a normal list may also be used with the block patterns such aschecker, hexagon andbrick.
For example...

normal {
checker
normal { gradient x scale .2 }
normal { gradient y scale .2 }

}

Note: in the case of block patterns thenormal wrapping is required around the normal information.

You may not use normal map or individual normals with a bump map. See section ”Texture Maps” for an
alternative way to do this.

188 Textures

You may declare and use normal map identifiers but the only way to declare a normal block pattern list is to
declare a normal identifier for the entire normal.

5.2.3 Bump Maps

When all else fails and none of the above normal pattern types meets your needs you can use abump map to wrap
a 2-D bit-mapped bump pattern around your 3-D objects.

Instead of placing the color of the image on the shape like animage map abump map perturbs the surface normal
based on the color of the image at that point. The result looks like the image has been embossed into the surface.
By default, a bump map uses the brightness of the actual color of the pixel. Colors are converted to gray scale
internally before calculating height. Black is a low spot, white is a high spot. The image’s index values may be
used instead (see section ”UseIndex and UseColor” below).

Specifying a Bump Map

The syntax for abump map is:

BUMP_MAP:
normal
{

bump_map
{

BITMAP_TYPE "bitmap.ext"
[BUMP_MAP_MODS...]

}
[NORMAL_MODFIERS...]

}
BITMAP_TYPE:

gif | tga | iff | ppm | pgm | png | jpeg | tiff | sys
BUMP_MAP_MOD:

map_type Type | once | interpolate Type | use_color |
use_colour | bump_size Value

After the requiredBITMAP TYPEkeyword is a string expression containing the name of a bitmapped bump file
of the specified type. Several optional modifiers may follow the file specification. The modifiers are described
below.

Note: earlier versions of POV-Ray allowed some modifiers before theBITMAP TYPEbut that syntax is being
phased out in favor of the syntax described here.

Note: sys format is a system-specific format such as BMP for Windows or Pict for Macintosh.

Filenames specified in thebump map statements will be searched for in the home (current) directory first and, if
not found, will then be searched for in directories specified by any+L or Library Path options active. This
would facilitate keeping all your bump maps files in a separate subdirectory and giving aLibrary Path option
to specify where your library of bump maps are. See ”Library Paths” for details.

By default, the bump pattern is mapped onto the x-y-plane. The bump pattern isprojectedonto the object as
though there were a slide projector somewhere in the -z-direction. The pattern exactly fills the square area from
(x,y) coordinates (0,0) to (1,1) regardless of the pattern’s original size in pixels. If you would like to change this
default you may translate, rotate or scale the pigment or texture to map it onto the object’s surface as desired.

5.2 Normal 189

If you would like to change this default orientation you may translate, rotate or scale the pigment or texture to
map it onto the object’s surface as desired.

The file name is optionally followed by one or moreBITMAP MODIFIERS. Thebump size, use color and
use index modifiers are specific to bump maps and are discussed in the following sections. See section ”Bitmap
Modifiers” for the generic bitmap modifiersmap type, once and interpolate described in ”Bitmap Modifiers”

Bump Size

The relative bump size can be scaled using thebump size modifier. The bump size number can be any number
other than 0 but typical values are from about 0.1 to as high as 4.0 or 5.0.

normal {
bump_map {

gif "stuff.gif"
bump_size 5.0

}
}

Originally bump size could only be used inside a bump map but it can now be used with any normal. Typically
it is used to override a previously defined size. For example:

normal {
My_Normal //this is a previously defined normal identifier
bump_size 2.0

}

Use Index and UseColor

Usually the bump map converts the color of the pixel in the map to a gray scale intensity value in the range 0.0
to 1.0 and calculates the bumps based on that value. If you specifyuse index, the bump map uses the color’s
palette number to compute as the height of the bump at that point. So, color number 0 would be low and color
number 255 would be high (if the image has 256 palette entries). The actual color of the pixels doesn’t matter
when using the index. This option is only available on palette based formats. Theuse color keyword may be
specified to explicitly note that the color methods should be used instead. The alternate spellinguse colour is
also valid. These modifiers may only be used inside thebump map statement.

5.2.4 Scaling normals

When scaling a normal, or when scaling an object after a normal is applied to it, the depth of the normal is
affected by the scaling. This is not always wanted. If you want to turn off bump scaling for a texture or normal,
you can do this by adding the keywordno bump scale to the texture’s or normal’s modifiers. This modifier will
get passed on to all textures or normals contained in that texture or normal. Think of this like the way noshadow
gets passed on to objects contained in a CSG.

It is also important to note that if you addno bump scale to a normal or texture that is contained within another
pattern (such as within atexture map or normal map), then the only scaling that will be ignored is the scaling
of that texture or normal. Scaling of the parent texture or normal or of the object will affect the depth of the
bumps, unlessno bump scale is specified at the top-level of the texture (or normal, if the normal is not wrapped
in a texture).

190 Textures

5.3 Finish

The finish properties of a surface can greatly affect its appearance. How does light reflect? What happens in
shadows? What kind of highlights are visible. To answer these questions you need afinish.

The syntax forfinish is as follows:

FINISH:
finish { [FINISH_IDENTIFIER] [FINISH_ITEMS...] }

FINISH_ITEMS:
ambient COLOR | diffuse Amount | brilliance Amount |
phong Amount | phong_size Amount | specular Amount |
roughness Amount | metallic [Amount] | reflection COLOR |
crand Amount | conserve_energy BOOL_ON_OF |
reflection { Color_Reflecting_Min [REFLECTION_ITEMS...] }|
irid { Irid_Amount [IRID_ITEMS...] }

REFLECTION_ITEMS:
COLOR_REFLECTION_MAX | fresnel BOOL_ON_OFF |
falloff FLOAT_FALLOFF | exponent FLOAT_EXPONENT |
metallic FLOAT_METALLIC

IRID_ITEMS:
thickness Amount | turbulence Amount

The FINISH IDENTIFIER is optional but should proceed all other items. Any items after theFINISH -
IDENTIFIER modify or override settings given in theFINISH IDENTIFIER. If no identifier is specified then
the items modify the finish values in the current default texture.

Note: transformations are not allowed inside a finish because finish items cover the entire surface uniformly.
Each of theFINISH ITEMSlisted above is described in sub-sections below.

In earlier versions of POV-Ray, therefraction, ior, andcaustics keywords were part of thefinish state-
ment but they are now part of theinterior statement. They are still supported underfinish for backward
compatibility but the results may not be 100% identical to previous versions. See ”Why are Interior and Media
Necessary?” for details.

A finish statement is part of atexture specification. However it can be tedious to use atexture statement just
to add a highlights or other lighting properties to an object. Therefore you may attach a finish directly to an
object without explicitly specifying that it as part of a texture. For example instead of this:

object { My_Object texture { finish { phong 0.5 } } }

you may shorten it to:

object { My_Object finish { phong 0.5 } }

Doing so creates an entiretexture structure with defaultpigment and normal statements just as if you had
explicitly typed the full texture {...} around it.

Finish identifiers may be declared to make scene files more readable and to parameterize scenes so that changing
a single declaration changes many values. An identifier is declared as follows.

FINISH_DECLARATION:
#declare IDENTIFIER = FINISH |
#local IDENTIFIER = FINISH

WhereIDENTIFIER is the name of the identifier up to 40 characters long andFINISH is any validfinish
statement. See ”#declare vs. #local” for information on identifier scope.

5.3 Finish 191

5.3.1 Ambient

The light you see in dark shadowed areas comes from diffuse reflection off of other objects. This light cannot
be directly modeled using ray-tracing. However we can use a trick calledambient lightingto simulate the light
inside a shadowed area.

Ambient light is light that is scattered everywhere in the room. It bounces all over the place and manages to
light objects up a bit even where no light is directly shining. Computing real ambient light would take far too
much time, so we simulate ambient light by adding a small amount of white light to each texture whether or not
a light is actually shining on that texture.

This means that the portions of a shape that are completely in shadow will still have a little bit of their surface
color. It is almost as if the texture glows, though the ambient light in a texture only affects the shape it is used
on.

Theambient keyword controls the amount of ambient light. Usually a single float value is specified even though
the syntax calls for a color. For example a float value of0.3 gets promoted to the full color vector<0.3,0.3,

0.3,0.3,0.3> which is acceptable because only the red, green and blue parts are used.

The default value is 0.1 which gives very little ambient light. The value can range from 0.0 to 1.0. Ambient
light affects both shadowed and non-shadowed areas so if you turn up theambient value you may want to turn
down thediffuse andreflection values.

Note: that this method does not account for the color of surrounding objects. If you walk into a room that has
red walls, floor and ceiling then your white clothing will look pink from the reflected light. POV-Ray’s ambient
shortcut does not account for this. There is also no way to model specular reflected indirect illumination such
as the flashlight shining in a mirror.

You may color the ambient light using one of two methods. You may specify a color rather than a float after the
ambient keyword in each finish statement. For example

finish { ambient rgb <0.3,0.1,0.1> } //a pink ambient

You may also specify the overall ambient light source used when calculating the ambient lighting of an object
using the global ambient light setting. The formula is given byAmbient = FinishAmbient * Global-
AmbientLight SourceSee section ”Ambient Light” for details.

5.3.2 Diffuse Reflection Items

When light reflects off of a surface the laws of physics say that it should leave the surface at the exact same
angle it came in. This is similar to the way a billiard ball bounces off a bumper of a pool table. This perfect
reflection is calledspecular reflection. However only very smooth polished surfaces reflect light in this way.
Most of the time, light reflects and is scattered in all directions by the roughness of the surface. This scattering
is calleddiffuse reflectionbecause the light diffuses or spreads in a variety of directions. It accounts for the
majority of the reflected light we see.

Diffuse

The keyworddiffuse is used in afinish statement to control how much of the light coming directly from any
light sources is reflected via diffuse reflection. For example

finish { diffuse 0.7 }

192 Textures

means that 70% of the light seen comes from direct illumination from light sources. The default value isdiffuse

0.6.

Brilliance

The amount of direct light that diffuses from an object depends upon the angle at which it hits the surface.
When light hits at a shallow angle it illuminates less. When it is directly above a surface it illuminates more.
Thebrilliance keyword can be used in afinish statement to vary the way light falls off depending upon the
angle of incidence. This controls the tightness of the basic diffuse illumination on objects and slightly adjusts
the appearance of surface shininess. Objects may appear more metallic by increasing their brilliance. The
default value is 1.0. Higher values from 5.0 to about 10.0 cause the light to fall off less at medium to low angles.
There are no limits to the brilliance value. Experiment to see what works best for a particular situation. This is
best used in concert with highlighting.

Crand Graininess

Very rough surfaces, such as concrete or sand, exhibit a dark graininess in their apparent color. This is caused
by the shadows of the pits or holes in the surface. Thecrand keyword can be added to afinish to cause a
minor random darkening in the diffuse reflection of direct illumination. Typical values range fromcrand 0.01

to crand 0.5 or higher. The default value is 0. For example:

finish { crand 0.05 }

This feature is carried over from the earliest versions of POV-Ray and is considered obsolete. This is because
the grain or noise introduced by this feature is applied on a pixel-by-pixel basis. This means that it will look the
same on far away objects as on close objects. The effect also looks different depending upon the resolution you
are using for the rendering.

Note: this should not be used when rendering animations. This is the one of a few truly random features in
POV-Ray and will produce an annoying flicker of flying pixels on any textures animated with acrand value. For
these reasons it is not a very accurate way to model the rough surface effect.

5.3.3 Highlights

Highlights are the bright spots that appear when a light source reflects off of a smooth object. They are a
blend of specular reflection and diffuse reflection. They are specular-like because they depend upon viewing
angle and illumination angle. However they are diffuse-like because some scattering occurs. In order to exactly
model a highlight you would have to calculate specular reflection off of thousands of microscopic bumps called
micro facets. The more that micro facets are facing the viewer the shinier the object appears and the tighter the
highlights become. POV-Ray uses two different models to simulate highlights without calculating micro facets.
They are thespecularandPhongmodels.

Note: specular and Phong highlights arenotmutually exclusive. It is possible to specify both and they will both
take effect. Normally, however, you will only specify one or the other.

5.3 Finish 193

Phong Highlights

Thephong keyword in thefinish statement controls the amount of Phong highlighting on the object. It causes
bright shiny spots on the object that are the color of the light source being reflected.

The Phong method measures the average of the facets facing in the mirror direction from the light sources to
the viewer.

Phong’s value is typically from 0.0 to 1.0, where 1.0 causes complete saturation to the light source’s color at the
brightest area (center) of the highlight. The defaultphong 0.0 gives no highlight.

The size of the highlight spot is defined by thephong size value. The larger the phong size the tighter, or smaller,
the highlight and the shinier the appearance. The smaller the phong size the looser, or larger, the highlight and
the less glossy the appearance.

Typical values range from 1.0 (very dull) to 250 (highly polished) though any values may be used. Default
phong size is 40 (plastic) ifphong size is not specified. For example:

finish { phong 0.9 phong_size 60 }

If phong is not specifiedphong size has no effect.

Specular Highlight

Thespecular keyword in afinish statement produces a highlight which is very similar to Phong highlighting
but it uses slightly different model. The specular model more closely resembles real specular reflection and
provides a more credible spreading of the highlights occurring near the object horizons.

The specular value is typically from 0.0 to 1.0, where 1.0 causes complete saturation to the light source’s color
at the brightest area (center) of the highlight. The defaultspecular 0.0 gives no highlight.

The size of the spot is defined by the value given theroughness keyword. Typical values range from 1.0
(very rough - large highlight) to 0.0005 (very smooth - small highlight). The default value, if roughness is not
specified, is 0.05 (plastic).

It is possible to specify wrong values for roughness that will generate an error when you try to render the file.
Do not use 0 and if you get errors check to see if you are using a very, very small roughness value that may be
causing the error. For example:

finish { specular 0.9 roughness 0.02 }

If specular is not specifiedroughness has no effect.

Note: that when light is reflected by a surface such as a mirror, it is calledspecular reflectionhowever such
reflection is not controlled by thespecular keyword. The reflection keyword controls mirror-like specular
reflection.

Metallic Highlight Modifier

The keywordmetallic may be used withphong or specular highlights. This keyword indicates that the color
of the highlights will be calculated by an empirical function that models the reflectivity of metallic surfaces.

Normally highlights are the color of the light source. Adding this keyword filters the highlight so that white
light reflected from a metallic surface takes the color specified by the pigment

194 Textures

Themetallic keyword may optionally be follow by a numeric value to specify the influence the amount of the
effect. If no keyword is specified, the default value is zero. If the keyword is specified without a value, the
default value is one. For example:

finish {
phong 0.9
phong_size 60
metallic

}

If phong or specular keywords are not specified thenmetallic has no effect.

5.3.4 Specular Reflection

When light does not diffuse and itdoesreflect at the same angle as it hits an object, it is calledspecular
reflection. Such mirror-like reflection is controlled by thereflection {...} block in afinish statement.

Syntax:

finish {
reflection {
[COLOR_REFLECTION_MIN,] COLOR_REFLECTION_MAX
[fresnel BOOL_ON_OFF]
[falloff FLOAT_FALLOFF]
[exponent FLOAT_EXPONENT]
[metallic FLOAT_METALLIC]

}
}

[interior { ior IOR }]

The simplest use would be a perfect mirror:

finish { reflection {1.0} ambient 0 diffuse 0 }

This gives the object a mirrored finish. It will reflect all other elements in the scene. Usually a single float value
is specified after the keyword even though the syntax calls for a color. For example a float value of 0.3 gets
promoted to the full color vector<0.3,0.3,0.3,0.3,0.3> which is acceptable because only the red, green and
blue parts are used.

The value can range from 0.0 to 1.0. By default there is no reflection.

Note:

• Adding reflection to a texture makes it take longer to render because an additional ray must be traced.

• The reflected light may be tinted by specifying a color rather than a float.
For example:
finish { reflection rgb <1,0,0> }
gives a red mirror that only reflects red light.

• Although such reflection is called specular it is not controlled by thespecular keyword. That keyword
controls a specular highlight.

• The old syntax for simple reflection: ”reflection COLOR” and ”reflectionexponent Float” without braces
is still supported for backward compatibility.

5.3 Finish 195

falloff sets a falloff exponent in the variable reflection. This is the exponent telling how fast the reflectivity
will fall off, i.e. linear, squared, cubed, etc.

The metallic keyword is similar in function to the ”metallic” keyword used for highlights in finishes: it
simulates the reflective properties of metallic surfaces, where reflected light takes on the colour of the surface.
Whenmetallic is used, the ”reflection” color is multiplied by the pigment color at each point. You can specify
an optional float value, which is the amount of influence themetallic keyword has on the reflected color.
metallic uses the Fresnel equation so that the color of the light is reflected at glancing angles, and the color of
the metal is reflected for angles close to the surface’s normal.

exponent
POV-Ray uses a limited light model that cannot distinguish between objects which are simply brightly colored
and objects which are extremely bright. A white piece of paper, a light bulb, the sun, and a supernova, all
would be modeled asrgb<1,1,1> and slightly off-white objects would be only slightly darker. It is especially
difficult to model partially reflective surfaces in a realistic way. Middle and lower brightness objects typically
look too bright when reflected. If you reduce thereflection value, it tends to darken the bright objects too
much. Therefore the optionalexponent keyword has been added. It produces non-linear reflection intensities.
The default value of 1.0 produces a linear curve. Lower values darken middle and low intensities and keeps
high intensity reflections bright. This is a somewhat experimental feature designed for artistic use. It does not
directly correspond to any real world reflective properties.

Variable reflection
Many materials, such as water, ceramic glaze, and linoleum are more reflective when viewed at shallow angles.
This can be simulated by also specifying a minimum reflection in thereflection {...} statement.
For example:

finish { reflection { 0.03, 1 }}

uses the same function as the standard reflection, but the first parameter sets the minimum reflectivity. It could
be a color vector or a float (which is automatically promoted to a gray vector). This minimum value is how
reflective the surface will be when viewed from a direction parallel to its normal.
The second parameter sets the maximum reflectivity, which could also be a color vector or a float (which is
automatically promoted to a gray vector). This maximum parameter is how reflective the surface will be when
viewed at a 90-degree angle to its normal.

Note: You can make maximum reflection less than minimum reflection if you want, although the result is
something that does not occur in nature.

When adding thefresnel keyword, the Fresnel reflectivity function is used instead of standard reflection.
It calculates reflectivity using the finish’s IOR. So with a fresnel reflectiontype aninterior { ior IOR }
statement is required, even with opaque pigments. Remember that in real life many opaque objects have a
thin layer of transparent glaze on their surface, and it is the glaze (which -does- have an IOR) that is reflective.

5.3.5 Conserve Energy for Reflection

One of the features in POV-Ray is variable reflection, including realistic Fresnel reflection (see section ”Variable
Reflection ”). Unfortunately, when this is coupled with constant transmittance, the texture can look unrealistic.
This unrealism is caused by the scene breaking the law of conservation of energy. As the amount of light
reflected changes, the amount of light transmitted should also change (in a give-and-take relationship).

This can be achieved by adding theconserve energy keyword to the object’sfinish {}.
When conserveenergy is enabled, POV-Ray will multiply the amount filtered and transmitted by what is left

196 Textures

over from reflection (for example, if reflection is 80%, filter/transmit will be multiplied by 20%).

5.3.6 Iridescence

Iridescence, or Newton’s thin film interference, simulates the effect of light on surfaces with a microscopic
transparent film overlay. The effect is like an oil slick on a puddle of water or the rainbow hues of a soap
bubble. This effect is controlled by theirid statement specified inside afinish statement.

This parameter modifies the surface color as a function of the angle between the light source and the surface.
Since the effect works in conjunction with the position and angle of the light sources to the surface it does not
behave in the same ways as a procedural pigment pattern.

The syntax is:

IRID:
irid { Irid_Amount [IRID_ITEMS...] }

IRID_ITEMS:
thickness Amount | turbulence Amount

The requiredIrid Amount parameter is the contribution of the iridescence effect to the overall surface color.
As a rule of thumb keep to around 0.25 (25% contribution) or less, but experiment. If the surface is coming out
too white, try lowering thediffuse and possibly theambient values of the surface.

The thickness keyword represents the film’s thickness. This is an awkward parameter to set, since the thick-
ness value has no relationship to the object’s scale. Changing it affects the scale orbusy-nessof the effect. A
very thin film will have a high frequency of color changes while a thick film will have large areas of color. The
default value is zero.

The thickness of the film can be varied with theturbulence keyword. You can only specify the amount of
turbulence with iridescence. The octaves, lambda, and omega values are internally set and are not adjustable by
the user at this time. This parameter varies only a single value: the thickness. Therefore the value must be a
single float value. It cannot be a vector as in other uses of theturbulence keyword.

In addition, perturbing the object’s surface normal through the use of bump patterns will affect iridescence.

For the curious, thin film interference occurs because, when the ray hits the surface of the film, part of the light
is reflected from that surface, while a portion is transmitted into the film. Thissubsurfaceray travels through
the film and eventually reflects off the opaque substrate. The light emerges from the film slightly out of phase
with the ray that was reflected from the surface.

This phase shift creates interference, which varies with the wavelength of the component colors, resulting in
some wavelengths being reinforced, while others are cancelled out. When these components are recombined,
the result is iridescence. See also the global setting ”IridWavelength”.

The concept used for this feature came from the bookFundamentals of Three-Dimensional Computer Graphics
by Alan Watt (Addison-Wesley).

5.4 Halo

Earlier versions of POV-Ray used a feature calledhalo to simulate fine particles such as smoke, steam, fog, or
flames. The halo statement was part of thetexture statement. This feature has been discontinued and replaced
by theinterior andmedia statements which are object modifiers outside thetexture statement.

5.5 Patterned Textures 197

See ”Why are Interior and Media Necessary?” for a detailed explanation on the reasons for the change. See
”Media” for details onmedia.

5.5 Patterned Textures

Patterned textures are complex textures made up of multiple textures. The component textures may be plain
textures or may be made up of patterned textures. A plain texture has just one pigment, normal and finish
statement. Even a pigment with a pigment map is still one pigment and thus considered a plain texture as are
normals with normal map statements.

Patterned textures use either atexture map statement to specify a blend or pattern of textures or they use block
textures such aschecker with a texture list or a bitmap similar to an image map called amaterial mapspecified
with amaterial map statement.

The syntax is...

PATTERNED_TEXTURE:
texture
{

[PATTERNED_TEXTURE_ID]
[TRANSFORMATIONS...]

} |
texture
{

PATTERN_TYPE
[TEXTURE_PATTERN_MODIFIERS...]

} |
texture
{

tiles TEXTURE tile2 TEXTURE
[TRANSFORMATIONS...]

} |
texture
{

material_map
{

BITMAP_TYPE "bitmap.ext"
[BITMAP_MODS...] TEXTURE... [TRANSFORMATIONS...]

}
}

TEXTURE_PATTERN_MODIFIER:
PATTERN_MODIFIER | TEXTURE_LIST |
texture_map { TEXTURE_MAP_BODY }

There are restrictions on using patterned textures. A patterned texture may not be used as a default texture (see
section ”The #default Directive”). A patterned texture cannot be used as a layer in a layered texture however
you may use layered textures as any of the textures contained within a patterned texture.

198 Textures

5.5.1 Texture Maps

In addition to specifying blended color with a color map or a pigment map you may create a blend of textures
usingtexture map. The syntax for a texture map is identical to the pigment map except you specify a texture in
each map entry.

The syntax fortexture map is as follows:

TEXTURE_MAP:
texture_map { TEXTURE_MAP_BODY }

TEXTURE_MAP_BODY:
TEXTURE_MAP_IDENTIFIER | TEXTURE_MAP_ENTRY...

TEXTURE_MAP_ENTRY:
[Value TEXTURE_BODY]

WhereValue is a float value between 0.0 and 1.0 inclusive and eachTEXTUREBODY is anything which can
be inside atexture{...} statement. Thetexture keyword and{} braces need not be specified.

Note: the[] brackets are part of the actualTEXTUREMAP ENTRY. They are not notational symbols denoting
optional parts. The brackets surround each entry in the texture map.

There may be from 2 to 256 entries in the map.

For example:

texture {
gradient x //this is the PATTERN_TYPE
texture_map {

[0.3 pigment{Red} finish{phong 1}]
[0.3 T_Wood11] //this is a texture identifier
[0.6 T_Wood11]
[0.9 pigment{DMFWood4} finish{Shiny}]

}
}

When thegradient x function returns values from 0.0 to 0.3 the red highlighted texture is used. From 0.3 to
0.6 the texture identifierT Wood11 is used. From 0.6 up to 0.9 a blend ofT Wood11 and a shinyDMFWood4 is used.
From 0.9 on up only the shiny wood is used.

Texture maps may be nested to any level of complexity you desire. The textures in a map may have color maps
or texture maps or any type of texture you want.

The blended area of a texture map works by fully calculating both contributing textures in their entirety and
then linearly interpolating the apparent colors. This means that reflection, refraction and lighting calculations
are done twice for every point. This is in contrast to using a pigment map and a normal map in a plain texture,
where the pigment is computed, then the normal, then reflection, refraction and lighting are calculated once for
that point.

Entire textures may also be used with the block patterns such aschecker, hexagon andbrick. For example...

texture {
checker

texture { T_Wood12 scale .8 }
texture {

pigment { White_Marble }
finish { Shiny }

5.5 Patterned Textures 199

scale .5
}

}
}

Note: that in the case of block patterns thetexture wrapping is required around the texture information. Also
note that this syntax prohibits the use of a layered texture however you can work around this by declaring a
texture identifier for the layered texture and referencing the identifier.

A texture map is also used with theaverage texture type. See ”Average” for details.

You may declare and use texture map identifiers but the only way to declare a texture block pattern list is to
declare a texture identifier for the entire texture.

5.5.2 Tiles

Earlier versions of POV-Ray had a patterned texture called atiles texture. It used thetiles andtile2 keywords
to create a checkered pattern of textures.

TILES_TEXTURE:
texture
{

tiles TEXTURE tile2 TEXTURE
[TRANSFORMATIONS...]

}

Although it is still supported for backwards compatibility you should use achecker block texture pattern de-
scribed in section ”Texture Maps” rather than tiles textures.

5.5.3 Material Maps

The material map patterned texture extends the concept of image maps to apply to entire textures rather than
solid colors. A material map allows you to wrap a 2-D bit-mapped texture pattern around your 3-D objects.

Instead of placing a solid color of the image on the shape like an image map, an entire texture is specified based
on the index or color of the image at that point. You must specify a list of textures to be used like atexture
paletterather than the usual color palette.

When used with mapped file types such as GIF, and some PNG and TGA images, the index of the pixel is used
as an index into the list of textures you supply. For unmapped file types such as some PNG and TGA images
the 8 bit value of the red component in the range 0-255 is used as an index.

If the index of a pixel is greater than the number of textures in your list then the index is taken modulo N where
N is the length of your list of textures.

Note: The material map statement has nothing to do with thematerial statement. Amaterial map is not a
way to create patternedmaterial. See ”Material” for explanation of this unrelated, yet similarly named, older
feature.

Specifying a Material Map

The syntax for amaterial map is:

200 Textures

MATERIAL_MAP:
texture
{

material_map
{

BITMAP_TYPE "bitmap.ext"
[BITMAP_MODS...] TEXTURE... [TRANSFORMATIONS...]

}
}

BITMAP_TYPE:
gif | tga | iff | ppm | pgm | png | jpeg | tiff | sys

BITMAP_MOD:
map_type Type | once | interpolate Type

After the requiredBITMAP TYPEkeyword is a string expression containing the name of a bitmapped material
file of the specified type. Several optional modifiers may follow the file specification. The modifiers are
described below.

Note: earlier versions of POV-Ray allowed some modifiers before theBITMAP TYPEbut that syntax is being
phased out in favor of the syntax described here.

Note: sys format is a system-specific format such as BMP for Windows or Pict for Macintosh.

Filenames specified in thematerial map statements will be searched for in the home (current) directory first
and, if not found, will then be searched for in directories specified by any+L or Library Path options active.
This would facilitate keeping all your material maps files in a separate subdirectory and giving aLibrary Path

option to specify where your library of material maps are. See ”Library Paths” for details.

By default, the material is mapped onto the x-y-plane. The material isprojectedonto the object as though
there were a slide projector somewhere in the -z-direction. The material exactly fills the square area from (x,y)
coordinates (0,0) to (1,1) regardless of the material’s original size in pixels. If you would like to change this
default you may translate, rotate or scale the texture to map it onto the object’s surface as desired.

The file name is optionally followed by one or moreBITMAP MODIFIERS. There are no modifiers which
are unique to amaterial map. It only uses the generic bitmap modifiersmap type, once and interpolate

described in ”Bitmap Modifiers”.

Although interpolate is legal in material maps, the color index is interpolated before the texture is chosen. It
does not interpolate the final color as you might hope it would. In general, interpolation of material maps serves
no useful purpose but this may be fixed in future versions.

Next is one or moretexture statements. Each texture in the list corresponds to an index in the bitmap file. For
example:

texture {
material_map {

png "povmap.png"
texture { //used with index 0

pigment {color red 0.3 green 0.1 blue 1}
normal {ripples 0.85 frequency 10 }
finish {specular 0.75}
scale 5

}
texture { //used with index 1

pigment {White}

5.5 Patterned Textures 201

finish {
ambient 0 diffuse 0
reflection 0.9 specular 0.75

}
}
// used with index 2
texture {pigment{NeonPink} finish{Luminous}}
texture { //used with index 3

pigment {
gradient y
color_map {

[0.00 rgb < 1 , 0 , 0>]
[0.33 rgb < 0 , 0 , 1>]
[0.66 rgb < 0 , 1 , 0>]
[1.00 rgb < 1 , 0 , 0>]

}
}
finish{specular 0.75}
scale 8

}
}
scale 30
translate <-15, -15, 0>

}

After amaterial map statement but still inside the texture statement you may apply any legal texture modifiers.

Note: no other pigment, normal, or finish statements may be added to the texture outside the material map.

The following is illegal:

texture {
material_map {

gif "matmap.gif"
texture {T1}
texture {T2}
texture {T3}

}
finish {phong 1.0}

}

The finish must be individually added to each texture. Earlier versions of POV-Ray allowed such specifications
but they were ignored. The above restrictions on syntax were necessary for various bug fixes. This means some
POV-Ray 1.0 scenes using material maps many need minor modifications that cannot be done automatically
with the version compatibility mode.

If particular index values are not used in an image then it may be necessary to supply dummy textures. It may
be necessary to use a paint program or other utility to examine the map file’s palette to determine how to arrange
the texture list.

The textures within a material map texture may be layered but material map textures do not work as part of a
layered texture. To use a layered texture inside a material map you must declare it as a texture identifier and
invoke it in the texture list.

202 Textures

5.6 Layered Textures

It is possible to create a variety of special effects using layered textures. A layered texture consists of several
textures that are partially transparent and are laid one on top of the other to create a more complex texture. The
different texture layers show through the transparent portions to create the appearance of one texture that is a
combination of several textures.

You create layered textures by listing two or more textures one right after the other. The last texture listed will
be the top layer, the first one listed will be the bottom layer. All textures in a layered texture other than the
bottom layer should have some transparency. For example:

object {
My_Object
texture {T1} // the bottom layer
texture {T2} // a semi-transparent layer
texture {T3} // the top semi-transparent layer

}

In this example T2 shows only where T3 is transparent and T1 shows only where T2 and T3 are transparent.

The color of underlying layers is filtered by upper layers but the results do not look exactly like a series of
transparent surfaces. If you had a stack of surfaces with the textures applied to each, the light would be filtered
twice: once on the way in as the lower layers are illuminated by filtered light and once on the way out. Layered
textures do not filter the illumination on the way in. Other parts of the lighting calculations work differently as
well. The results look great and allow for fantastic looking textures but they are simply different from multiple
surfaces. Seestones.inc in the standard include files directory for some magnificent layered textures.

Note: in versions predating POV-Ray 3.5,filter used to work the same astransmit in layered textures. It has
been changed to work as filter should. This can change the appearance of ”pre 3.5” textures a lot. The#version

directive can be used to get the ”pre 3.5” behaviour.

Note: layered textures must use thetexture wrapped around any pigment, normal or finish statements. Do not
use multiple pigment, normal or finish statements without putting them inside the texture statement.

Layered textures may be declared. For example

#declare Layered_Examp =
texture {T1}
texture {T2}
texture {T3}

may be invoked as follows:

object {
My_Object
texture {

Layer_Examp
// Any pigment, normal or finish here
// modifies the bottom layer only.

}
}

Note: No macros are allowed in layered textures. The problem is that if a macro would contain a declare the
parser could no longer guess that two or more texture identifiers are supposed to belong to the layered texture
and not some other declare.

5.7 UV Mapping 203

If you wish to use a layered texture in a block pattern, such aschecker, hexagon, or brick, or in a material -

map, you must declare it first and then reference it inside a single texture statement. A patterned texture cannot
be used as a layer in a layered texture however you may use layered textures as any of the textures contained
within a patterned texture.

5.7 UV Mapping

All textures in POV-Ray are defined in 3 dimensions. Even planar image mapping is done this way. However,
it is sometimes more desirable to have the texture defined for the surface of the object. This is especially true
for bicubic patch objects and mesh objects, that can be stretched and compressed. When the object is stretched
or compressed, it would be nice for the texture to beglued to the object’s surface and follow the object’s
deformations.

When uvmapping is used, then that object’s texture will be mapped to it using surface coordinates (u and v)
instead of spatial coordinates (x, y, and z). This is done by taking a slice of the object’s regular 3D texture from
the XY plane (Z=0) and wrapping it around the surface of the object, following the object’s surface coordinates.

Note: some textures should be rotated to fit the slice in the XY plane.

Syntax:

texture {
uv_mapping pigment{PIGMENT_BODY} | pigment{uv_mapping PIGMENT_BODY}
uv_mapping normal {NORMAL_BODY } | normal {uv_mapping NORMAL_BODY }
uv_mapping texture{TEXTURE_BODY} | texture{uv_mapping TEXTURE_BODY)

}

5.7.1 Supported Objects

Surface mapping is currently defined for the following objects:

• bicubic patch : UV coordinates are based on the patch’s parametric coordinates. They stretch with the
control points. The default range is (0..1) and can be changed.

• mesh, mesh2: UV coordinates are defined for each vertex and interpolated between.

• lathe, sor : modified spherical mapping... the u coordinate (0..1) wraps around the y axis, while the v
coordinate is linked to the object’s control points (also ranging 0..1).
Surface of Revolution also has special disc mapping on the end caps if the object is not ’open’.

• sphere: boring spherical mapping.

• box : the image iswrappedaround the box, as shown below.

204 Textures

Figure 5.1: UV Boxmap

• parametric : In this case the map is not taken from a ”fixed” set of coordinates but the map is taken from
the area defined by the boundaries of the uv-space, in which the parametric surface has to be calculated.

• torus : The map is taken from the area<0,0><1,1> where the u-coordinate is wrapped around the major
radius and the the v-coordinate is wrapped around the minor radius.

5.7.2 UV Vectors

With the keyworduv vectors, the UV coordinates of the corners can be controlled for bicubic patches and
standard triangle mesh.

For bicubic patches the UV coordinates can be specified for each of the four corners of the patch. This goes
right before the control points.
The syntax is:

uv vectors <corner1>,<corner2>,<corner3>, <corner4>

with default
uv vectors <0,0>,<1,0>,<1,1>,<0,1>

For standard triangle meshes (not mesh2) you can specify the UV coordinates for each of the three verticesuv -

vectors <uv1>,<uv2>,<uv3> inside each mesh triangle. This goes right after the coordinates (or coordinates
& normals with smooth triangles) and right before the texture.
Example:

mesh {
triangle {

<0,0,0>, <0.5,0,0>, <0.5,0.5,0>
uv_vectors <0,0>, <1,0>, <1,1>

}
triangle {

<0,0,0>, <0.5,0.5,0>, <0,0.5,0>
uv_vectors <0,0>, <1,1>, <0,1>

}
texture {

uv_mapping pigment {
image_map {

sys "SomeImage"

5.8 Triangle Texture Interpolation 205

map_type 0
interpolate 0

}
}

}
}

5.8 Triangle Texture Interpolation

This feature is utilized in a number of visualization approaches: triangles with individual textures for each
vertex, which are interpolated during rendering.

Syntax:

MESH_TRIANGLE:
triangle {

<Corner_1>,
<Corner_2>,
<Corner_3>
[MESH_TEXTURE]

} |
smooth_triangle {

<Corner_1>, <Normal_1>,
<Corner_2>, <Normal_2>,
<Corner_3>, <Normal_3>
[MESH_TEXTURE]

}

MESH_TEXTURE:
texture { TEXTURE_IDENTIFIER } |
texture_list {

TEXTURE_IDENTIFIER TEXTURE_IDENTIFIER TEXTURE_IDENTIFIER
}

To specify three vertex textures for the triangle, simply usetexture list instead of texture.

5.9 Interior Texture

Syntax:

object {
texture { TEXTURE_ITEMS... }
interior_texture { TEXTURE_ITEMS...}

}

All surfaces have an exterior and interior surface. Theinterior texture simply allows to specify a separate
texture for the interior surface of the object. For objects with no well defined inside/outside (bicubicpatch,
triangle, ...) theinterior texture is applied to the backside of the surface. Interior surface textures use exactly
the same syntax and should work in exactly the same way as regular surface textures, except that they use the
keywordinterior texture instead oftexture.

206 Textures

Note: Do not confuseinterior texture {} with interior {}: the first one specifies surface properties, the
second one specifies volume properties.

5.10 Cutaway Textures

Syntax:

difference | intersection {
OBJECT_1_WITH_TEXTURES
OBJECT_2_WITH_NO_TEXTURE
cutaway_textures

}

When using a CSG difference or intersection tocut away parts of an object, it is sometimes desirable to allow
the object to retain its original texture. Generally, however, the texture of the surface that was used to do the
cutting will be displayed.
Also, if the cutting object was not given a texture by the user, the default texture is assigned to it.

By using thecutaway textures keyword in a CSG difference or intersection, you specify that you do not want
the default texture on the intersected surface, but instead, the textures of the parent objects in the CSG should
be used.
POV-Ray will determine which texture(s) to use by doing insidedness tests on the objects in the difference or
intersection. If the intersection point is inside an object, that object’s texture will be used (and evaluated at the
interior point).
If the parent object is a CSG of objects with different textures, then the textures on overlapping parts will be
averaged together.

5.11 Patterns

POV-Ray uses a method calledthree-dimensional solid texturingto define the color, bumpiness and other
properties of an object. You specify the way that the texture varies over a surface by specifying apattern.
Patterns are used in pigments, normals and texture maps as well as media density.

All patterns in POV-Ray are three dimensional. For every point in space, each pattern has a unique value.
Patterns do not wrap around a surface like putting wallpaper on an object. The patterns exist in 3d and the
objects are carved from them like carving an object from a solid block of wood or stone.

Consider a block of wood. It contains light and dark bands that are concentric cylinders being the growth rings
of the wood. On the end of the block you see these concentric circles. Along its length you see lines that are the
veins. However the pattern exists throughout the entire block. If you cut or carve the wood it reveals the pattern
inside. Similarly an onion consists of concentric spheres that are visible only when you slice it. Marble stone
consists of wavy layers of colored sediments that harden into rock.

These solid patterns can be simulated using mathematical functions. Other random patterns such as granite or
bumps and dents can be generated using a random number system and a noise function.

In each case, the x, y, z coordinate of a point on a surface is used to compute some mathematical function that
returns a float value. When used with color maps or pigment maps, that value looks up the color of the pigment
to be used. In normal statements the pattern function result modifies or perturbs the surface normal vector to

5.11 Patterns 207

give a bumpy appearance. Used with a texture map, the function result determines which combinations of entire
textures to be used. When used with media density it specifies the density of the particles or gasses.

The following sections describe each pattern. See the sections ”Pigment”, ”Normal” ”Patterned Textures” and
”Density” for more details on how to use patterns. Unless mentioned otherwise, all patterns use theramp wave

wave type by default but may use any wave type and may be used withcolor map, pigment map, normal map,
slope map, texture map, density, anddensity map.

Note: Some patterns have a built in default colormap that does not result in a grey-scale pattern. This may
lead to unexpected results when one of these patterns is used without a user specified colormap, for example
in functions or media.

These patterns are:

• agate

• bozo

• brick

• checker

• mandel

• hexagon

• marble

• radial

• wood

5.11.1 Agate

Theagate pattern is a banded pattern similar to marble but it uses a specialized built-in turbulence function that
is different from the traditional turbulence. The traditional turbulence can be used as well but it is generally not
necessary because agate is already very turbulent. You may control the amount of the built-in turbulence by
adding the optionalagate turb keyword followed by a float value. For example:

pigment {
agate
agate_turb 0.5
color_map {MyMap}

}

Theagate pattern has a default colormap built in that results in a brown and white pattern with smooth transi-
tions.

Agate as used in a normal:

normal {
agate [Bump_Size]
[MODIFIERS...]

}

208 Textures

5.11.2 Average

Technicallyaverage is not a pattern type but it is listed here because the syntax is similar to other patterns.
Typically a pattern type specifies how colors or normals are chosen from apigment map, texture map, density -

map, ornormal map , howeveraverage tells POV-Ray to average together all of the patterns you specify. Average
was originally designed to be used in a normal statement with anormal map as a method of specifying more
than one normal pattern on the same surface. However average may be used in a pigment statement with a
pigment map or in a texture statement with atexture map or media density withdensity map to average colors
too.

When used with pigments, the syntax is:

AVERAGED_PIGMENT:
pigment
{

pigment_map
{

PIGMENT_MAP_ENTRY...
}

}
PIGMENT_MAP_ENTRY:

[[Weight] PIGMENT_BODY]

WhereWeight is an optional float value that defaults to 1.0 if not specified. This weight value is the rela-
tive weight applied to that pigment. EachPIGMENTBODY is anything which can be inside apigment{...}
statement. Thepigment keyword and{} braces need not be specified.

Note: that the[] brackets are part of the actualPIGMENTMAP ENTRY. They are not notational symbols
denoting optional parts. The brackets surround each entry in thepigment map.

There may be from 2 to 256 entries in the map.

For example

pigment {
average
pigment_map {

[1.0 Pigment_1]
[2.0 Pigment_2]
[0.5 Pigment_3]

}
}

All three pigments are evaluated. The weight values are multiplied by the resulting color. It is then divided by
the total of the weights which, in this example is 3.5. When used withtexture map or density map it works
the same way.

When used with anormal map in a normal statement, multiple copies of the original surface normal are created
and are perturbed by each pattern. The perturbed normals are then weighted, added and normalized.

See the sections ”Pigment Maps and Pigment Lists”, ”Normal Maps and Normal Lists”, ”Texture Maps”, and
”Density Maps and Density Lists” for more information.

5.11 Patterns 209

5.11.3 Boxed

The boxed pattern creates a 2x2x2 unit cube centered at the origin. It is computed by:value =1.0- min(1,
max(abs(X), abs(Y), abs(Z)))It starts at 1.0 at the origin and decreases to a minimum value of 0.0 as it ap-
proaches any plane which is one unit from the origin. It remains at 0.0 for all areas beyond that distance. This
pattern was originally created for use withhalo or media but it may be used anywhere any pattern may be used.

5.11.4 Bozo

The bozo pattern is a very smooth, random noise function that is traditionally used with some turbulence to
create clouds. Thespotted pattern is identical tobozo but in early versions of POV-Ray spotted did not allow
turbulence to be added. Turbulence can now be added to any pattern so these are redundant but both are retained
for backwards compatibility. Thebumps pattern is also identical tobozo when used anywhere except in anormal
statement. When used as a normal pattern,bumps uses a slightly different method to perturb the normal with a
similar noise function.

Thebozo noise function has the following properties:

1. It is defined over 3D space i.e., it takes x, y, and z and returns the noise value there.

2. If two points are far apart, the noise values at those points are relatively random.

3. If two points are close together, the noise values at those points are close to each other.

You can visualize this as having a large room and a thermometer that ranges from 0.0 to 1.0. Each point in
the room has a temperature. Points that are far apart have relatively random temperatures. Points that are close
together have close temperatures. The temperature changes smoothly but randomly as we move through the
room.

Now let’s place an object into this room along with an artist. The artist measures the temperature at each point
on the object and paints that point a different color depending on the temperature. What do we get? A POV-Ray
bozo texture!

Thebozo pattern has a default colormap built in that results in a green, blue, red and white pattern with sharp
transitions.

Note: The appearance of the bozo pattern depends on the noisegenerator used. The default type is 2. This may
be changed using thenoise generator keyword (See section ”Pattern Modifiers / Noisegenerator”).

5.11.5 Brick

Thebrick pattern generates a pattern of bricks. The bricks are offset by half a brick length on every other row
in the x- and z-directions. A layer of mortar surrounds each brick. The syntax is given by

pigment {
brick COLOR_1, COLOR_2
[brick_size <Size>] [mortar Size]

}

whereCOLOR1 is the color of the mortar andCOLOR2 is the color of the brick itself. If no colors are specified
a default deep red and dark gray are used. The default size of the brick and mortar together is<8, 3, 4.5> units.

210 Textures

The default thickness of the mortar is 0.5 units. These values may be changed using the optionalbrick size

andmortar pattern modifiers. You may also use pigment statements in place of the colors. For example:

pigment {
brick pigment{Jade}, pigment{Black_Marble}

}

This example uses normals:

normal { brick 0.5 }

The float value is an optional bump size. You may also use full normal statements. For example:

normal {
brick normal{bumps 0.2}, normal{granite 0.3}

}

When used with textures, the syntax is

texture {
brick texture{T_Gold_1A}, texture{Stone12}

}

This is a block pattern which cannot use wave types,color map, or slope map modifiers.

Thebrick pattern has a default colormap built in that results in red bricks and grey mortar.

5.11.6 Bumps

Thebumps pattern was originally designed only to be used as a normal pattern. It uses a very smooth, random
noise function that creates the look of rolling hills when scaled large or a bumpy orange peel when scaled small.
Usually the bumps are about 1 unit apart.

When used as a normal pattern, this pattern uses a specialized normal perturbation function. This means that
the pattern cannot be used withnormal map, slope map or wave type modifiers in anormal statement.

When used as a pigment pattern or texture pattern, thebumps pattern is identical tobozo or spotted and is similar
to normal bumps but is not identical as are most normals when compared to pigments.

Note: The appearance of the bumps pattern depends on the noisegenerator used. The default type is 2. This
may be changed using thenoise generator keyword (See section ”Pattern Modifiers / Noisegenerator”).

5.11.7 Cells

Thecells pattern fills 3d space with unit cubes. Each cube gets a random value from 0 to 1.

cells is not very suitable as a normal as it has no smooth transitions of one grey value to another.

5.11.8 Checker

Thechecker pattern produces a checkered pattern consisting of alternating squares of two colors. The syntax
is:

pigment { checker [COLOR_1 [, COLOR_2]] [PATTERN_MODIFIERS...] }

5.11 Patterns 211

If no colors are specified then default blue and green colors are used.

The checker pattern is actually a series of cubes that are one unit in size. Imagine a bunch of 1 inch cubes made
from two different colors of modeling clay. Now imagine arranging the cubes in an alternating check pattern
and stacking them in layer after layer so that the colors still alternate in every direction. Eventually you would
have a larger cube. The pattern of checks on each side is what the POV-Ray checker pattern produces when
applied to a box object. Finally imagine cutting away at the cube until it is carved into a smooth sphere or any
other shape. This is what the checker pattern would look like on an object of any kind.

You may also use pigment statements in place of the colors. For example:

pigment { checker pigment{Jade}, pigment{Black_Marble} }

This example uses normals:

normal { checker 0.5 }

The float value is an optional bump size. You may also use full normal statements. For example:

normal {
checker normal{gradient x scale .2},

normal{gradient y scale .2}
}

When used with textures, the syntax is

texture { checker texture{T_Wood_3A},texture{Stone12} }

Thechecker pattern has a default colormap built in that results in blue and green tiles.

This use of checker as a texture pattern replaces the special tiles texture in previous versions of POV-Ray. You
may still use tiles but it may be phased out in future versions so checker textures are best.

This is a block pattern which cannot use wave types,color map, or slope map modifiers.

5.11.9 Crackle Patterns

Thecrackle pattern is a set of random tiled multifaceted cells.

There is a choice between different types:

Standard Crackle
Mathematically, the set crackle(p)=0 is a 3D Voronoi diagram of a field of semi random points and crackle(p)<
0 is the distance from the set along the shortest path (a Voronoi diagram is the locus of points equidistant from
their two nearest neighbors from a set of disjoint points, like the membranes in suds are to the centers of the
bubbles).

With a large scale and no turbulence it makes a pretty good stone wall or floor.
With a small scale and no turbulence it makes a pretty good crackle ceramic glaze.
Using high turbulence it makes a good marble that avoids the problem of apparent parallel layers in traditional
marble.

Form

pigment {
crackle form <FORM_VECTOR>
[PIGMENT_ITEMS ...]

212 Textures

}
normal {

crackle [Bump_Size]
form <FORM_VECTOR>
[NORMAL_ITEMS ...]

}

Form determines the linear combination of distances used to create the pattern. Form is a vector.
The first component determines the multiple of the distance to the closest point to be used in determining the
value of the pattern at a particular point.
The second component determines the coefficient applied to the second-closest distance.
The third component corresponds to the third-closest distance.

The standard form is<-1,1,0> (also the default), corresponding to the difference in the distances to the closest
and second-closest points in the cell array. Another commonly-used form is<1,0,0>, corresponding to the
distance to the closest point, which produces a pattern that looks roughly like a random collection of intersecting
spheres or cells.
Other forms can create very interesting effects, but it is best to keep the sum of the coefficients low.
If the final computed value is too low or too high, the resultant pigment will be saturated with the color at the
low or high end of thecolor map. In this case, try multiplying the form vector by a constant.

Metric

pigment {
crackle metric METRIC_VALUE
[PIGMENT_ITEMS ...]

}
normal {

crackle [Bump_Size]
metric METRIC_VALUE
[NORMAL_ITEMS ...]

}

Changing the metric changes the function used to determine which cell center is closer, for purposes of de-
termining which cell a particular point falls in. The standard Euclidean distance function has a metric of 2.
Changing the metric value changes the boundaries of the cells. A metric value of 3, for example, causes the
boundaries to curve, while a very large metric constrains the boundaries to a very small set of possible orienta-
tions.
The default for metric is 2, as used by the standard crackle texture.
Metrics other than 1 or 2 can lead to substantially longer render times, as the method used to calculate such
metrics is not as efficient.

Offset

pigment {
crackle offset OFFSET_VALUE
[PIGMENT_ITEMS ...]

}
normal {

crackle [Bump_Size]
offset OFFSET_VALUE
[NORMAL_ITEMS ...]

}

The offset is used to displace the pattern from the standard xyz space along a fourth dimension.

5.11 Patterns 213

It can be used to round off the ”pointy” parts of a cellular normal texture or procedural heightfield by keeping
the distances from becoming zero.
It can also be used to move the calculated values into a specific range if the result is saturated at one end of the
color map.
The default offset is zero.

Solid

pigment {
crackle solid
[PIGMENT_ITEMS ...]

}
normal {

crackle [Bump_Size]
solid
[NORMAL_ITEMS ...]

}

Causes the same value to be generated for every point within a specific cell. This has practical applications in
making easy stained-glass windows or flagstones. There is no provision for mortar, but mortar may be created
by layering or texture-mapping a standard crackle texture with a solid one.
The default for this parameter is off.

5.11.10 Cylindrical

Thecylindrical pattern creates a one unit radius cylinder along the Y axis. It is computed by:value = 1.0-
min(1, sqrt(Xˆ2 + Zˆ2))It starts at 1.0 at the origin and decreases to a minimum value of 0.0 as it approaches
a distance of 1 unit from the Y axis. It remains at 0.0 for all areas beyond that distance. This pattern was
originally created for use withhalo or media but it may be used anywhere any pattern may be used.

5.11.11 DensityFile

Thedensity file pattern is a 3-D bitmap pattern that occupies a unit cube from location<0,0,0> to <1,1,1>.
The data file is a raw binary file format created for POV-Ray calleddf3 format. The syntax provides for the
possibility of implementing other formats in the future. This pattern was originally created for use withhalo

or media but it may be used anywhere any pattern may be used. The syntax is:

pigment
{

density_file df3 "filename.df3"
[interpolate Type] [PIGMENT_MODIFIERS...]

}

where"filename.df3" is a file name of the data file.

As a normal pattern, the syntax is

normal
{

density_file df3 "filename.df3" [, Bump_Size]
[interpolate Type]
[NORMAL_MODIFIERS...]

214 Textures

}

The optional floatBump Size should follow the file name and any other modifiers follow that.

The density pattern occupies the unit cube regardless of the dimensions in voxels. It remains at 0.0 for all areas
beyond the unit cube. The data in the range of 0 to 255, in case of 8 bit resolution, are scaled into a float value
in the range 0.0 to 1.0.

Theinterpolate keyword may be specified to add interpolation of the data. The default value of zero specifies
no interpolation. A value of one specifies tri-linear interpolation, a value of two specifies tri-cubic interpolation

See the sample scenes for data fileinclude\spiral.df3,and the scenes which use it:scenes\textures\
patterns\densfile.pov, scenes\interior\media\galaxy.pov for examples.

df3 file format

Header:
Thedf3 format consists of a 6 byte header of three 16-bit integers with high order byte first. These
three values give the x,y,z size of the data in pixels (or more appropriately calledvoxels).

Data:
The header is followed by x*y*z unsigned integer bytes of data with a resolution of 8, 16 or 32 bit.
The data are written with high order byte first (big-endian). The resolution of the data is determined
by the size of the df3-file. That is, if the file is twice (minus header, of course) as long as an 8 bit
file then it is assumed to contain 16 bit ints and if it is four times as long 32 bit ints.

5.11.12 Dents

Thedents pattern was originally designed only to be used as a normal pattern. It is especially interesting when
used with metallic textures. It gives impressions into the metal surface that look like dents have been beaten
into the surface with a hammer. Usually the dents are about 1 unit apart.

When used as a normal pattern, this pattern uses a specialized normal perturbation function. This means that
the pattern cannot be used withnormal map, slope map or wave type modifiers in anormal statement.

When used as a pigment pattern or texture pattern, thedents pattern is similar to normal dents but is not identical
as are most normals when compared to pigments.

5.11.13 Facets

normal {
facets [coords SCALE_VALUE | size FACTOR]
[NORMAL_ITEMS...]

}

Thefacets pattern is designed to be used as a normal, it is not suitable for use as a pigment: it will cause an
error.
There are two forms of the facets pattern. One is most suited for use with rounded surfaces, and one is most
suited for use with flat surfaces.

5.11 Patterns 215

If coords is specified, the facets pattern creates facets with a size on the same order as the specified SCALE-
VALUE. This version of facets is most suited for use with flat surfaces, but will also work with curved surfaces.
The boundaries of the facets coincide with the boundaries of the cells in the standard crackle pattern. The coords
version of this pattern may be quite similar to a crackle normal pattern with solid specified.

If size is specified, the facets texture uses a different function that creates facets only on curved surfaces. The
FACTOR determines how many facets are created, with smaller values creating more facets, but it is not directly
related to any real-world measurement. The same factor will create the same pattern of facets on a sphere of
any size.
This pattern creates facets by snapping normal vectors to the closest vectors in a perturbed grid of normal
vectors. Because of this, if a surface has normal vectors that do not vary along one or more axes, there will be
no facet boundaries along those axes.

5.11.14 Fractal Patterns

Fractal patterns supported in POV-Ray:

• The Mandelbrot set with exponents up to 33.(The formula for these is:z(n+1) = z(n)ˆp + c, wherep is
the correspondent exponent.)

• The equivalent Julia sets.

• The magnet1 and magnet2 fractals (which are derived from some magnetic renormalization transforma-
tions; see the fractint help for more details).
Both ’Mandelbrot’ and ’Julia’ versions of them are supported.

For the Mandelbrot and Julia sets, higher exponents will be slower for two reasons:

1. For the exponents 2,3 and 4 an optimized algorithm is used. Higher exponents use a generic algorithm
for raising a complex number to an integer exponent, and this is a bit slower than an optimized version
for a certain exponent.

2. The higher the exponent, the slower it will be. This is because the amount of operations needed to raise a
complex number to an integer exponent is directly proportional to the exponent. This means that exponent
10 will be (very) roughly twice as slow as exponent 5.

Syntax:

MANDELBROT:
mandel ITERATIONS [, BUMP_SIZE]
[exponent EXPONENT]
[exterior EXTERIOR_TYPE, FACTOR]
[interior INTERIOR_TYPE, FACTOR]

JULIA:
julia COMPLEX, ITERATIONS [, BUMP_SIZE]
[exponent EXPONENT]
[exterior EXTERIOR_TYPE, FACTOR]
[interior INTERIOR_TYPE, FACTOR]

MAGNET MANDEL:
magnet MAGNET_TYPE mandel ITERATIONS [, BUMP_SIZE]
[exterior EXTERIOR_TYPE, FACTOR]
[interior INTERIOR_TYPE, FACTOR]

216 Textures

MAGNET JULIA:
magnet MAGNET_TYPE julia COMPLEX, ITERATIONS [, BUMP_SIZE]
[exterior EXTERIOR_TYPE, FACTOR]
[interior INTERIOR_TYPE, FACTOR]

Where:

ITERATIONS is the number of times to iterate the algorithm.

COMPLEX is a 2D vector denoting a complex number.

MAGNET TYPE is either 1 or 2.

exponent is an integer between 2 and 33. If not given, the default is 2.

interior andexterior specify special coloring algorithms. You can specify one of them or both at the same
time. They only work with the fractal patterns.
EXTERIOR TYPE and INTERIOR TYPE are integer values between 0 and 6 (inclusive). When not specified, the
default value of INTERIORTYPE is 0 and for EXTERIORTYPE 1.
FACTOR is a float. The return value of the pattern is multiplied byFACTOR before returning it. This can be used
to scale the value range of the pattern when using interior and exterior coloring (this is often needed to get the
desired effect). The default value of FACTOR is 1.

The different values of EXTERIORTYPE and INTERIORTYPE have the following meaning:

• 0 : Returns just 1

• 1 : For exterior: The number of iterations until bailout divided by ITERATIONS.
Note: this is not scaled by FACTOR (since it is internally scaled by 1/ITERATIONS instead).
For interior: The absolute value of the smallest point in the orbit of the calculated point

• 2 : Real part of the last point in the orbit

• 3 : Imaginary part of the last point in the orbit

• 4 : Squared real part of the last point in the orbit

• 5 : Squared imaginary part of the last point in the orbit

• 6 : Absolute value of the last point in the orbit

Example:

box {
<-2, -2, 0>, <2, 2, 0.1>
pigment {

julia <0.353, 0.288>, 30
interior 1, 1
color_map {

[0 rgb 0]
[0.2 rgb x]
[0.4 rgb x+y]
[1 rgb 1]
[1 rgb 0]

}
}

}

5.11 Patterns 217

5.11.15 Function as pattern

Allows you to use a function{ } block as pattern.

pigment {
function { USER_DEFINED_FUNCTIONS }
[PIGMENT_MODIFIERS...]

}

Declaring a function:
By default a function takes three parameters (x,y,z) and you do not have to explicitly specify the parameter
names when declaring it. When using the identifier, the parameters must be specified.

#declare Foo = function { x + y + z}
pigment {
function { Foo(x, y, z) }

[PIGMENT_MODIFIERS...]
}

On the other hand, if you need more or less than three parameters when declaring a function, you also have to
explicitly specify the parameter names.

#declare Foo = function(x,y,z,t) { x + y + z + t}
pigment {

function { Foo(x, y, z, 4) }
[PIGMENT_MODIFIERS...]

}

Using function in a normal:

#declare Foo = function { x + y + z}
normal {

function { Foo(x, y, z) } [Bump_Size]
[MODIFIERS...]

}

What can be used

All float expressions and operators (see section ”User-Defined Functions”) which are legal in POV-Ray. Of
special interest here is thepattern option, that makes it possible to use patterns as functions

#declare FOO = function {
pattern {
checker

}
}

User defined functions (like equations).

Since pigments can be declared as functions, they can also be used in functions. They must be declared first.
When using the identifier, you have to specify which component of the color vector should be used. To do this,
the dot notation is used: Function(x,y,z).red

#declare FOO = function {pigment { checker } }
pigment {

function { FOO(x,y,z).green }

218 Textures

[PIGMENT_MODIFIERS...]
}

POV-Ray has a large amount of pre-defined functions. These are mainly algebraic surfaces but there is also a
mesh function and noise3d function. See section ”Internal Functions” for a complete list and some explanation
on the parameters to use. These internal functions can be included through the functions.inc include file.

#include "functions.inc"
#declare FOO = function {pigment { checker } }
pigment {

function { FOO(x,y,z).green \& f_noise3d(x*2, y*3,z)}
[PIGMENT_MODIFIERS...]

}

5.11.16 Function Image

Syntax :function Width, Height { FUNCTION BODY }

Not a real pattern, but listed here for convenience. This keyword defines a new ’internal’ bitmap image type. The
pixels of the image are derived from the FunctionBody, with FunctionBody either being a regular function, a
pattern function or a pigment function. In case of a pigment function the output image will be in color, in case
of a pattern or regular function the output image will be grayscale. All variants of grayscale pigment functions
are available using the regular function syntax, too. In either case the image will use 16 bit per component

Note: functions are evaluated on the x-y plane. This is different from the pattern image type for the reason that
it makes using uv functions easier.

Width and Height specify the resolution of the resulting ’internal’ bitmap image. The image is taken from the
square region<0,0,0>, <1,1,0>

The function statement can be used wherever an image specifier liketga or png may be used. Some uses
include creating heightfields from procedural textures or wrapping a slice of a 3d texture or function around a
cylinder or extrude it along an axis.

Examples:

plane {
y, -1
pigment {

image_map {
function 10,10 {

pigment { checker 1,0 scale .5 }
}

}
rotate x*90

}
}

height_field {
function 200,200 {

pattern {
bozo

}
}

5.11 Patterns 219

translate -0.5
scale 10
pigment {rgb 1}

}

Note: that for height fields and other situations where color is not needed it is easier to usefunction n,n

{pattern{...}} thanfunction n,n {pigment{...}}. The pattern functions are returning a scalar, not a color
vector, thus a pattern is grayscale.

5.11.17 Gradient

One of the simplest patterns is thegradient pattern. It is specified as

pigment {
gradient <Orientation>
[PIGMENT_MODIFIERS...]

}

where<Orientation > is a vector pointing in the direction that the colors blend. For example

pigment { gradient x } // bands of color vary as you move
// along the "x" direction.

produces a series of smooth bands of color that look like layers of colors next to each other. Points at x=0 are
the first color in the color map. As the x location increases it smoothly turns to the last color at x=1. Then it
starts over with the first again and gradually turns into the last color at x=2. In POV-Ray versions older than
3.5 the pattern reverses for negative values of x. As per POV-Ray 3.5 this is not the case anymore [1]. Using
gradient y or gradient z makes the colors blend along the y- or z-axis. Any vector may be used but x, y and
z are most common.

As a normal pattern, gradient generates a saw-tooth or ramped wave appearance. The syntax is

normal {
gradient <Orientation> [, Bump_Size]
[NORMAL_MODIFIERS...]

}

where the vector<Orientation > is a required parameter but the floatBump Size which follows is optional.

Note: the comma is required especially ifBumpSizeis negative.

[1] If only the range -1 to 1 was used of the old gradient, for example in asky sphere, it can be replaced by the
planar or marble pattern and revert the colormap. Also rotate the pattern for other orientations thany. A more
general solution is to usefunction{abs(x)} as a pattern instead ofgradient x and similar forgradient y and
gradient z.

5.11.18 Granite

Thegranite pattern uses a simple 1/f fractal noise function to give a good granite pattern. This pattern is used
with creative color maps instones.inc to create some gorgeous layered stone textures.

As a normal pattern it creates an extremely bumpy surface that looks like a gravel driveway or rough stone.

220 Textures

Note: The appearance of the granite pattern depends on the noisegenerator used. The default type is 2. This
may be changed using thenoise generator keyword (See section ”Pattern Modifiers / Noisegenerator”).

5.11.19 Hexagon

Thehexagon pattern is a block pattern that generates a repeating pattern of hexagons in the x-z-plane. In this
instance imagine tall rods that are hexagonal in shape and are parallel to the y-axis and grouped in bundles like
shown in the example image. Three separate colors should be specified as follows:

pigment {
hexagon [COLOR_1 [, COLOR_2 [, COLOR_3]]]
[PATTERN_MODIFIERS...]

}

Figure 5.2: The hexagon pattern.

The three colors will repeat the hexagonal pattern with hexagonCOLOR1 centered at the origin,COLOR2 in
the +z-direction andCOLOR3 to either side. Each side of the hexagon is one unit long. The hexagonal rods of
color extend infinitely in the +y- and -y-directions. If no colors are specified then default blue, green and red
colors are used.

You may also use pigment statements in place of the colors. For example:

pigment {
hexagon
pigment { Jade },
pigment { White_Marble },
pigment { Black_Marble }

}

This example uses normals:

normal { hexagon 0.5 }

The float value is an optional bump size. You may also use full normal statements. For example:

normal {
hexagon

normal { gradient x scale .2 },
normal { gradient y scale .2 },
normal { bumps scale .2 }

}

5.11 Patterns 221

When used with textures, the syntax is...

texture {
hexagon

texture { T_Gold_3A },
texture { T_Wood_3A },
texture { Stone12 }

}

Thehexagon pattern has a default colormap built in that results in red, blue and green tiles.

This is a block pattern which cannot use wave types,color map, or slope map modifiers.

5.11.20 Image Pattern

Instead of placing the color of the image on the object like an imagemap an imagepattern specifies an entire
texture item (color, pigment, normal or texture) based on the gray value at that point.
This gray-value is checked against a list and the corresponding item is then used for the texture at that particular
point. For values between listed items, an averaged texture is calculated.
It takes a standard image specification and has one option,use alpha which works similar touse color or
use index.

Syntax:

PIGMENT:
pigment {

IMAGE_PATTERN
color_map { COLOR_MAP_BODY } |
colour_map { COLOR_MAP_BODY } |
pigment_map { PIGMENT_MAP_BODY }

}

NORMAL:
normal {

IMAGE_PATTERN [Bump_Size]
normal_map { NORMAL_MAP_BODY }

}

TEXTURE:
texture {

IMAGE_PATTERN
texture_map { TEXTURE_MAP_BODY }

}

IMAGE_PATTERN
image_pattern {
BITMAP_TYPE "bitmap.ext"
[IMAGE_MAP_MODS...]

}
IMAGE_MAP_MOD:

map_type Type | once | interpolate Type | use_alpha
ITEM_MAP_BODY:

ITEM_MAP_IDENTIFIER | ITEM_MAP_ENTRY...

222 Textures

ITEM_MAP_ENTRY:
[GRAY_VALUE ITEM_MAP_ENTRY...]

It is also useful for creating texture ”masks”, like the following:

texture {
image_pattern { tga "image.tga" use_alpha }
texture_map {

[0 Mytex]
[1 pigment { transmit 1 }]

}
}

Note: This pattern uses an image to get the gray values from. If you want exactly the same possibilities but
need to get gray values from a pigment, you can use the pigmentpattern.

5.11.21 Leopard

Leopard creates regular geometric pattern of circular spots. The formula used is:value = Sqr((sin(x)+sin(y)+sin(z))/3)

5.11.22 Marble

Themarble pattern is very similar to thegradient x pattern. The gradient pattern uses a defaultramp wave wave
type which means it uses colors from the color map from 0.0 up to 1.0 at location x=1 but then jumps back to the
first color for x> 1 and repeats the pattern again and again. However themarble pattern uses thetriangle wave

wave type in which it uses the color map from 0 to 1 but then it reverses the map and blends from 1 back to
zero. For example:

pigment {
gradient x
color_map {

[0.0 color Yellow]
[1.0 color Cyan]

}
}

This blends from yellow to cyan and then it abruptly changes back to yellow and repeats. However replacing
gradient x with marble smoothly blends from yellow to cyan as the x coordinate goes from 0.0 to 0.5 and
then smoothly blends back from cyan to yellow by x=1.0.

Earlier versions of POV-Ray did not allow you to change wave types. Now that wave types can be changed for
most any pattern, the distinction betweenmarble andgradient x is only a matter of default wave types.

When used with turbulence and an appropriate color map, this pattern looks like veins of color of real marble,
jade or other types of stone. By default, marble has no turbulence.

Themarble pattern has a default colormap built in that results in a red, black and white pattern with smooth
and sharp transitions.

5.11 Patterns 223

5.11.23 Object Pattern

The object pattern takes an object as input. It generates a, two item, color list pattern. Whether a point is
assigned to one item or the other depends on whether it is inside the specified object or not.

Object’s used in theobject pattern cannot have a texture and must be solid - these are the same limitations as
for bounded by andclipped by.

Syntax:

object {
OBJECT_IDENTIFIER | OBJECT {}
LIST_ITEM_A, LIST_ITEM_B

}

Where OBJIDENTIFIER is the target object (which must be declared), or use the full object syntax. LIST-
ITEM A and LIST ITEM B are the colors, pigments, or whatever the pattern is controlling. LISTITEM A is
used for all points outside the object, and LISTITEM B is used for all points inside the object.

Example:

pigment {
object {

myTextObject
color White
color Red

}
turbulence 0.15

}

Note: This is a block pattern which cannot use wave types, colormap, or slopemap modifiers.

5.11.24 Onion

Theonion is a pattern of concentric spheres like the layers of an onion.Value = mod(sqrt(Sqr(X)+Sqr(Y)+Sqr(Z)),
1.0)Each layer is one unit thick.

5.11.25 Pigment Pattern

Use any pigment as a pattern. Instead of using the pattern directly on the object, a pigmentpattern converts
the pigment to gray-scale first. For each point, the gray-value is checked against a list and the corresponding
item is then used for the texture at that particular point. For values between listed items, an averaged texture is
calculated.
Texture items can be color, pigment, normal or texture and are specified in a colormap, pigmentmap, normal-
map or texturemap.
It takes a standard pigment specification.

Syntax:

PIGMENT:
pigment {

pigment_pattern { PIGMENT_BODY }
color_map { COLOR_MAP_BODY } |

224 Textures

colour_map { COLOR_MAP_BODY } |
pigment_map { PIGMENT_MAP_BODY }

}

NORMAL:
normal {

pigment_pattern { PIGMENT_BODY } [Bump_Size]
normal_map { NORMAL_MAP_BODY }

}

TEXTURE:
texture {

pigment_pattern { PIGMENT_BODY }
texture_map { TEXTURE_MAP_BODY }

}

ITEM_MAP_BODY:
ITEM_MAP_IDENTIFIER | ITEM_MAP_ENTRY...

ITEM_MAP_ENTRY:
[GRAY_VALUE ITEM_MAP_ENTRY...]

This pattern is also useful when parent and children patterns need to be transformed independently from each
other. Transforming the pigmentpattern will not affect the child textures. When any of the child textures should
be transformed, apply it to the specific MAPENTRY.

This can be used with any pigments, ranging from a simple checker to very complicated nested pigments. For
example:

pigment {
pigment_pattern {

checker White, Black
scale 2
turbulence .5

}
pigment_map {

[0, checker Red, Green scale .5]
[1, checker Blue, Yellow scale .2]

}
}

Note: This pattern uses a pigment to get the gray values from. If you want to get the pattern from an image,
you should use the imagepattern.

5.11.26 Planar

The planar pattern creates a horizontal stripe plus or minus one unit above and below the X-Z plane. It is
computed by: value =1.0- min(1, abs(Y))It starts at 1.0 at the origin and decreases to a minimum value of
0.0 as the Y values approaches a distance of 1 unit from the X-Z plane. It remains at 0.0 for all areas beyond
that distance. This pattern was originally created for use withhalo or media but it may be used anywhere any
pattern may be used.

5.11 Patterns 225

5.11.27 Quilted

Thequilted pattern was originally designed only to be used as a normal pattern. The quilted pattern is so named
because it can create a pattern somewhat like a quilt or a tiled surface. The squares are actually 3-D cubes that
are 1 unit in size.

When used as a normal pattern, this pattern uses a specialized normal perturbation function. This means that
the pattern cannot be used withnormal map, slope map or wave type modifiers in anormal statement.

When used as a pigment pattern or texture pattern, thequilted pattern is similar to normal quilted but is not
identical as are most normals when compared to pigments.

The two parameterscontrol0 and control1 are used to adjust the curvature of theseamor gougearea between
thequilts.

The syntax is:

pigment { quilted [QUILTED_MODIFIERS...] }
QUILTED_MODIFIERS:

control0 Value_0 | control1 Value_1 | PIGMENT_MODIFIERS

The values should generally be kept to around the 0.0 to 1.0 range. The default value is 1.0 if none is specified.
Think of this gouge between the tiles in cross-section as a sloped line.

Figure 5.3: Quilted pattern with c0=0 and different values for c1.

This straight slope can be made to curve by adjusting the two control values. The control values adjust the slope
at the top and bottom of the curve. A control values of 0 at both ends will give a linear slope, as shown above,
yielding a hard edge. A control value of 1 at both ends will give an ”s” shaped curve, resulting in a softer, more
rounded edge.

The syntax for use as a normal is:

normal {
quilted [Bump_Size]
[QUILTED_MODIFIERS...]

}
QUILTED_MODIFIERS:

control0 Value_0 | control1 Value_1 | PIGMENT_MODIFIERS

226 Textures

Figure 5.4: Quilted pattern with c0=0.33 and different values for c1.

Figure 5.5: Quilted pattern with c0=0.67 and different values for c1.

Figure 5.6: Quilted pattern with c0=1 and different values for c1.

5.11 Patterns 227

5.11.28 Radial

The radial pattern is a radial blend that wraps around the +y-axis. The color for value 0.0 starts at the +x-
direction and wraps the color map around from east to west with 0.25 in the -z-direction, 0.5 in -x, 0.75 at +z
and back to 1.0 at +x. Typically the pattern is used with afrequency modifier to create multiple bands that
radiate from the y-axis. For example:

pigment {
radial color_map{[0.5 Black][0.5 White]}
frequency 10

}

creates 10 white bands and 10 black bands radiating from the y axis.

The radial pattern has a default colormap built in that results in a yellow, magenta and cyan pattern with
smooth transitions.

5.11.29 Ripples

Theripples pattern was originally designed only to be used as a normal pattern. It makes the surface look like
ripples of water. The ripples radiate from 10 random locations inside the unit cube area<0,0,0> to <1,1,1>.
Scale the pattern to make the centers closer or farther apart.

Usually the ripples from any given center are about 1 unit apart. Thefrequency keyword changes the spacing
between ripples. Thephase keyword can be used to move the ripples outwards for realistic animation.

The number of ripple centers can be changed with the global parameter globalsettings{numberof waves Count
}

somewhere in the scene. This affects the entire scene. You cannot change the number of wave centers on
individual patterns. See section ”NumberOf Waves” for details.

When used as a normal pattern, this pattern uses a specialized normal perturbation function. This means that
the pattern cannot be used withnormal map, slope map or wave type modifiers in anormal statement.

When used as a pigment pattern or texture pattern, theripples pattern is similar to normal ripples but is not
identical as are most normals when compared to pigments.

5.11.30 Slope

Theslope pattern uses the normal of a surface to calculate the slope at a given point. It then creates the pattern
value dependent on the slope and optionally the altitude. It can be used for pigments, normals and textures, but
not for media densities. For pigments the syntax is:

pigment {
slope {

<Direction> [, Lo_slope, Hi_slope]
[altitude <Altitude> [, Lo_alt, Hi_alt]]

}
[PIGMENT_MODIFIERS...]

}

228 Textures

The slope value at a given point is dependent on the angle between the<Direction> vector and the normal of
the surface at that point. For example:
- When the surface normal points in the opposite direction of the<Direction> vector (180 degrees), the slope
is 0.0.
- When the surface normal is perpendicular to the<Direction> vector (90 degrees), the slope is 0.5.
- When the surface normal is parallel to the<Direction> vector (0 degrees), the slope is 1.0.

When using the simplest variant of the syntax:

slope { <Direction> }

the pattern value for a given point is the same as the slope value.<Direction> is a 3-dimensional vector and
will usually be<0,-1,0> for landscapes, but any direction can be used.

By specifyingLo slope andHi slope you get more control:

slope { <Direction>, Lo_slope, Hi_slope }

Lo slope andHi slope specifies which range of slopes are used, so you can control which slope values return
which pattern values.Lo slope is the slope value that returns 0.0 andHi slope is the slope value that returns
1.0.

For example, if you have a heightfield and<Direction> is set to<0,-1,0>, then the slope values would only
range from 0.0 to 0.5 because heightfields cannot have overhangs. If you do not specifyLo slope andHi slope,
you should keep in mind that the texture for the flat (horizontal) areas must be set at 0.0 and the texture for the
steep (vertical) areas at 0.5 when designing the texturemap. The part from 0.5 up to 1.0 is not used then. But,
by settingLo slope andHi slope to 0.0 and 0.5 respectively, the slope range will be stretched over the entire
map, and the texturemap can then be defined from 0.0 to 1.0.

By adding an optional<Altitude> vector:

slope {
<Direction>
altitude <Altitude>

}

the pattern will be influenced not only by the slope but also by a special gradient.<Altitude> is a 3-dimensional
vector that specifies the direction of the gradient. When<Altitude> is specified, the pattern value is a weighted
average of the slope value and the gradient value. The weights are the lengths of the vectors<Direction> and
<Altitude>. So if <Direction> is much longer than<Altitude> it means that the slope has greater effect on
the results than the gradient. If on the other hand<Altitude> is longer, it means that the gradient has more
effect on the results than the slope.

When adding the<Altitude> vector, the default gradient is defined from 0 to 1 units along the specified axis.
This is fine when your object is defined within this range, otherwise a correction is needed. This can be done
with the optionalLo alt andHi alt parameters:

slope {
<Direction>
altitude <Altitude>, Lo_alt, Hi_alt

}

They define the range of the gradient along the axis defined by the<Altitude> vector.

For example, with an<Altitude> vector set to y and an object going from -3 to 2 on the y axis, theLo alt and
Hi alt parameters should be set to -3 and 2 respectively.

5.11 Patterns 229

Note:

• You may use the turbulence keyword inside slope pattern definitions but it may cause unexpected results.
Turbulence is a 3-dimensional distortion of a pattern. Since slope is only defined on surfaces of objects,
a 3-dimensional turbulence is not applicable to the slope component. However, if you are using altitude,
the altitude component of the pattern will be affected by turbulence.

• If your object is larger than the range of altitude you have specified, you may experience unexpected
discontinuities. In that case it is best to adjust theLo alt andHi alt values so they fit to your object.

• The slope pattern does not work for the skysphere, because the skysphere is a background feature and
does not have a surface. similarly, it does not work for media densities.

5.11.31 Spherical

Thespherical pattern creates a one unit radius sphere, with its center at the origin. It is computed by:value
= 1.0-min(1, sqrt(Xˆ2 + Yˆ2 + Zˆ2))It starts at 1.0 at the origin and decreases to a minimum value of 0.0 as
it approaches a distance of 1 unit from the origin in any direction. It remains at 0.0 for all areas beyond that
distance. This pattern was originally created for use withhalo or media but it may be used anywhere any pattern
may be used.

5.11.32 Spiral1

Thespiral1 pattern creates a spiral that winds around the z-axis similar to a screw. When viewed sliced in the
x-y plane, it looks like the spiral arms of a galaxy. Its syntax is:

pigment
{

spiral1 Number_of_Arms
[PIGMENT_MODIFIERS...]

}

TheNumber of Arms value determines how may arms are winding around the z-axis.

As a normal pattern, the syntax is

normal
{

spiral1 Number_of_Arms [, Bump_Size]
[NORMAL_MODIFIERS...]

}

where theNumber of Arms value is a required parameter but the floatBump Size which follows is optional.

Note: the comma is required especially ifBumpSizeis negative.

The pattern uses thetriangle wave wave type by default but may use any wave type.

5.11.33 Spiral2

The spiral2 pattern creates a double spiral that winds around the z-axis similar tospiral1 except that it has
two overlapping spirals which twist in opposite directions. The result sometimes looks like a basket weave or

230 Textures

perhaps the skin of pineapple. The center of a sunflower also has a similar double spiral pattern. Its syntax is:

pigment
{

spiral2 Number_of_Arms
[PIGMENT_MODIFIERS...]

}

TheNumber of Arms value determines how may arms are winding around the z-axis. As a normal pattern, the
syntax is

normal
{

spiral2 Number_of_Arms [, Bump_Size]
[NORMAL_MODIFIERS...]

}

where theNumber of Arms value is a required parameter but the floatBump Size which follows is optional.

Note: the comma is required especially ifBumpSizeis negative. The pattern uses thetriangle wave wave type
by default but may use any wave type.

5.11.34 Spotted

Thespotted pattern is identical to thebozo pattern. Early versions of POV-Ray did not allow turbulence to be
used with spotted. Now that any pattern can use turbulence there is no difference betweenbozo andspotted.
See section ”Bozo” for details.

5.11.35 Waves

Thewaves pattern was originally designed only to be used as a normal pattern. It makes the surface look like
waves on water. Thewaves pattern looks similar to theripples pattern except the features are rounder and
broader. The effect is to make waves that look more like deep ocean waves. The waves radiate from 10 random
locations inside the unit cube area<0,0,0> to <1,1,1>. Scale the pattern to make the centers closer or farther
apart.

Usually the waves from any given center are about 1 unit apart. Thefrequency keyword changes the spacing
between waves. Thephase keyword can be used to move the waves outwards for realistic animation.

The number of wave centers can be changed with the global parameter

global_settings { number_of_waves Count }

somewhere in the scene. This affects the entire scene. You cannot change the number of wave centers on
individual patterns. See section ”NumberOf Waves” for details.

When used as a normal pattern, this pattern uses a specialized normal perturbation function. This means that
the pattern cannot be used withnormal map, slope map or wave type modifiers in anormal statement.

When used as a pigment pattern or texture pattern, thewaves pattern is similar to normal waves but is not
identical as are most normals when compared to pigments.

5.12 Pattern Modifiers 231

5.11.36 Wood

Thewood pattern consists of concentric cylinders centered on the z-axis. When appropriately colored, the bands
look like the growth rings and veins in real wood. Small amounts of turbulence should be added to make it look
more realistic. By default, wood has no turbulence.

Unlike most patterns, thewood pattern uses thetriangle wave wave type by default. This means that like
marble, wood uses color map values 0.0 to 1.0 then repeats the colors in reverse order from 1.0 to 0.0. However
you may use any wave type.

The wood pattern has a default colormap built in that results in a light and dark brown pattern with sharp
transitions.

5.11.37 Wrinkles

Thewrinkles pattern was originally designed only to be used as a normal pattern. It uses a 1/f noise pattern sim-
ilar to granite but the features in wrinkles are sharper. The pattern can be used to simulate wrinkled cellophane
or foil. It also makes an excellent stucco texture.

When used as a normal pattern, this pattern uses a specialized normal perturbation function. This means that
the pattern cannot be used withnormal map, slope map or wave type modifiers in anormal statement.

When used as a pigment pattern or texture pattern, thewrinkles pattern is similar to normal wrinkles but is not
identical as are most normals when compared to pigments.

Note: The appearance of the wrinkles pattern depends on the noisegenerator used. The default type is 2. This
may be changed using thenoise generator keyword (See section ”Pattern Modifiers / Noisegenerator”).

5.12 Pattern Modifiers

Pattern modifiers are statements or parameters which modify how a pattern is evaluated or tells what to do with
the pattern. The complete syntax is:

PATTERN_MODIFIER:
BLEND_MAP_MODIFIER | AGATE_MODIFIER | DENSITY_FILE_MODIFIER |
QUILTED_MODIFIER | BRICK_MODIFIER | SLOPE_MODIFIER |
noise_generator Number| turbulence <Amount> |
octaves Count | omega Amount | lambda Amount |
warp { [WARP_ITEMS...] } | TRANSFORMATION

BLEND_MAP_MODIFIER:
frequency Amount | phase Amount | ramp_wave | triangle_wave |
sine_wave | scallop_wave | cubic_wave | poly_wave [Exponent]

AGATE_MODIFIER:
agate_turb Value

BRICK_MODIFIER:
brick_size Size | mortar Size

DENSITY_FILE_MODIFIER:
interpolate Type

SLOPE_MODIFIERS:
<Altitude>
<Lo_slope,Hi_slope>

232 Textures

<Lo_alt,Hi_alt>
QUILTED_MODIFIER:

control0 Value | control1 Value
PIGMENT_MODIFIER:

PATTERN_MODIFIER | COLOR_LIST | PIGMENT_LIST |
color_map { COLOR_MAP_BODY } | colour_map { COLOR_MAP_BODY } |
pigment_map{ PIGMENT_MAP_BODY } | quick_color COLOR |
quick_colour COLOR

COLOR NORMAL_MODIFIER:
PATTERN_MODIFIER | NORMAL_LIST |
normal_map { NORMAL_MAP_BODY } | slope_map{ SLOPE_MAP_BODY } |
bump_size Amount

TEXTURE_PATTERN_MODIFIER:
PATTERN_MODIFIER | TEXTURE_LIST |
texture_map{ TEXTURE_MAP_BODY }

DENSITY_MODIFIER:
PATTERN_MODIFIER | DENSITY_LIST | COLOR_LIST |
color_map { COLOR_MAP_BODY } | colour_map { COLOR_MAP_BODY } |
density_map { DENSITY_MAP_BODY }

Default values for pattern modifiers:

dist_exp : 0
falloff : 2.0
frequency : 1.0
lambda : 2.0
major_radius : 1
map_type : 0
noise_generator : 2
octaves : 6
omega : 0.5
orientation : <0,0,1>
phase : 0.0
poly_wave : 1.0
strength : 1.0
turbulence : <0,0,0>

The modifiersPIGMENTLIST, quick color, and pigment map apply only to pigments. See section ”Pigment”
for details on these pigment-specific pattern modifiers.

The modifiersCOLORLIST andcolor map apply only to pigments and densities. See sections ”Pigment” and
”Density” for details on these pigment-specific pattern modifiers.

The modifiers NORMALLIST, bump size, slope map and normal map apply only to normals. See section
”Normal” for details on these normal-specific pattern modifiers.

TheTEXTURELIST andtexture map modifiers can only be used with patterned textures. See section ”Texture
Maps” for details.

The DENSITYLIST and density map modifiers only work withmedia{density{..}} statements. See ”Den-
sity” for details.

Theagate turb modifier can only be used with theagate pattern. See ”Agate” for details.

The brick size andmortar modifiers can only be used with thebrick pattern. See ”Brick” for details.

5.12 Pattern Modifiers 233

The control0 andcontrol1 modifiers can only be used with thequilted pattern. See ”Quilted” for details.

The interpolate modifier can only be used with thedensity file pattern. See ”DensityFile” for details.

The general purpose pattern modifiers in the following sections can be used withpigment, normal, texture, or
density patterns.

5.12.1 Transforming Patterns

The most common pattern modifiers are the transformation modifierstranslate, rotate, scale, transform,
andmatrix. For details on these commands see section ”Transformations”.

These modifiers may be placed inside pigment, normal, texture, and density statements to change the position,
size and orientation of the patterns.

Transformations are performed in the order in which you specify them. However in general the order of
transformations relative to other pattern modifiers such asturbulence, color map and other maps is not
important. For example scaling before or after turbulence makes no difference. The turbulence is done first,
then the scaling regardless of which is specified first. However the order in which transformations are performed
relative towarp statements is important. See ”Warps” for details.

5.12.2 Frequency and Phase

Thefrequency andphase modifiers act as a type of scale and translate modifiers for various blend maps. They
only have effect when blend maps are used. Blend maps arecolor map, pigment map, normal map, slope map,
density map, andtexture map. This discussion uses a color map as an example but the same principles apply to
the other blend map types.

Thefrequency keyword adjusts the number of times that a color map repeats over one cycle of a pattern. For
example gradient covers color map values 0 to 1 over the range from x=0 to x=1. By addingfrequency 2.0

the color map repeats twice over that same range. The same effect can be achieved usingscale 0.5*x so the
frequency keyword is not that useful for patterns like gradient.

However the radial pattern wraps the color map around the +y-axis once. If you wanted two copies of the map
(or 3 or 10 or 100) you would have to build a bigger map. Addingfrequency 2.0 causes the color map to be
used twice per revolution. Try this:

pigment {
radial
color_map{[0.5 color Red][0.5 color White]}
frequency 6

}

The result is six sets of red and white radial stripes evenly spaced around the object.

The float afterfrequency can be any value. Values greater than 1.0 causes more than one copy of the map to be
used. Values from 0.0 to 1.0 cause a fraction of the map to be used. Negative values reverses the map.

Thephase value causes the map entries to be shifted so that the map starts and ends at a different place. In the
example above if you render successive frames atphase 0 thenphase 0.1, phase 0.2, etc. you could create an
animation that rotates the stripes. The same effect can be easily achieved by rotating theradial pigment using
rotate y*Angle but there are other uses where phase can be handy.

234 Textures

Sometimes you create a great looking gradient or wood color map but you want the grain slightly adjusted in
or out. You could re-order the color map entries but that is a pain. A phase adjustment will shift everything but
keep the same scale. Try animating amandel pigment for a color palette rotation effect.

These values work by applying the following formula

NewValue = fmod (OldValue * Frequency + Phase, 1.0).

Thefrequency andphase modifiers have no effect on block patternschecker, brick, and hexagon nor do they
effectimage map, bump map or material map. They also have no effect in normal statements when used with
bumps, dents, quilted or wrinkles because these normal patterns cannot usenormal map or slope map.

They can be used with normal patternsripples and waves even though these two patterns cannot usenormal -

map or slope map either. When used withripples or waves, frequency adjusts the space between features and
phase can be adjusted from 0.0 to 1.0 to cause the ripples or waves to move relative to their center for animating
the features.

5.12.3 Waveforms

POV-Ray allows you to apply various wave forms to the pattern function before applying it to a blend map.
Blend maps arecolor map, pigment map, normal map, slope map, density map, andtexture map.

Most of the patterns which use a blend map, use the entries in the map in order from 0.0 to 1.0. The effect can
most easily be seen when these patterns are used as normal patterns with no maps. Patterns such asgradient

or onion generate a groove or slot that looks like a ramp that drops off sharply. This is called aramp wave wave
type and it is the default wave type for most patterns. However thewood and marble patterns use the map from
0.0 to 1.0 and then reverses it and runs it from 1.0 to 0.0. The result is a wave form which slopes upwards to a
peak, then slopes down again in atriangle wave. In earlier versions of POV-Ray there was no way to change
the wave types. You could simulate a triangle wave on a ramp wave pattern by duplicating the map entries in
reverse, however there was no way to use a ramp wave on wood or marble.

Now any pattern that takes a map can have the default wave type overridden. For example:

pigment { wood color_map { MyMap } ramp_wave }

Also available aresine wave, scallop wave, cubic wave andpoly wave types. These types are of most use in
normal patterns as a type of built-in slope map. Thesine wave takes the zig-zag of a ramp wave and turns it
into a gentle rolling wave with smooth transitions. Thescallop wave uses the absolute value of the sine wave
which looks like corduroy when scaled small or like a stack of cylinders when scaled larger. Thecubic wave

is a gentle cubic curve from 0.0 to 1.0 with zero slope at the start and end. Thepoly wave is an exponential
function. It is followed by an optional float value which specifies exponent. For examplepoly wave 2 starts low
and climbs rapidly at the end whilepoly wave 0.5 climbs rapidly at first and levels off at the end. If no float
value is specified, the default is 1.0 which produces a linear function identical toramp wave.

Although any of these wave types can be used for pigments, normals, textures, or density the effect of many of
the wave types are not as noticeable on pigments, textures, or density as they are for normals.

Wave type modifiers have no effect on block patternschecker, brick, object andhexagon nor do they effect
image map, bump map or material map. They also have no effect in normal statements when used withbumps,
dents, quilted, ripples, waves, orwrinkles because these normal patterns cannot usenormal map or slope -

map.

5.12 Pattern Modifiers 235

5.12.4 Noise Generators

There are three noise generators implemented. Changing thenoise generator will change the appearance of
noise based patterns, like bozo and granite.

• noise generator 1 the noise that was used in POVRay 3.1

• noise generator 2 ’range corrected’ version of the old noise, it does not show the plateaus seen with
noise generator 1

• noise generator 3 generates Perlin noise

The default isnoise generator 2

Note: The noisegenerator can also be set inglobal settings

5.12.5 Turbulence

Theturbulence pattern modifier is still supported for compatibility issues, but it is better nowadays to use the
warp {turbulence} feature, which does not have turbulence’s limitation in transformation order (turbulence
is always applied first, before any scale, translate or rotate, whatever the order you specify). For a detailed
discussion see ’Turbulence versus Turbulence Warp’

The old-style turbulence is handled slightly differently when used with the agate, marble, spiral1, spiral2, and
wood textures.

5.12.6 Warps

The warp statement is a pattern modifier that is similar to turbulence. Turbulence works by taking the pat-
tern evaluation point and pushing it about in a series of random steps. However warps push the point in very
well-defined, non-random, geometric ways. Thewarp statement also overcomes some limitations of traditional
turbulence and transformations by giving the user more control over the order in which turbulence, transforma-
tion and warp modifiers are applied to the pattern.

Currently there are seven types of warps but the syntax was designed to allow future expansion. The turbulence
warp provides an alternative way to specify turbulence. The others modify the pattern in geometric ways.

The syntax for using awarp statement is:

WARP:
warp { WARP_ITEM }

WARP_ITEM:
repeat <Direction> [REPEAT_ITEMS...] |
black_hole <Location>, Radius [BLACK_HOLE_ITEMS...] |
turbulence <Amount> [TURB_ITEMS...]
cylindrical [orientation VECTOR | dist_exp FLOAT]
spherical [orientation VECTOR | dist_exp FLOAT]
toroidal [orientation VECTOR | dist_exp FLOAT |

major_radius FLOAT]
planar [VECTOR , FLOAT]

REPEAT_ITEMS:
offset <Amount> |

236 Textures

flip <Axis>
BLACK_HOLE_ITEMS:

strength Strength | falloff Amount | inverse |
repeat <Repeat> | turbulence <Amount>

TURB_ITEMS:
octaves Count | omega Amount | lambda Amount

You may have as many separate warp statements as you like in each pattern. The placement of warp statements
relative to other modifiers such ascolor map or turbulence is not important. However placement of warp
statements relative to each other and to transformations is significant. Multiple warps and transformations are
evaluated in the order in which you specify them. For example if you translate, then warp or warp, then translate,
the results can be different.

Black Hole Warp

A black hole warp is so named because of its similarity to real black holes. Just like the real thing, you cannot
actually see a black hole. The only way to detect its presence is by the effect it has on things that surround it.

Take, for example, a wood grain. Using POV-Ray’s normal turbulence and other texture modifier functions,
you can get a nice, random appearance to the grain. But in its randomness it is regular - it is regularly random!
Adding a black hole allows you to create a localized disturbance in a wood grain in either one or multiple
locations. The black hole can have the effect of eithersuckingthe surrounding texture into itself (like the real
thing) orpushingit away. In the latter case, applied to a wood grain, it would look to the viewer as if there were
a knothole in the wood. In this text we use a wood grain regularly as an example, because it is ideally suitable
to explaining black holes. However, black holes may in fact be used with any texture or pattern. The effect that
the black hole has on the texture can be specified. By default, itsuckswith the strength calculated exponentially
(inverse-square). You can change this if you like.

Black holes may be used anywhere a warp is permitted. The syntax is:

BLACK_HOLE_WARP:
warp
{

black_hole <Location>, Radius
[BLACK_HOLE_ITEMS...]

}
BLACK_HOLE_ITEMS:

strength Strength | falloff Amount | inverse | type Type |
repeat <Repeat> | turbulence <Amount>

The minimal requirement is theblack hole keyword followed by a vector<Location > followed by a comma
and a floatRadius . Black holes effect all points within the spherical region around the location and within the
radius. This is optionally followed by any number of other keywords which control how the texture is warped.

The falloff keyword may be used with a float value to specify the power by which the effect of the black
hole falls off. The default is two. The force of the black hole at any given point, before applying thestrength

modifier, is as follows.

First, convert the distance from the point to the center to a proportion (0 to 1) that the point is from the edge of
the black hole. A point on the perimeter of the black hole will be 0.0; a point at the center will be 1.0; a point
exactly halfway will be 0.5, and so forth. Mentally you can consider this to be a closeness factor. A closeness
of 1.0 is as close as you can get to the center (i.e. at the center), a closeness of 0.0 is as far away as you can

5.12 Pattern Modifiers 237

get from the center and still be inside the black hole and a closeness of 0.5 means the point is exactly halfway
between the two.

Call this value c. Raise c to the power specified infalloff. By default Falloff is 2, so this is cˆ2 or c squared.
The resulting value is the force of the black hole at that exact location and is used, after applying thestrength

scaling factor as described below, to determine how much the point is perturbed in space. For example, if c is
0.5 the force is 0.5ˆ2 or 0.25. If c is 0.25 the force is 0.125. But if c is exactly 1.0 the force is 1.0. Recall that
as c gets smaller the point is farther from the center of the black hole. Using the default power of 2, you can
see that as c reduces, the force reduces exponentially in an inverse-square relationship. Put in plain English, it
means that the force is much stronger (by a power of two) towards the center than it is at the outside.

By increasingfalloff, you can increase the magnitude of the falloff. A large value will mean points towards
the perimeter will hardly be affected at all and points towards the center will be affected strongly. A value of 1.0
for falloff will mean that the effect is linear. A point that is exactly halfway to the center of the black hole will
be affected by a force of exactly 0.5. A value offalloff of less than one but greater than zero means that as you
get closer to the outside, the force increases rather than decreases. This can have some uses but there is a side
effect. Recall that the effect of a black hole ceases outside its perimeter. This means that points just within the
perimeter will be affected strongly and those just outside not at all. This would lead to a visible border, shaped
as a sphere. A value forfalloff of 0 would mean that the force would be 1.0 for all points within the black
hole, since any number larger 0 raised to the power of 0 is 1.0.

Thestrength keyword may be specified with a float value to give you a bit more control over how much a point
is perturbed by the black hole. Basically, the force of the black hole (as determined above) is multiplied by the
value ofstrength, which defaults to 1.0. If you set strength to 0.5, for example, all points within the black hole
will be moved by only half as much as they would have been. If you set it to 2.0 they will be moved twice as
much.

There is a rider to the latter example, though - the movement is clipped to a maximum of the original distance
from the center. That is to say, a point that is 0.75 units from the center may only be moved by a maximum
of 0.75 units either towards the center or away from it, regardless of the value ofstrength. The result of this
clipping is that you will have an exclusion area near the center of the black hole where all points whose final
force value exceeded or equaled 1.0 were moved by a fixed amount.

If the inverse keyword is specified then the pointspushedaway from the center instead of being pulled in.

The repeat keyword followed by a vector, allows you to simulate the effect of many black holes without
having to explicitly declare them. Repeat is a vector that tells POV-Ray to use this black hole at multiple
locations. Usingrepeat logically divides your scene up into cubes, the first being located at<0,0,0> and going
to <Repeat >. Suppose your repeat vector was<1,5,2>. The first cube would be from<0,0,0> to < 1,5,2>.
This cube repeats, so there would be one at< -1,-5,-2>, <1,5,2>, <2,10,4> and so forth in all directions, ad
infinitum.

When you userepeat, the center of the black hole does not specify an absolute location in your scene but an
offset into each block. It is only possible to use positive offsets. Negative values will produce undefined results.

Suppose your center was<0.5,1,0.25> and the repeat vector is<2,2,2>. This gives us a block at< 0,0,0>
and<2,2,2>, etc. The centers of the black hole’s for these blocks would be<0,0,0> + < 0.5,1.0,0.25>, i. e.
<0.5,1.0,0.25>, and< 2,2,2> + <0.5,1.0,0.25>, i. e. < 2,5,3.0,2.25>.

Due to the way repeats are calculated internally, there is a restriction on the values you specify for the repeat
vector. Basically, each black hole must be totally enclosed within each block (or cube), with no part crossing
into a neighboring one. This means that, for each of the x, y and z dimensions, the offset of the center may not

238 Textures

be less than the radius, and the repeat value for that dimension must be>=the center plus the radius since any
other values would allow the black hole to cross a boundary. Put another way, for each of x, y and z

Radius<= Offset or Center<= Repeat - Radius.

If the repeat vector in any dimension is too small to fit this criteria, it will be increased and a warning message
issued. If the center is less than the radius it will also be moved but no message will be issued.

Note that none of the above should be read to mean that you cannot overlap black holes. You most certainly can
and in fact this can produce some most useful effects. The restriction only applies to elements of thesame black
hole which is repeating. You can declare a second black hole that also repeats and its elements can quite happily
overlap the first and causing the appropriate interactions. It is legal for the repeat value for any dimension to be
0, meaning that POV-Ray will not repeat the black hole in that direction.

The turbulence can only be used in a black hole withrepeat. It allows an element of randomness to be
inserted into the way the black holes repeat, to cause a more natural look. A good example would be an array
of knotholes in wood - it would look rather artificial if each knothole were an exact distance from the previous.

The turbulence vector is a measurement that is added to each individual black hole in an array, after each axis
of the vector is multiplied by a different random amount ranging from 0 to 1. The resulting actual position of
the black hole’s center for that particular repeat element is random (but consistent, so renders will be repeatable)
and somewhere within the above coordinates. There is a rider on the use of turbulence, which basically is the
same as that of the repeat vector. You cannot specify a value which would cause a black hole to potentially cross
outside of its particular block.

In summary: For each of x, y and z the offset of the center must be>=radius and the value of the repeat must
be>= center + radius + turbulence. The exception being that repeat may be 0 for any dimension, which means
do not repeat in that direction.

Some examples are given by

warp {
black_hole <0, 0, 0>, 0.5

}
warp {

black_hole <0.15, 0.125, 0>, 0.5
falloff 7
strength 1.0
repeat <1.25, 1.25, 0>
turbulence <0.25, 0.25, 0>
inverse

}
warp {

black_hole <0, 0, 0>, 1.0
falloff 2
strength 2
inverse

}

Repeat Warp

Therepeat warp causes a section of the pattern to be repeated over and over. It takes a slice out of the pattern
and makes multiple copies of it side-by-side. The warp has many uses but was originally designed to make it

5.12 Pattern Modifiers 239

easy to model wood veneer textures. Veneer is made by taking very thin slices from a log and placing them
side-by-side on some other backing material. You see side-by-side nearly identical ring patterns but each will
be a slice perhaps 1/32th of an inch deeper.

The syntax for a repeat warp is

REPEAT_WARP:
warp { repeat <Direction> [REPEAT_ITEMS...] }

REPEAT_ITEMS:
offset <Amount> | flip <Axis>

Therepeat vector specifies the direction in which the pattern repeats and the width of the repeated area. This
vector must lie entirely along an axis. In other words, two of its three components must be 0. For example

pigment {
wood
warp { repeat 2*x }

}

which means that from x=0 to x=2 you get whatever the pattern usually is. But from x=2 to x=4 you get the
same thing exactly shifted two units over in the x-direction. To evaluate it you simply take the x-coordinate
modulo 2. Unfortunately you get exact duplicates which is not very realistic. The optionaloffset vector tells
how much to translate the pattern each time it repeats. For example

pigment {
wood
warp {repeat x*2 offset z*0.05}

}

means that we slice the first copy from x=0 to x=2 at z=0 but at x=2 to x=4 we offset to z=0.05. In the 4 to 6
interval we slice at z=0.10. At the n-th copy we slice at 0.05 n z. Thus each copy is slightly different. There are
no restrictions on the offset vector.

Finally theflip vector causes the pattern to be flipped or mirrored every other copy of the pattern. The first
copy of the pattern in the positive direction from the axis is not flipped. The next farther is, the next is not, etc.
The flip vector is a three component x, y, z vector but each component is treated as a boolean value that tells if
you should or should not flip along a given axis. For example

pigment {
wood
warp {repeat 2*x flip <1,1,0>}

}

means that every other copy of the pattern will be mirrored about the x- and y- axis but not the z-axis. A non-
zero value means flip and zero means do not flip about that axis. The magnitude of the values in the flip vector
does not matter.

Turbulence versus Turbulence Warp

The POV-Ray language contains an ambiguity and limitation on the way you specifyturbulence and trans-
formations such astranslate, rotate, scale, matrix, andtransform transforms. Usually the turbulence is
done first. Then all translate, rotate, scale, matrix, and transform operations are always done after turbulence
regardless of the order in which you specify them. For example this

240 Textures

pigment {
wood
scale .5
turbulence .2

}

works exactly the same as

pigment {
wood
turbulence .2
scale .5

}

The turbulence is always first. A better example of this limitation is with uneven turbulence and rotations.

pigment {
wood
turbulence 0.5*y
rotate z*60

}
// as compared to
pigment {
wood
rotate z*60
turbulence 0.5*y

}

The results will be the same either way even though you would think it should look different.

We cannot change this basic behavior in POV-Ray now because lots of scenes would potentially render differ-
ently if suddenly the order transformation vs. turbulence mattered when in the past, it did not.

However, by specifying our turbulence inside warp statement you tell POV-Ray that the order in which turbu-
lence, transformations and other warps are applied is significant. Here is an example of a turbulence warp.

warp { turbulence <0,1,1> octaves 3 lambda 1.5 omega 0.3 }

The significance is that this

pigment {
wood
translate <1,2,3> rotate x*45 scale 2
warp { turbulence <0,1,1> octaves 3 lambda 1.5 omega 0.3 }

}

producesdifferent resultsthan this...

pigment {
wood
warp { turbulence <0,1,1> octaves 3 lambda 1.5 omega 0.3 }
translate <1,2,3> rotate x*45 scale 2

}

You may specify turbulence without using a warp statement. However you cannot control the order in which
they are evaluated unless you put them in a warp.

The evaluation rules are as follows:

5.12 Pattern Modifiers 241

1. First any turbulence not inside a warp statement is applied regardless of the order in which it appears
relative to warps or transformations.

2. Next each warp statement, translate, rotate, scale or matrix one-by-one, is applied in the order the user
specifies. If you want turbulence done in a specific order, you simply specify it inside a warp in the proper
place.

Turbulence Warp

Inside thewarp statement, the keywordturbulence followed by a float or vector may be used to stir up any
pigment, normal or density. A number of optional parameters may be used with turbulence to control how it is
computed. The syntax is:

TURBULENCE_ITEM:
turbulence <Amount> | octaves Count |
omega Amount | lambda Amount

Typical turbulence values range from the default 0.0, which is no turbulence, to 1.0 or more, which is very
turbulent. If a vector is specified different amounts of turbulence are applied in the x-, y- and z-direction. For
example

turbulence <1.0, 0.6, 0.1>

has much turbulence in the x-direction, a moderate amount in the y-direction and a small amount in the z-
direction.

Turbulence uses a random noise function calledDNoise. This is similar to the noise used in thebozo pattern
except that instead of giving a single value it gives a direction. You can think of it as the direction that the wind
is blowing at that spot. Points close together generate almost the same value but points far apart are randomly
different.

Turbulence usesDNoiseto push a point around in several steps calledoctaves. We locate the point we want to
evaluate, then push it around a bit using turbulence to get to a different point then look up the color or pattern
of the new point.

It says in effect ”Do not give me the color at this spot... take a few random steps in different directions and
give me that color”. Each step is typically half as long as the one before. For example:

Figure 5.7: Turbulence random walk.

242 Textures

The magnitude of these steps is controlled by the turbulence value. There are three additional parameters which
control how turbulence is computed. They areoctaves, lambda and omega. Each is optional. Each is followed
by a single float value. Each has no effect when there is no turbulence.

Octaves

Theoctaves keyword may be followed by an integer value to control the number of steps of turbulence that are
computed. Legal values range from 1 to<10. The default value of 6 is a fairly high value; you will not see
much change by setting it to a higher value because the extra steps are too small. Float values are truncated to
integer. Smaller numbers of octaves give a gentler, wavy turbulence and computes faster. Higher octaves create
more jagged or fuzzy turbulence and takes longer to compute.

Lambda

The lambda parameter controls how statistically different the random move of an octave is compared to its
previous octave. The default value is 2.0 which is quite random. Values close to lambda 1.0 will straighten out
the randomness of the path in the diagram above. The zig-zag steps in the calculation are in nearly the same
direction. Higher values can look moreswirly under some circumstances.

Omega

The omega value controls how large each successive octave step is compared to the previous value. Each
successive octave of turbulence is multiplied by the omega value. The defaultomega 0.5 means that each octave
is 1/2 the size of the previous one. Higher omega values mean that 2nd, 3rd, 4th and up octaves contribute more
turbulence giving a sharper,crinkly look while smaller omegas give a fuzzy kind of turbulence that gets blurry
in places.

Mapping using warps

Syntax:

CYLINDRICAL_WARP:
warp { cylindrical [CYLINDRICAL_ITEMS...]}

CYLINDRICAL_ITEMS:
orientation VECTOR | dist_exp FLOAT

SPHERICAL_WARP:
warp { spherical [SPHERICAL_ITEMS...]}

SPHERICAL_ITEMS:
orientation VECTOR | dist_exp FLOAT

TOROIDAL_WARP:
warp { toroidal [TOROIDAL_ITEMS...]}

TOROIDAL_ITEMS:
orientation VECTOR | dist_exp FLOAT | major_radius FLOAT

PLANAR_WARP:
warp { planar [VECTOR , FLOAT]}

5.12 Pattern Modifiers 243

With thecylindrical, spherical andtoroidal warps you can wrap checkers, bricks and other patterns around
cylinders, spheres, toruses and other objects. In essence, these warps use the same mapping as the image maps
use.

However it does 3D mapping and some concession had to be made on depth. This is controllable bydist exp

(distance exponent). In the default of 0, imagine a box<0,0> to <1,1> (actually it is<0,0>, <distˆdist exp,

distˆdist exp>) stretching to infinity along the orientation vector. The warp takes its points from that box.

For a spheredistance is distance from origin, cylinder is distance from y-axis, torus is distance from major
radius. (or distance is minor radius if you prefer to look at it that way)

Defaults: orientation <0,0,1>

dist exp 0

major radius 1

Examples:

torus {
1, 0.5
pigment {

hexagon
scale 0.1
warp {

toroidal
orientation y
dist_exp 1
major_radius 1

}
}

}
sphere {

0,1
pigment {

hexagon
scale <0.5/pi,0.25/pi,1>*0.1
warp {

spherical
orientation y
dist_exp 1

}
}

}
cylinder {

-y, y, 1
pigment {

hexagon
scale <0.5/pi, 1, 1>*0.1
warp {

cylindrical
orientation y
dist_exp 1

}
}

244 Textures

}

The planar warp was made to make a pattern act like an imagemap, of infinite size and can be useful in
combination with other mapping-warps. By default the pigment in the XY-plane is extruded along the Z-axis.
The pigment can be taken from an other plane, by specifying the optional vector (normal of the plane) and float
(distance along the normal). The result, again, is extruded along the Z-axis.

5.12.7 Bitmap Modifiers

A bitmap modifier is a modifier used inside animage map, bump map or material map to specify how the 2-D
bitmap is to be applied to the 3-D surface. Several bitmap modifiers apply to specific kinds of maps and they
are covered in the appropriate sections. The bitmap modifiers discussed in the following sections are applicable
to all three types of bitmaps.

The once Option

Normally there are an infinite number of repeating image maps, bump maps or material maps created over every
unit square of the x-y-plane like tiles. By adding theonce keyword after a file name you can eliminate all other
copies of the map except the one at (0,0) to (1,1). In image maps, areas outside this unit square are treated as
fully transparent. In bump maps, areas outside this unit square are left flat with no normal modification. In
material maps, areas outside this unit square are textured with the first texture of the texture list.

For example:

image_map {
gif "mypic.gif"
once

}

The map type Option

The default projection of the image onto the x-y-plane is called aplanar map type. This option may be changed
by adding the map type keyword followed by an integer number specifying the way to wrap the image around
the object.

A map type 0 gives the default planar mapping already described.

A map type 1 gives a spherical mapping. It assumes that the object is a sphere of any size sitting at the origin.
The y-axis is the north/south pole of the spherical mapping. The top and bottom edges of the image just touch
the pole regardless of any scaling. The left edge of the image begins at the positive x-axis and wraps the image
around the sphere from west to east in a -y-rotation. The image covers the sphere exactly once. Theonce

keyword has no meaning for this mapping type.

With map type 2 you get a cylindrical mapping. It assumes that a cylinder of any diameter lies along the y-axis.
The image wraps around the cylinder just like the spherical map but the image remains one unit tall from y=0
to y=1. This band of color is repeated at all heights unless theonce keyword is applied.

Finally map type 5 is a torus or donut shaped mapping. It assumes that a torus of major radius one sits at the
origin in the x-z-plane. The image is wrapped around similar to spherical or cylindrical maps. However the top
and bottom edges of the map wrap over and under the torus where they meet each other on the inner rim.

5.12 Pattern Modifiers 245

Types 3 and 4 are still under development.

Note: that the map type option may also be applied tobump map andmaterial map statements.

For example:

sphere{<0,0,0>,1
pigment{

image_map {
gif "world.gif"
map_type 1

}
}

}

The interpolate Option

Adding theinterpolate keyword can smooth the jagged look of a bitmap. When POV-Ray checks a color for
an image map or a bump amount for a bump map, it often checks a point that is not directly on top of one pixel
but sort of between several differently colored pixels. Interpolations return an in-between value so that the steps
between the pixels in the map will look smoother.

Althoughinterpolate is legal in material maps, the color index is interpolated before the texture is chosen. It
does not interpolate the final color as you might hope it would. In general, interpolation of material maps serves
no useful purpose but this may be fixed in future versions.

There are currently two types of interpolation:interpolate 2 gives bilinear interpolation whileinterpolate
4 gives normalized distance. For example:

image_map {
gif "mypic.gif"
interpolate 2

}

Default is no interpolation. Normalized distance is the slightly faster of the two, bilinear does a better job of
picking the between color. Normally bilinear is used.

If your map looks jaggy, try using interpolation instead of going to a higher resolution image. The results can
be very good.

246 Textures

Chapter 6

Interior & Media & Photons

6.1 Interior

Introduced in POV-Ray 3.1 is an object modifier statement calledinterior. The syntax is:

INTERIOR:
interior { [INTERIOR_IDENTIFIER] [INTERIOR_ITEMS...] }

INTERIOR_ITEM:
ior Value | caustics Value | dispersion Value |
dispersion_samples Samples | fade_distance Distance |
fade_power Power | fade_color <Color>
MEDIA...

Interior default values:

ior : 1.0
caustics : 0.0
dispersion : 1.0
dispersion_samples : 7
fade_distance : 0.0
fade_power : 0.0
fade_color : <0,0,0>

The interior contains items which describe the properties of the interior of the object. This is in contrast to
the texture andinterior texture which describe the surface properties only. The interior of an object is only
of interest if it has a transparent texture which allows you to see inside the object. It also applies only to solid
objects which have a well-defined inside/outside distinction.

Note: the open keyword, orclipped by modifier also allows you to see inside but interior features may not
render properly. They should be avoided if accurate interiors are required.

Interior identifiers may be declared to make scene files more readable and to parameterize scenes so that chang-
ing a single declaration changes many values. An identifier is declared as follows.

INTERIOR_DECLARATION:
#declare IDENTIFIER = INTERIOR |
#local IDENTIFIER = INTERIOR

248 Interior & Media & Photons

WhereIDENTIFIER is the name of the identifier up to 40 characters long andINTERIORis any validinterior
statement. See ”#declare vs. #local” for information on identifier scope.

6.1.1 Why are Interior and Media Necessary?

In previous versions of POV-Ray, most of the items in theinterior statement were previously part of thefinish
statement. Also thehalo statement which was once part of thetexture statement has been discontinued and
has been replaced by themedia statement which is part ofinterior.

You are probably askingWHY? As explained earlier, theinterior contains items which describe the properties
of the interior of the object. This is in contrast to thetexture which describes the surface properties only.
However this is not just a philosophical change. There were serious inconsistencies in the old model.

The main problem arises when atexture map or other patterned texture is used. These features allow you to
create textures that are a blend of two textures and which vary the entire texture from one point to another. It
does its blending by fully evaluating the apparent color as though only one texture was applied and then fully
reevaluating it with the other texture. The two final results are blended.

It is totally illogical to have a ray enter an object with one index or refraction and then recalculate with another
index. The result is not an average of the two ior values. Similarly it makes no sense to have a ray enter at
one ior and exit at a different ior without transitioning between them along the way. POV-Ray only calculates
refraction as the ray enters or leaves. It cannot incrementally compute a changing ior through the interior of
an object. Real world objects such as optical fibers or no-line bifocal eyeglasses can have variable iors but
POV-Ray cannot simulate them.

Similarly thehalo calculations were not performed as the syntax implied. Using ahalo in such multi-textured
objects did not vary thehalo through the interior of the object. Rather, it computed two separate halos through
the whole object and averaged the results. The new design formedia which replaceshalo makes it possible to
have media that varies throughout the interior of the object according to a pattern but it does so independently
of the surface texture. Because there are other changes in the design of this feature which make it significantly
different, it was not only moved to theinterior but the name was changed.

During our development, someone asked if we will create patterned interiors or a hypotheticalinterior map

feature. We will not. That would defeat the whole purpose of moving these features in the first place. They
cannot be patterned and have logical or self-consistent results.

6.1.2 Empty and Solid Objects

It is very important that you know the basic concept behind empty and solid objects in POV-Ray to fully
understand how features like interior and translucency are used. Objects in POV-Ray can either be solid, empty
or filled with (small) particles.

A solid object is made from the material specified by its pigment and finish statements (and to some degree its
normal statement). By default all objects are assumed to be solid. If you assign a stone texture to a sphere you
will get a ball made completely of stone. It is like you had cut this ball from a block of stone. A glass ball is a
massive sphere made of glass. You should be aware that solid objects are conceptual things. If you clip away
parts of the sphere you will clearly see that the interior is empty and it just has a very thin surface.

This is not contrary to the concept of a solid object used in POV-Ray. It is assumed that all space inside the
sphere is covered by the sphere’sinterior. Light passing through the object is affected by attenuation and

6.1 Interior 249

refraction properties. However there is no room for any other particles like those used by fog or interior media.

Empty objects are created by adding thehollow keyword (see ”Hollow”) to the object statement. An empty (or
hollow) object is assumed to be made of a very thin surface which is of the material specified by the pigment,
finish and normal statements. The object’s interior is empty, it normally contains air molecules.

An empty object can be filled with particles by adding fog or atmospheric media to the scene or by adding an
interior media to the object. It is very important to understand that in order to fill an object with any kind of
particles it first has to be made hollow.

There is a pitfall in the empty/solid object implementation that you have to be aware of.

In order to be able to put solid objects inside a media or fog, a test has to be made for every ray that passes
through the media. If this ray travels through a solid object the media will not be calculated. This is what anyone
will expect. A solid glass sphere in a fog bank does not contain fog.

The problem arises when the camera ray is inside any non-hollow object. In this case the ray is already traveling
through a solid object and even if the media’s container object is hit and it is hollow, the media will not be
calculated. There is no way of telling between these two cases.

POV-Ray has to determine whether the camera is inside any object prior to tracing a camera ray in order to be
able to correctly render medias when the camera is inside the container object. There is no way around doing
this.

The solution to this problem (that will often happen with infinite objects like planes) is to make those objects
hollow too. Thus the ray will travel through a hollow object, will hit the container object and the media will be
calculated.

6.1.3 Scaling objects with an interior

All the statements that can be put in an interior represent aspects of the matter that an object is made of. Scaling
an object, changing its size, does not change its matter. Two pieces of the same quality steel, one twice as big
as the other, both have the same density. The bigger piece is quite a bit heavier though.

So, in POV-Ray, if you design a lens from a glass with an ior of 1.5 and you scale it bigger, the focal distance of
the lens will get longer as the ior stays the same. For light attenuation it means that an object will be ”darker”
after being scaled up. The light intensity decreases a certain amount per pov-unit. The object has become bigger,
more pov-units, so more light is faded. Thefade distance, fade power themselves have not been changed.

The same applies to media. Imagine media as a density of particles, you specify 100 particles per cubic pov-
unit. If we scale a 1 cubic pov-unit object to be twice as big in every direction, we will have a total of 800
particles in the object. The object will look different, as we have more particles to look through. Yet the objects
density is still 100 particles per cubic pov-unit. In media this ”particle density” is set by the color afteremission,
absorption, or in thescattering statement

#version 3.5;
global_settings {assumed_gamma 1.0}
camera {location <0, 0,-12.0> look_at 0 angle 30 }
#declare Container_T= texture {

pigment {rgbt <1,1,1,1>}
finish {ambient 0 diffuse 0}

}

#declare Scale=2;

250 Interior & Media & Photons

box { //The reference
<-1,-1,0>,<1,1,.3>
hollow
texture {Container_T}
interior {

media {
intervals 1
samples 1,1
emission 1

}
}
translate <-2.1,0,0>

}

box { //Object scaled twice as big
<-1,-1,0>,<1,1,.3> //looks different but same
hollow //particle density
texture {Container_T}
interior {

media {
intervals 1
samples 1,1
emission 1

}
}
scale Scale
translate<0,0,12>

}

box { //Object scaled twice as big
<-1,-1,0>,<1,1,.3> //looks the same but particle
hollow //density scaled down
texture {Container_T}
interior {

media {
intervals 1
samples 1,1
emission 1/Scale

}
}
scale Scale
translate<0,0,12>
translate<4.2,0,0>

}

The third object in the scene above, shows what to do, if you want to scale the objectand want it to keep the
same look as before. The interior feature has to be divided by the same amount, that the object was scaled by.
This is only possible when the object is scaled uniform.

In general, the correct approach is to scale the media density proportionally to the change in container volume.
For non-uniform scaling to get an unambiguous result, that can be explained in physical terms, we need to do:

Density*sqrt(3)/vlength(Scale)

6.1 Interior 251

where Density is your original media density and Scale is the scaling vector applied to the container.

Note: the density modifiers inside thedensity{} statement are scaled along with the object.

6.1.4 Refraction

When light passes through a surface either into or out of a dense medium the path of the ray of light is bent.
Such bending is calledrefraction. The amount of bending or refracting of light depends upon the density of
the material. Air, water, crystal and diamonds all have different densities and thus refract differently. Theindex
of refractionor ior value is used by scientists to describe the relative density of substances. Theior keyword is
used in POV-Ray in theinterior to turn on refraction and to specify the ior value. For example:

object { MyObject pigment {Clear } interior { ior 1.5 } }

The default ior value of 1.0 will give no refraction. The index of refraction for air is 1.0, water is 1.33, glass is
1.5 and diamond is 2.4.

Normally transparent or semi-transparent surfaces in POV-Ray do not refract light. Earlier versions of POV-Ray
required you to use therefraction keyword in thefinish statement to turn on refraction. This is no longer
necessary. Any non-zeroior value now turns refraction on.

In addition to turning refraction on or off, the oldrefraction keyword was followed by a float value from 0.0
to 1.0. Values in between 0.0 and 1.0 would darken the refracted light in ways that do not correspond to any
physical property. Many POV-Ray scenes were created with intermediate refraction values before this bug was
discovered so the feature has been maintained. A more appropriate way to reduce the brightness of refracted
light is to change thefilter or transmit value in the colors specified in the pigment statement or to use the
fade power andfade distance keywords. See ”Attenuation”.

Note: neither theior nor refraction keywords cause the object to be transparent. Transparency only occurs if
there is a non-zerofilter or transmit value in the color.

The refraction and ior keywords were originally specified infinish but are now properly specified in
interior. They are accepted infinish for backward compatibility and generate a warning message.

6.1.5 Dispersion

For all materials with a ior different from 1.0 the refractive index is not constant throughout the spectrum. It
changes as a function of wavelength. Generally the refractive index decreases as the wavelength increases.
Therefore light passing through a material will be separated according to wavelength. This is known as chro-
matic dispersion.

By default POV-Ray does not calculate dispersion as light travels through a transparent object. In order to get a
more realistic effect thedispersion anddispersion samples keywords can be added to theinterior{} block.
They will simulate dispersion by creating a prismatic color effect in the object.

The dispersion value is the ratio of refractive indices for violet to red. It controls the strength of dispersion
(how much the colors are spread out) used. A DISPERSIONVALUE of 1 will give no dispersion, good values
are 1.01 to 1.1.

Note: there will be no dispersion, unless theior keyword has been specified ininterior{ }. An ior of 1 is
legal. The ior has no influence on the dispersion strength, only on the angle of refraction.

252 Interior & Media & Photons

As POV-Ray does not use wavelengths for raytracing, a spectrum is simulated. Thedispersion samples value
controls the amount of color-steps and smoothness in the spectrum. The default value is 7, the minimum is 2.
Values up to 100 or higher may be needed to get a very smooth result.

Dispersion & Caustics

Dispersion only affects the interior of an object and has no effect on faked caustics (See ”Faked Caustics”).
To see the effects of dispersion in caustics, photon mapping is needed (See the sections ”Photons” and ”Disper-
sion & Photons”).

6.1.6 Attenuation

Light attenuation is used to model the decrease in light intensity as the light travels through a transparent object.
The keywordsfade power, fade distance andfade color are specified in theinterior statement.

Thefade distance value determines the distance the light has to travel to reach half intensity while thefade -

power value determines how fast the light will fall off.fade color colorizes the attenuation. For realistic effects
a fade power of 1 to 2 should be used. Default values forfade power andfade distance is 0.0 which turns this
feature off. Default forfade color is <0,0,0>, if fade color is <1,1,1> there is no attenuation. The actual
colors give colored attenuation.<1,0,0> looks red, not cyan as in media.

The attenuation is calculated by a formula similar to that used for light source attenuation.

attenuation=
1

1+
(

d
fade distance

)fade power

Table 6.1:

If you set fadepower in the interior of an object at 1000 or above, a realistic exponential attenuation function
will be used:

Attenuation = exp(-depth/fade_dist)

Thefade power andfade distance keywords were originally specified infinish but are now properly specified
in interior. They are accepted infinish for backward compatibility and generate a warning message.

6.1.7 Simulated Caustics

Caustics are light effects that occur if light is reflected or refracted by specular reflective or refractive surfaces.
Imagine a glass of water standing on a table. If sunlight falls onto the glass you will see spots of light on the
table. Some of the spots are caused by light being reflected by the glass while some of them are caused by light
being refracted by the water in the glass.

Since it is a very difficult and time-consuming process to actually calculate those effects (though it is not
impossible, see the sections ”Photons”) POV-Ray uses a quite simple method to simulate caustics caused by
refraction. The method calculates the angle between the incoming light ray and the surface normal. Where they
are nearly parallel it makes the shadow brighter. Where the angle is greater, the effect is diminished. Unlike

6.2 Media 253

real-world caustics, the effect does not vary based on distance. This caustic effect is limited to areas that are
shaded by the transparent object. You will get no caustic effects from reflective surfaces nor in parts that are not
shaded by the object.

Thecaustics Power keyword controls the effect. Values typically range from 0.0 to 1.0 or higher. Zero is the
default which is no caustics. Low, non-zero values give broad hot-spots while higher values give tighter, smaller
simulated focal points.

The caustics keyword was originally specified infinish but is now properly specified ininterior. It is
accepted in finish for backward compatibility and generates a warning message.

6.1.8 Object-Media

The interior statement may contain one or moremedia statements. Media is used to simulate suspended
particles such as smoke, haze, or dust. Or visible gasses such as steam or fire and explosions. When used with
an object interior, the effect is constrained by the object’s shape. The calculations begin when the ray enters
an object and ends when it leaves the object. This section only discusses media when used with object interior.
The complete syntax and an explanation of all of the parameters and options formedia is given in the section
”Media”.

Typically the object itself is given a fully transparent texture however media also works in partially transparent
objects. The texture pattern itself does not effect the interior media except perhaps to create shadows on it. The
texture pattern of an object applies only to the surface shell. Any interior media patterns are totally independent
of the texture.

In previous versions of POV-Ray, this feature was calledhalo and was part of thetexture specification along
with pigment, normal, andfinish. See ”Why are Interior and Media Necessary?” for an explanation of the
reasons for the change.

Media may also be specified outside an object to simulate atmospheric media. There is no constraining object
in this case. If you only want media effects in a particular area, you should use object media rather than only
relying upon the media pattern. In general it will be faster and more accurate because it only calculates inside
the constraining object. See ”Atmospheric Media” for details on unconstrained uses of media.

You may specify more than onemedia statement perinterior statement. In that case, all of the media partici-
pate and where they overlap, they add together.

Any object which is supposed to have media effects inside it, whether those effects are object media or atmo-
spheric media, must have thehollow on keyword applied. Otherwise the media is blocked. See ”Empty and
Solid Objects” for details.

6.2 Media

The media statement is used to specify particulate matter suspended in a medium such air or water. It can
be used to specify smoke, haze, fog, gas, fire, dust etc. Previous versions of POV-Ray had two incompatible
systems for generating such effects. One washalo for effects enclosed in a transparent or semi-transparent
object. The other wasatmosphere for effects that permeated the entire scene. This duplication of systems was
complex and unnecessary. Bothhalo andatmosphere have been eliminated. See ”Why are Interior and Media
Necessary?” for further details on this change. See ”Object Media” for details on how to usemedia with objects.
See ”Atmospheric Media” for details on usingmedia for atmospheric effects outside of objects. This section

254 Interior & Media & Photons

and the sub-sections which follow explains the details of the variousmedia options which are useful for either
object media or atmospheric media.

Media works by sampling the density of particles at some specified number of points along the ray’s path. Sub-
samples are also taken until the results reach a specified confidence level. POV-Ray provides three methods of
sampling. When used in an object’sinterior statement, sampling only occurs inside the object. When used
for atmospheric media, the samples run from the camera location until the ray strikes an object. Therefore for
localized effects, it is best to use an enclosing object even though the density pattern might only produce results
in a small area whether the media was enclosed or not.

The complete syntax for amedia statement is as follows:

MEDIA:
media { [MEDIA_IDENTIFIER] [MEDIA_ITEMS...] }

MEDIA_ITEMS:
method Number | intervals Number | samples Min, Max |
confidence Value | variance Value | ratio Value |
absorption COLOR | emission COLOR | aa_threshold Value |
aa_level Value |
scattering {

Type, COLOR [eccentricity Value] [extinction Value]
} |
density {

[DENSITY_IDENTIFIER] [PATTERN_TYPE] [DENSITY_MODIFIER...]
} |
TRANSFORMATIONS

DENSITY_MODIFIER:
PATTERN_MODIFIER | DENSITY_LIST | COLOR_LIST |
color_map { COLOR_MAP_BODY } | colour_map { COLOR_MAP_BODY } |
density_map { DENSITY_MAP_BODY }

Media default values:

aa_level : 4
aa_threshold : 0.1
absorption : <0,0,0>
confidence : 0.9
emission : <0,0,0>
intervals : 10
method : 3
ratio : 0.9
samples : Min 1, Max 1
variance : 1/128
SCATTERING

COLOR : <0,0,0>
eccentricity : 0.0
extinction : 1.0

If a media identifier is specified, it must be the first item. All other media items may be specified in any order.
All are optional. You may have multipledensity statements in a singlemedia statement. See ”Multiple Density
vs. Multiple Media” for details. Transformations apply only thedensity statements which have been already
specified. Anydensity after a transformation is not affected. If themedia has nodensity statements and none
was specified in any media identifier, then the transformation has no effect. All other media items except for
density and transformations override default values or any previously set values for thismedia statement.

6.2 Media 255

Note: some media effects depend upon light sources. However the participation of a light source depends
upon themedia interaction and media attenuation keywords. See ”Atmospheric Media Interaction” and
”Atmospheric Attenuation” for details.

Note: In the POV-Ray 3.1 documentation it said: ”Note a strange design side-effect was discovered during
testing and it was too difficult to fix. If the enclosing object usestransmit rather thanfilter for transparency,
then themedia casts no shadows.” This is not the case anymore since POV-Ray 3.5. Whether you specify
transmit or filter to create a transparent container object, themedia will always cast a shadow. If a shadow is
not desired, use theno shadow keyword for the container object.

6.2.1 Media Types

There are three types of particle interaction inmedia: absorbing, emitting, and scattering. All three activities
may occur in a single media. Each of these three specifications requires a color. Only the red, green, and blue
components of the color are used. The filter and transmit values are ignored. For this reason it is permissible
to use one float value to specify an intensity of white color. For example the following two lines are legal and
produce the same results:

emission 0.75
emission rgb<0.75,0.75,0.75>

Absorption

The absorption keyword specifies a color of light which is absorbed when looking through the media. For
exampleabsorption rgb<0,1,0> blocks the green light but permits red and blue to get through. Therefore a
white object behind the media will appear magenta.

The default value isrgb<0,0,0> which means no light is absorbed – all light passes through normally.

Emission

The emission keyword specifies a color of the light emitted from the particles. Although we say they ”emit”
light, this only means that they are visible without any illumination shining on them. They do not really emit
light that is cast on to nearby objects. This is similar to an object with highambient values. The default value is
rgb<0,0,0> which means no light is emitted.

Scattering

The syntax of ascattering statement is:

SCATTERING:
scattering {

Type, COLOR [eccentricity Value] [extinction Value]
}

The first float value specifies the type of scattering. This is followed by the color of the scattered light. The
default value if no scattering statement is given isrgb<0,0,0> which means no scattering occurs.

256 Interior & Media & Photons

The scattering effect is only visible when light is shining on the media from a light source. This is similar to
diffuse reflection off of an object. In addition to reflecting light, a scattering media also absorbs light like
an absorption media. The balance between how much absorption occurs for a given amount of scattering
is controlled by the optionalextinction keyword and a single float value. The default value of 1.0 gives an
extinction effect that matches the scattering. Values such asextinction 0.25 give 25% the normal amount.
Using extinction 0.0 turns it off completely. Any value other than the 1.0 default is contrary to the real
physical model but decreasing extinction can give you more artistic flexibility.

The integer value Type specifies one of five different scattering phase functions representing the different
models: isotropic, Mie (haze and murky atmosphere), Rayleigh, and Henyey-Greenstein.

Type 1,isotropic scatteringis the simplest form of scattering because it is independent of direction. The amount
of light scattered by particles in the atmosphere does not depend on the angle between the viewing direction and
the incoming light.

Types 2 and 3 areMie hazeand Mie murkyscattering which are used for relatively small particles such as
minuscule water droplets of fog, cloud particles, and particles responsible for the polluted sky. In this model
the scattering is extremely directional in the forward direction i.e. the amount of scattered light is largest when
the incident light is anti-parallel to the viewing direction (the light goes directly to the viewer). It is smallest
when the incident light is parallel to the viewing direction. The haze and murky atmosphere models differ in
their scattering characteristics. The murky model is much more directional than the haze model.

Figure 6.1: The Mie haze scattering function

Type 4Rayleigh scatteringmodels the scattering for extremely small particles such as molecules of the air. The
amount of scattered light depends on the incident light angle. It is largest when the incident light is parallel
or anti-parallel to the viewing direction and smallest when the incident light is perpendicular to the viewing
direction. You should note that the Rayleigh model used in POV-Ray does not take the dependency of scattering
on the wavelength into account.

Type 5 is theHenyey-Greenstein scatteringmodel. It is based on an analytical function and can be used to
model a large variety of different scattering types. The function models an ellipse with a given eccentricity e.
This eccentricity is specified by the optional keywordeccentricity which is only used for scattering type five.
The default eccentricity value of zero defines isotropic scattering while positive values lead to scattering in the
direction of the light and negative values lead to scattering in the opposite direction of the light. Larger values
of e (or smaller values in the negative case) increase the directional property of the scattering.

6.2 Media 257

Figure 6.2: The Mie murky scattering function.

Figure 6.3: The Rayleigh scattering function.

Figure 6.4: The Henyey-Greenstein scattering function for different eccentricity values.

258 Interior & Media & Photons

6.2.2 Sampling Parameters & Methods

Media effects are calculated by sampling the media along the path of the ray. It uses a method calledMonte
Carlo integration. The intervals keyword may be used to specify the integer number of intervals used to
sample the ray. The default number of intervals is 10. For object media the intervals are spread between the
entry and exit points as the ray passes through the container object. For atmospheric media, the intervals spans
the entire length of the ray from its start until it hits an object. For media types which interact with spotlights
or cylinder lights, the intervals which are not illuminated by these light types are weighted differently than the
illuminated intervals when distributing samples.

Theratio keyword distributes intervals differently between lit and unlit areas. The default value ofratio 0.9

means that lit intervals get more samples than unlit intervals. Note that the total number of intervals must
exceed the number of illuminated intervals. If a ray passes in and out of 8 spotlights but you have only specified
5 intervals then an error occurs.

Thesamples Min , Max keyword specifies the minimum and maximum number of samples taken per interval.
The default values aresamples 1,1.

As each interval is sampled, the variance is computed. If the variance is below a threshold value, then no more
samples are needed. Thevariance andconfidence keywords specify the permitted variance allowed and the
confidence that you are within that variance. The exact calculations are quite complex and involve chi-squared
tests and other statistical principles too messy to describe here. The default values arevariance 1.0/128 and
confidence 0.9. For slower more accurate results, decrease the variance and increase the confidence.

Note: the maximum number of samples limits the calculations even if the proper variance and confidence are
never reached.

Themethod keyword lets you specify what sampling method is used, POV-Ray provides three.Method 1 is the
method described above.

Samplemethod 2 distributes samples evenly along the viewing ray or light ray. The latter can make things look
smoother sometimes. If you specify a max samples higher than the minimum samples, POV will take additional
samples, but they will be random, just like in method 1. Therefore, it is suggested you set the max samples
equal to the minimum samples.jitter will cause method 2 to look similar to method 1. It should be followed
by a float, and a value of 1 will stagger the samples in the full range between samples.

Samplemethod 3 uses adaptive sampling (similar to adaptive anti-aliasing) which is very much like the sampling
method used in POV-Ray 3.0’s atmosphere. This code was written from the ground-up to work with media,
however. Adaptive sampling works by taking another sample between two existing samples if there is too much
variance in the original two samples. This leads to fewer samples being taken in areas where the effect from the
media remains constant. The adaptive sampling is only performed if the minimum samples are set to 3 or more.

You can specify the anti-aliasing recursion depth using theaa level keyword followed by an integer. You can
specify the anti-aliasing threshold by using theaa threshold followed by a float. The default foraa level is 4
and the defaultaa threshold is 0.1.jitter also works with method 3. Sample method 3 ignores the maximum
samples value. It is usually best to only use one interval with method 3. Too many intervals can lead to artefacts,
and POV will create more intervals if it needs them.

6.2.3 Density

Particles of media are normally distributed in constant density throughout the media. However thedensity

statement allows you to vary the density across space using any of POV-Ray’s pattern functions such as those

6.2 Media 259

used in textures. If nodensity statement is given then the density remains a constant value of 1.0 throughout
the media. More than onedensity may be specified permedia statement. See ”Multiple Density vs. Multiple
Media”. The syntax fordensity is:

DENSITY:
density
{

[DENSITY_IDENTIFIER]
[DENSITY_TYPE]
[DENSITY_MODIFIER...]

}
DENSITY_TYPE:

PATTERN_TYPE | COLOR
DENSITY_MODIFIER:

PATTERN_MODIFIER | DENSITY_LIST | color_map { COLOR_MAP_BODY } |
colour_map { COLOR_MAP_BODY } | density_map { DENSITY_MAP_BODY }

Thedensity statement may begin with an optional density identifier. All subsequent values modify the defaults
or the values in the identifier. The next item is a pattern type. This is any one of POV-Ray’s pattern functions
such asbozo, wood, gradient, waves, etc. Of particular usefulness are thespherical, planar, cylindrical, and
boxed patterns which were previously available only for use with our discontinuedhalo feature. All patterns
return a value from 0.0 to 1.0. This value is interpreted as the density of the media at that particular point. See
”Patterns” for details on particular pattern types. Although a solidCOLORpattern is legal, in general it is used
only when thedensity statement is inside adensity map.

General Density Modifiers

A density statement may be modified by any of the general pattern modifiers such as transformations,
turbulence and warp. See ”Pattern Modifiers” for details. In addition there are several density-specific
modifiers which can be used.

Density with color map

Typically a media uses just one constant color throughout. Even if you vary the density, it is usually just one
color which is specified by theabsorption, emission, or scattering keywords. However when usingemission
to simulate fire or explosions, the center of the flame (high density area) is typically brighter and white or yellow.
The outer edge of the flame (less density) fades to orange, red, or in some cases deep blue. To model the density-
dependent change in color which is visible, you may specify acolor map. The pattern function returns a value
from 0.0 to 1.0 and the value is passed to the color map to compute what color or blend of colors is used. See
”Color Maps” for details on how pattern values work withcolor map. This resulting color is multiplied by the
absorption, emission and scattering color. Currently there is no way to specify different color maps for each
media type within the samemedia statement.

Consider this example:

media{
emission 0.75
scattering {1, 0.5}
density { spherical

color_map {
[0.0 rgb <0,0,0.5>]

260 Interior & Media & Photons

[0.5 rgb <0.8, 0.8, 0.4>]
[1.0 rgb <1,1,1>]

}
}

}

The color map ranges from white at density 1.0 to bright yellow at density 0.5 to deep blue at density 0. Assume
we sample a point at density 0.5. The emission is 0.75*<0.8,0.8,0.4> or<0.6,0.6,0.3>. Similarly the scattering
color is 0.5*<0.8,0.8,0.4> or <0.4,0.4,0.2>.

For block pattern typeschecker, hexagon, and brick you may specify a color list such as this:

density{
checker
density {rgb<1,0,0>}
density {rgb<0,0,0>}

}

See ”Color List Pigments” which describes howpigment uses a color list. The same principles apply when
using them withdensity.

Density Maps and Density Lists

In addition to specifying blended colors with a color map you may create a blend of densities using adensity -

map. The syntax for a density map is identical to a color map except you specify a density in each map entry
(and not a color).

The syntax fordensity map is as follows:

DENSITY_MAP:
density_map { DENSITY_MAP_BODY }

DENSITY_MAP_BODY:
DENSITY_MAP_IDENTIFIER | DENSITY_MAP_ENTRY...

DENSITY_MAP_ENTRY:
[Value DENSITY_BODY]

WhereValue is a float value between 0.0 and 1.0 inclusive and eachDENSITYBODY is anything which can
be inside adensity{...} statement. Thedensity keyword and{} braces need not be specified.

Note: the[] brackets are part of the actualDENSITYMAP ENTRY. They are not notational symbols denoting
optional parts. The brackets surround each entry in the density map.

There may be from 2 to 256 entries in the map.

Density maps may be nested to any level of complexity you desire. The densities in a map may have color maps
or density maps or any type of density you want.

Entire densities may also be used with the block patterns such aschecker, hexagon andbrick. For example...

density {
checker
density { Flame scale .8 }
density { Fire scale .5 }

}

6.2 Media 261

Note: in the case of block patterns thedensity wrapping is required around the density information.

A density map is also used with theaverage density type. See ”Average” for details.

You may declare and use density map identifiers but the only way to declare a density block pattern list is to
declare a density identifier for the entire density.

Multiple Density vs. Multiple Media

It is possible to have more than onemedia specified per object and it is legal to have more than onedensity per
media. The effects are quite different. Consider this example:

object {
MyObject
pigment { rgbf 1 }
interior {

media {
density { Some_Density }
density { Another_Density }

}
}

}

As the media is sampled, calculations are performed for each density pattern at each sample point. The re-
sulting samples are multiplied together. Suppose one density returnedrgb<.8,.8,.4> and the other returned
rgb<.25,.25,0>. The resulting color isrgb<.2,.2,0>.

Note: in areas where one density returns zero, it will wipe out the other density. The end result is that only
density areas which overlap will be visible. This is similar to a CSG intersection operation. Now consider

object {
MyObject
pigment { rgbf 1 }
interior {

media {
density { Some_Density }

}
media {

density { Another_Density }
}

}
}

In this case each media is computed independently. The resulting colors are added together. Suppose one
density and media returnedrgb<.8,.8,.4> and the other returnedrgb<.25,.25,0>. The resulting color
is rgb<1.05,1.05,.4>. The end result is that density areas which overlap will be especially bright and all
areas will be visible. This is similar to a CSG union operation. See the sample scenescenes\interior\media\
media4.pov for an example which illustrates this.

262 Interior & Media & Photons

6.3 Photons

6.3.1 Overview

The basic goal of this implementation of the photon map is to render true reflective and refractive caustics. The
photon map was first introduced by Henrik Wann Jensen (see Suggested Reading).

Photon mapping is a technique which uses a forward ray-tracing pre-processing step to render refractive and
reflective caustics realistically. This means that mirrors can reflect light rays and lenses can focus light.

Photon mapping works by shooting packets of light (photons) from light sources into the scene. The photons
are directed towards specific objects. When a photon hits an object after passing through (or bouncing off of)
the target object, the ray intersection is stored in memory. This data is later used to estimate the amount of light
contributed by reflective and refractive caustics.

Examples

Figure 6.5: Reflective caustics

This image shows refractive caustics from a sphere and a cylinder. Both use an index of refraction of1.2.
Also visible is a small amount of reflective caustics from the metal sphere, and also from the clear cylinder and
sphere.

Here we have three lenses and three light sources. The middle lens has photon mapping turned off. You can also
see some reflective caustics from the brass box (some light reflects and hits the blue box, other light bounces
through the nearest lens and is focused in the lower left corner of the image).

6.3.2 Using Photon Mapping in Your Scene

When designing a scene with photons, it helps to think of the scene objects in two categories. Objects in the first
category will show photon caustics when hit by photons. Objects in the second category cause photon caustics
by reflecting or refracting photons. Some objects may be in both categories, and some objects may be in neither
category.

Category 1 - Objects that show photon caustics

6.3 Photons 263

Figure 6.6: Photons used for lenses and caustics

By default, all objects are in the first category. Whenever a photon hits an object, the photon is stored and will
later be used to render caustics on that object. This means that, by default, caustics from photons can appear
on any surface. To speed up rendering, you can take objects out of this category. You do this with the line:
photons{collect off}. If you use this syntax, caustics from photons will not appear on the object. This will
save both memory and computational time during rendering.

Category 2 - Objects that cause photon caustics

By default, there are no objects in the second category. If you want your object to cause caustics, you need to
do two things. First, make your object into a ”target.” You do this with thetarget keyword. This enables light
sources to shoot photons at your object. Second, you need to specify if your object reflects photons, refracts
photons, or both. This is done with thereflection on andrefraction on keywords. To allow an object to
reflect and refract photons, you would use the following lines of code inside the object:

photons{
target
reflection on
refraction on

}

Generally speaking, you do not want an object to be in both categories. Most objects that cause photon caustics
do not themselves have much color or brightness. Usually they simply refract or reflect their surroundings. For
this reason, it is usually a waste of time to display photon caustics on such surfaces. Even if computed, the
effects from the caustics would be so dim that they would go unnoticed.

Sometimes, you may also wish to addphotons{collect off} to other clear or reflective objects, even if they
are not photon targets. Again, this is done to prevent unnecessary computation of caustic lighting.

Finally, you may wish to enable photon reflection and refraction for a surface, even if it is not a target. This
allows indirect photons (photons that have already hit a target and been reflected or refracted) to continue their
journey after hitting this object.

Photon Global Settings

global_photon_block:
photons {

264 Interior & Media & Photons

spacing <photon_spacing> | count <photons_to_shoot>

[gather <min_gather>, <max_gather>]
[media <max_steps> [,<factor>]]
[jitter <jitter_amount>]
[max_trace_level <photon_trace_level>]
[adc_bailout <photon_adc_bailout>]
[save_file "filename" | load_file "filename"]
[autostop <autostop_fraction>]
[expand_thresholds <percent_increase>, <expand_min>]
[radius <gather_radius>,<multiplier>,

<gather_radius_media>,<multiplier>]
}

All photons default values:

Global :
expand_min : 40
gather : 20, 100
jitter : 0.4
media : 0

Object :
collect : on
refraction : off
reflection : off
split_union : on
target : 1.0

Light_source:
area_light : off
refraction : off
reflection : off

To specify photon gathering and storage options you need to add a photons block to the globalsettings section
of your scene.

For example:

global_settings {
photons {

count 20000
autostop 0
jitter .4

}
}

The number of photons generated can be set using either the spacing or count keywords:

• If spacing is used, it specifies approximately the average distance between photons on surfaces. If you
cut the spacing in half, you will get four times as many surface photons, and eight times as many media
photons.

• If count is used, POV-Ray will shoot the approximately number of photons specified. The actual number
of photons that result from this will almost always be at least slightly different from the number specified.

6.3 Photons 265

Still, if you double the photonsto shoot value, then twice as many photons will be shot. If you cut the
value in half, then half the number of photons will be shot.

– It may be less, because POV shoots photons at a target object’s bounding box, which means that
some photons will miss the target object.

– On the other hand, may be more, because each time one object hits an object that has both reflection
and refraction, two photons are created (one for reflection and one for refraction).

– POV will attempt to compensate for these two factors, but it can only estimate how many photons
will actually be generated. Sometimes this estimation is rather poor, but the feature is still usable.

The keywordgather allows you to specify how many photons are gathered at each point during the regular
rendering step. The first number (default 20) is the minimum number to gather, while the second number
(default 100) is the maximum number to gather. These are good values and you should only use different ones
if you know what you are doing.

The keywordmedia turns on media photons. The parametermax steps specifies the maximum number of
photons to deposit over an interval. The optional parameter factor specifies the difference in media spacing
compared to surface spacing. You can increase factor and decrease maxsteps if too many photons are being
deposited in media.

The keywordjitter specifies the amount of jitter used in the sampling of light rays in the pre-processing step.
The default value is good and usually does not need to be changed.

The keywordsmax trace level andadc bailout allow you to specify these attributes for the photon-tracing
step. If you do not specify these, the values for the primary ray-tracing step will be used.

The keywordssave file andload file allow you to save and load photon maps. If you load a photon map, no
photons will be shot. The photon map file contains all surface (caustic) and media photons.

radius is used for gathering photons. The larger the radius, the longer it takes to gather photons. But if you
use too small of a radius, you might not get enough photons to get a good estimate. Therefore, choosing a good
radius is important. Normally POV-Ray looks through the photon map and uses some ad-hoc statistical analysis
to determine a reasonable radius. Sometimes it does a good job, sometimes it does not. The radius keyword lets
you override or adjust POV-Ray’s guess.

radius parameters (all are optional):

1. Manually set the gather radius for surface photons. If this is either zero or if you leave it out, POV-Ray
will analyze and guess.

2. Adjust the radius for surface photons by setting a multiplier. If POV-Ray, for example, is picking a radius
that you think is too big (render is too slow), you can use ”radius ,0.5” to lower the radius (multiply by
0.5) and speed up the render at the cost of quality.

3. Manually set the gather radius for media photons.

4. Adjust the radius for media photons by setting a multiplier.

The keywordsautostop andexpand thresholds will be explained later.

Shooting Photons at an Object

object_photon_block:
photons {

266 Interior & Media & Photons

[target [<spacing_multiplier>]]
[refraction on|off]
[reflection on|off]
[collect on|off]
[pass_through]

}

To shoot photons at an object, you need to tell POV that the object receives photons. To do this, create aphotons

{ } block within the object. For example:

object {
MyObject
photons {

target
refraction on
reflection on
collect off

}
}

In this example, the object both reflects and refracts photons. Either of these options could be turned off (by
specifying reflection off, for example). By using this, you can have an object with a reflective finish which does
not reflect photons for speed and memory reasons.

The keywordtarget makes this object a target.

The density of the photons can be adjusted by specifying thespacing multiplier. If, for example, you specify
a spacing multiplier of 0.5, then the spacing for photons hitting this object will be 1/2 of the distance of the
spacing for other objects.

Note: This means four times as many surface photons, and eight times as many media photons.

The keywordcollect off causes the object to ignore photons. Photons are neither deposited nor gathered on
that object.

The keywordpass through causes photons to pass through the objectunaffectedon their way to a target object.
Once a photon hits the target object, it will ignore thepass through flag. This is basically a photon version of the
no shadow keyword, with the exception that media within the object will still be affected by the photons (unless
that media specifies collect off). If you use theno shadow keyword, the object will be tagged aspass through

automatically. You can then turn offpass through if necessary by simply usingphotons { pass through off

}.

Note: Photons will not be shot at an object unless you specify thetarget keyword. Simply turning refraction
on will not suffice.

When shooting photons at a CSG-union, it may sometimes be of advantage to usesplit union off inside the
union. POV-Ray will be forced to shoot at the whole object, instead of splitting it up and shooting photons at its
compound parts.

Photons and Light Sources

light_photon_block:
photons {

[refraction on | off]

6.3 Photons 267

[reflection on | off]
[area_light]

}

Example:

light_source {
MyLight
photons {

refraction on
reflection on

}
}

Sometimes, you want photons to be shot from one light source and not another. In that case, you can turn photons
on for an object, but specifyphotons { reflection off refraction off } in the light source’s definition. You
can also turn off only reflection or only refraction for any light source.

Photons and Media

global_settings {
photons {

count 10000
media 100

}
}

Photons also interact fully with media. This means that volumetric photons are stored in scattering media. This
is enabled by using the keyword media within the photons block.

To store photons in media, POV deposits photons as it steps through the media during the photon-tracing phase
of the render. It will deposit these photons as it traces caustic photons, so the number of media photons is
dependent on the number of caustic photons. As a light ray passes through a section of media, the photons are
deposited, separated by approximately the same distance that separates surface photons.

You can specify a factor as a second optional parameter to the media keyword. If, for example, factor is set to
2.0, then photons will be spaced twice as far apart as they would otherwise have been spaced.

Sometimes, however, if a section of media is very large, using these settings could create a large number
of photons very fast and overload memory. Therefore, following the media keyword, you must specify the
maximum number of photons that are deposited for each ray that travels through each section of media. A
setting of 100 should probably work in most cases.

You can putcollect off into media to make that media ignore photons. Photons will neither be deposited nor
gathered in a media that is ignoring them. Photons will also not be gathered nor deposited in non-scattering
media. However, if multiple medias exist in the same space, and at least one does not ignore photons and is
scattering, then photons will be deposited in that interval and will be gathered for use with all media in that
interval.

6.3.3 Photons FAQ

I made an object with IOR 1.0 and the shadows look weird.

268 Interior & Media & Photons

If the borders of your shadows look odd when using photon mapping, do not be alarmed. This is an unfortunate
side-effect of the method. If you increase the density of photons (by decreasing spacing and gather radius) you
will notice the problem diminish. We suggest not using photons if your object does not cause much refraction
(such as with a window pane or other flat piece of glass or any objects with an IOR very close to 1.0).

My scene takes forever to render.

When POV-Ray builds the photon maps, it continually displays in the status bar the number of photons that
have been shot. Is POV-Ray stuck in this step and does it keep shooting lots and lots of photons?

yes

If you are shooting photons at an infinite object (like a plane), then you should expect this. Either be patient or
do not shoot photons at infinite objects.

Are you shooting photons at a CSG difference? Sometimes POV-Ray does a bad job creating bounding boxes
for these objects. And since photons are shot at the bounding box, you could get bad results. Try manually
bounding the object. You can also try the autostop feature (tryautostop 0). See the docs for more info on
autostop.

no

Does your scene have lots of glass (or other clear objects)? Glass is slow and you need to be patient.

My scene has polka dots but renders really quickly. Why?

You should increase the number of photons (or decrease the spacing).

The photons in my scene show up only as small, bright dots. How can I fix this?

The automatic calculation of the gather radius is probably not working correctly, most likely because there are
many photons not visible in your scene which are affecting the statistical analysis.

You can fix this by either reducing the number of photons that are in your scene but not visible to the camera
(which confuse the auto-computation), or by specifying the initial gather radius manually by using the keyword
radius. If you must manually specify a gather radius, it is usually best to also use spacing instead of count, and
then set radius and spacing to a 5:1 (radius:spacing) ratio.

Adding photons slowed down my scene a lot, and I see polka dots.

This is usually caused by having both high- and low-density photons in the same scene. The low density ones
cause polka dots, while the high density ones slow down the scene. It is usually best if the all photons are
on the same order of magnitude for spacing and brightness. Be careful if you are shooting photons objects
close to and far from a light source. There is an optional parameter to the target keyword which allows you to
adjust the spacing of photons at the target object. You may need to adjust this factor for objects very close to or
surrounding the light source.

I added photons, but I do not see any caustics.

When POV-Ray builds the photon maps, it continually displays in the status bar the number of photons that
have been shot. Did it show any photons being shot?

no

Try avoidingautostop, or you might want to bound your object manually.

Try increasing the number of photons (or decreasing the spacing).

yes

6.3 Photons 269

Were any photons stored (the number aftertotal in the rendering message as POV-Ray shoots photons)?

no

It is possible that the photons are not hitting the target object (because another object is between the light source
and the other object).

yes

The photons may be diverging more than you expect. They are probably there, but you cannot see them since
they are spread out too much

The base of my glass object is really bright.

Usecollect off with that object.

Will area lights work with photon mapping?

Photons do work with area lights. However, normally photon mapping ignores all area light options and treats
all light sources as point lights. If you would like photon mapping to use your area light options, you must
specify the ”arealight” keyword within thephotons { } block in your light source’s code. Doing this will not
increase the number of photons shot by the light source, but it might cause regular patterns to show up in the
rendered caustics (possibly splotchiness).

What do the stats mean?

In the stats,photons shot means how many light rays were shot from the light sources.photons stored means
how many photons are deposited on surfaces in the scene. If you turn on reflection and refraction, you could
get more photons stored than photons shot, since the each ray can get split into two.

6.3.4 Photon Tips

– Usecollect off in objects that photons do not hit. Just putphotons { collect off } in the ob-
ject’s definition.

– Usecollect off in glass objects.

– Useautostop unless it causes problems.

– A big tip is to make sure that all of the final densities of photons are of the same general magnitude.
You do not want spots with really high density photons and another area with really low density pho-
tons. You will always have some variation (which is a good thing), but having really big differences
in photon density is what causes some scenes to take many hours to render.

6.3.5 Advanced Techniques

Autostop

To understand theautostop option, you need to understand the way photons are shot from light sources. Photons
are shot in a spiral pattern with uniform angular density. Imagine a sphere with a spiral starting at one of the
poles and spiraling out in ever-increasing circles to the equator. Two angles are involved here. The first, phi, is
the how far progress has been made in the current circle of the spiral. The second, theta, is how far we are from
the pole to the equator. Now, imagine this sphere centered at the light source with the pole where the spiral

270 Interior & Media & Photons

Figure 6.7: Example of the photon autostop option

starts pointed towards the center of the object receiving photons. Now, photons are shot out of the light in this
spiral pattern.

Normally, POV does not stop shooting photons until the target object’s entire bounding box has been thoroughly
covered. Sometimes, however, an object is much smaller than its bounding box. At these times, we want to
stop shooting if we do a complete circle in the spiral without hitting the object. Unfortunately, some objects
(such as copper rings), have holes in the middle. Since we start shooting at the middle of the object, the photons
just go through the hole in the middle, thus fooling the system into thinking that it is done. To avoid this, the
autostop keyword lets you specify how far the system must go before this auto-stopping feature kicks in. The
value specified is a fraction of the object’s bounding box. Valid values are 0.0 through 1.0 (0% through 100%).
POV will continue to shoot photons until the spiral has exceeded this value or the bounding box is completely
covered. If a complete circle of photons fails to hit the target object after the spiral has passed the autostop
threshold, POV will then stop shooting photons.

Theautostop feature will also not kick in until at least one photon has hit the object. This allows you to use
autostop 0 even with objects that have holes in the middle.

Note:If the light source is within the object’s bounding box, the photons are shot in all directions from the light
source.

Adaptive Search Radius

Unless photons are interacting with media, POV-Ray uses an adaptive search radius while gathering photons. If
the minimum number of photons is not found in the original search radius, the radius is expanded and searched
again. Using this adaptive search radius can both decrease the amount of time it takes to render the image, and
sharpen the borders in the caustic patterns.

Sometimes this adaptive search technique can create unwanted artefacts at borders. To remove these artefacts,
a few thresholds are used, which can be specified byexpand thresholds. For example, if expanding the radius
increases the estimated density of photons by too much (threshold is percentincrease, default is 20%, or 0.2),
the expanded search is discarded and the old search is used instead. However, if too few photons are gathered
in the expanded search (expand min, default is 40), the new search will be used always, even if it means more
than a 20% increase in photon density.

6.3 Photons 271

Photons and Dispersion

When dispersion is specified for interior of a transparent object, photons will make use of that and show
”colored” caustics.

Saving and Loading Photon Maps

It is possible to save and load photon maps to speed up rendering. The photon map itself is view-independent,
so if you want to animate a scene that contains photons and you know the photon map will not change during
the animation, you can save it on the first frame and then load it for all subsequent frames.

To save the photon map, put the line

save_file "myfile.ph"

into thephotons { } block inside theglobal settings section.

Loading the photon map is the same, but withload file instead ofsave file. You cannot both load and save
a photon map in the POV file. If you load the photon map, it will load all of the photons. No photons will be
shot if the map is loaded from a file. All other options (such as gather radius) must still be specified in the POV
scene file and are not loaded with the photon map.

When can you safely re-use a saved photon map?

• Moving the camera isalwayssafe.

• Moving lights that do not cast photons isalwayssafe.

• Moving objects that do not have photons shot at them, that do not receive photons, and would not receive
photons in the new location isalwayssafe.

• Moving an object that recieves photons to a new location where it does not receive photons issometimes
safe.

• Moving an object to a location where it recieves photons isnot safe

• Moving an object that has photons shot at it isnot safe

• Moving a light that casts photons isnot safe.

• Changing the texture of an object that recieves photons is safe.

• Changing the texture of an object that has photons shot at it produces results that are not realistic, but can
be useful sometimes.

In general, changes to the scene geometry require photons to be re-shot. Changing the camera parameters or
changing the image resolution does not.

272 Interior & Media & Photons

Chapter 7

Include Files

The ”Standard Include File” section describes the include files that can be found in every standard distribution of
POV-Ray. It is supposed to be used as a reference for looking up things. It does not contain detailed explanations
on how scenes are written or how POV-Ray is used. It just explains all features, their syntax, applications, limits,
drawbacks, etc.

7.1 arrays.inc

This file contains macros for manipulating arrays.

Rand Array Item(Array, Stream). Randomly Picks an item from a 1D array.
Parameters:

• Array = The array from which to choose the item.

• Stream = A random number stream.

Resize Array(Array, NewSize). Resize a 1D array, retaining its contents.
Parameters:

• Array = The array to be resized.

• NewSize = The desired new size of the array.

Reverse Array(Array). Reverses the order of items in a 1D array.
Parameters:

• Array = The array to be reversed.

Sort Compare(Array, IdxA, IdxB). This macro is used by theSort Array() andSort Partial Array() macros.
The given macro works for 1D arrays of floats, but you can redefine it in your scene file for more complex
situations, arrays of vectors or multidimensional arrays for example. Just make sure your macro returns true if
the item at IdxA< the item at IdxB, and otherwise returns false.
Parameters:

• Array = The array containing the data being sorted.

274 Include Files

• IdxA, IdxB = The array offsets of the data elements being compared.

Sort Swap Data(Array, IdxA, IdxB). This macro is used by theSort Array() and Sort Partial Array()

macros. The given macro works for 1D arrays only, but you can redefine it in your scene file to handle
multidimensional arrays if needed. The only requirement is that your macro swaps the data at IdxA with that at
IdxB.
Parameters:

• Array = The array containing the data being sorted.

• IdxA, IdxB = The array offsets of the data elements being swapped.

Sort Array(Array). This macro sorts a 1D array of floats, though you can redefine theSort Compare() and
Sort Swap Data() macros to handle multidimensional arrays and other data types.
Parameters:

• Array = The array to be sorted.

Sort Partial Array(Array, FirstInd, LastInd). This macro is likeSort Array(), but sorts a specific range
of an array instead of the whole array.
Parameters:

• Array = The array to be sorted.

• FirstInd, LastInd = The start and end indices of the range being sorted.

7.2 chars.inc

This file includes 26 upper-case letter and other characters defined as objects. The size of all characters is 4 * 5
* 1. The center of the bottom side of a character face is set to the origin, so you may need to translate a character
appropriately before rotating it about the x or z axes.

Letters:
char A, char B, char C,

char D, char E, char F,

char G, char H, char I,

char J, char K, char L,

char M, char N, char O,

char P, char Q, char R,

char S, char T, char U,

char V, char W, char X,

char Y, char Z

Numerals:
char 0, char 1,

char 2, char 3,

char 4, char 5,

char 6, char 7,

char 8, char 9

7.3 colors.inc 275

Symbols:
char Dash, char Plus, char ExclPt,

char Amps, char Num, char Dol,

char Perc, char Astr, char Hat,

char LPar, char RPar, char AtSign,

char LSqu, char RSqu

Usage:

#include "chars.inc"
.
.
object {char_A ...}

7.3 colors.inc

This file is mainly a list of predefined colors, but also has a few color manipulation macros.

7.3.1 Predefined colors

Color Red Color Green Color Blue

Color Yellow Color Cyan Color Magenta

Color Clear Color White Color Black

Table 7.1: Primary colors

7.3.2 Color macros

In POV-Ray all colors are handled in RGB color space with a component for the amount of red, green and blue
light. However, not everybody thinks this is the most intuitive way to specify colors. For your convenience
there are macros included in colors.inc that converts between a few different types of color spaces.
The three supported color spaces:

• RGB = < Red, Green, Blue, Filter, Transmit>

• HSL = < Hue, Saturation, Lightness, Filter, Transmit>

• HSV = < Hue, Saturation, Value, Filter, Transmit>

276 Include Files

Color Gray05 Color Gray10 Color Gray15

Color Gray20 Color Gray25 Color Gray30

Color Gray35 Color Gray40 Color Gray45

Color Gray50 Color Gray55 Color Gray60

Color Gray65 Color Gray70 Color Gray75

Color Gray80 Color Gray85 Color Gray90

Color Gray95

Table 7.2: Shades of gray...from 5% to 95%, in 5% increments

CHSL2RGB(Color). Converts a color given inHSL space to one inRGB space.
Parameters:

• Color = HSL color to be converted.

CRGB2HSL(Color). Converts a color given inRGB space to one inHSL space.
Parameters:

• Color = RGB color to be converted.

CHSV2RGB(Color). Converts a color given inHSV space to one inRGB space.
Parameters:

• Color = HSV color to be converted.

CRGB2HSV(Color). Converts a color given inRGB space to one inHSV space.
Parameters:

• Color = RGB color to be converted.

Convert Color(SourceType, DestType, Color). Converts a color from one color space to another. Color spaces
available are:RGB, HSL, andHSV.

7.3 colors.inc 277

Color DimGray Color Gray Color LightGray

Color VLightGray Color Aquamarine Color BlueViolet

Color Brown Color CadetBlue Color Coral

Color CornflowerBlue Color DarkGreen Color DarkOliveGreen

Color DarkOrchid Color DarkSlateBlue Color DarkSlateGray

Color DarkTurquoise Color Firebrick Color ForestGreen

Color Gold Color Goldenrod Color GreenYellow

Color IndianRed Color Khaki Color LightBlue

Color LightSteelBlue Color LimeGreen Color Maroon

Color MediumAquamarine Color MediumBlue Color MediumForestGreen

Color MediumGoldenrod Color MediumOrchid Color MediumSeaGreen

Table 7.3: Misc. colors - plate 1

278 Include Files

Color MediumSlateBlue Color MediumSpringGreen Color MediumTurquoise

Color MediumVioletRed Color MidnightBlue Color Navy

Color NavyBlue Color Orange Color OrangeRed

Color Orchid Color PaleGreen Color Pink

Color Plum Color Salmon Color SeaGreen

Color Sienna Color SkyBlue Color SlateBlue

Color SpringGreen Color SteelBlue Color Tan

Color Thistle Color Turquoise Color Violet

Color VioletRed Color Wheat Color YellowGreen

Color SummerSky Color RichBlue Color Brass

Color Copper Color Bronze Color Bronze2

Table 7.4: Misc. colors - plate 2

7.3 colors.inc 279

Color Silver Color BrightGold Color OldGold

Color Feldspar Color Quartz Color Mica

Color NeonPink Color DarkPurple Color NeonBlue

Color CoolCopper Color MandarinOrange Color LightWood

Color MediumWood Color DarkWood Color SpicyPink

Color SemiSweetChoc Color BakersChoc Color Flesh

Color NewTan Color NewMidnightBlue Color VeryDarkBrown

Color DarkBrown Color DarkTan Color GreenCopper

Color DkGreenCopper Color DustyRose Color HuntersGreen

Color Scarlet Color MedPurple Color Light Purple

Color Very Light Purple

Table 7.5: Misc. colors - plate 3

280 Include Files

Parameters:

• SourceType = Color space of input color.

• DestType = Desired output color space.

• Color = Color to be converted, in SourceType color space.

7.4 consts.inc

This file defines a number of constants, including things such as mapping types and ior definitions.

7.4.1 Vector constants

o = < 0, 0, 0> (origin)

xy = < 1, 1, 0>

yz = < 0, 1, 1>

xz = < 1, 0, 1>

7.4.2 Map type constants

Plane Map = 0

Sphere Map = 1

Cylinder Map = 2

Torus Map = 5

7.4.3 Interpolation type constants

Bi = 2

Norm = 4

7.4.4 Fog type constants

Uniform Fog = 1

Ground Fog = 2

7.4 consts.inc 281

7.4.5 Focal blur hexgrid constants

Hex Blur1 = 7

Hex Blur2 = 19

Hex Blur3 = 37

7.4.6 IORs

Air Ior = 1.000292

Amethyst Ior = 1.550

Apatite Ior = 1.635

Aquamarine Ior = 1.575

Beryl Ior = 1.575

Citrine Ior = 1.550

Crown Glass Ior = 1.51

Corundum Ior = 1.765

Diamond Ior = 2.47

Emerald Ior = 1.575

Flint Glass Ior = 1.71

Flint Glass Heavy Ior = 1.8

Flint Glass Medium Ior = 1.63

Flint Glass Light Ior = 1.6

Fluorite Ior = 1.434

Gypsum Ior = 1.525

Ice Ior = 1.31

Plexiglas Ior = 1.5

Quartz Ior = 1.550

Quartz Glass Ior = 1.458

Ruby Ior = 1.765

Salt Ior = 1.544

Sapphire Ior = 1.765

Topaz Ior = 1.620

Tourmaline Ior = 1.650

Water Ior = 1.33

282 Include Files

7.4.7 Dispersion amounts

Quartz Glass Dispersion = 1.012

Water Dispersion = 1.007

Diamond Dispersion = 1.035

Sapphire Dispersion = 1.015

7.4.8 Scattering media type constants

ISOTROPIC SCATTERING = 1;

MIE HAZY SCATTERING = 2;

MIE MURKY SCATTERING = 3;

RAYLEIGH SCATTERING = 4;

HENYEY GREENSTEIN SCATTERING = 5;

7.5 debug.inc

This file contains a set of macros designed to make debugging easier. It also functions like the old debug.inc,
with the exception that you have to call the DebugInc Stack() macro to get the include stack output.

Debug Inc Stack(). Activates include file tracking, each included file will send a debug message when it is
included.
Parameters: None.

Set Debug(Bool). Activate or deactivate the debugging macros.
Parameters:

• Bool = A boolean (true/false) value.

Debug Message(Str). If debugging, sends the message to the debug stream.
Parameters:

• Str = The desired message.

Debug(Condition, Message)

Warning(Condition, Message)

Error(Condition, Message)

These macros send a message to the #debug, #warning, and #error streams depending on a given condition.
They are just a shortcut for an#if()...#end block, intended to make scenes easier to read.
Parameters:

• Condition = Any boolean expression.

• Message = The message to be sent if Condition evaluates as ”true”.

7.6 finish.inc 283

7.6 finish.inc

This file contains some predefined finishes.

Dull

Dull, with a large, soft specular highlight.

Shiny

Shiny, with a small, tight specular highlight.

Glossy

Very shiny with very tight specular highlights and a fair amount of reflection.

Phong Dull

Dull, with a large, soft phong highlight.

Phong Shiny

Shiny, with a small, tight phong highlight.

Phong Glossy

Very shiny with very tight phong highlights and a fair amount of reflection.

Luminous

A glowing surface, unaffected by lightsources.

Mirror

A perfectly reflective surface, no highlights or shading.

7.7 functions.inc

This include file contains interfaces to internal functions as well as several predefined functions. The ID’s used
to access the internal functions through calls to ”internal(XX)”, are not guaranteed to stay the same between
POV-Ray versions, so users are encouraged to use the functions declared here.

The number of required parameters and what they control are also given in the include file, this chapter gives
more information.
For starter values of the parameters, check the ”iinternal.pov” demo file.

Syntax to be used:

#include "functions.inc"
isosurface {

function { f_torus_gumdrop(x,y,z, P0) }
...

}

pigment {
function { f_cross_ellipsoids(x,y,z, P0, P1, P2, P3) }
COLOR_MAP ...

)

Some special parameters are found in several of these functions. These are described in the next section and
later referred to as ”Cross section type”, ”Field Strength”, ”Field Limit”, ”SOR” parameters.

284 Include Files

7.7.1 Common Parameters

Cross Section Type:
In the helixes and spiral functions, the 9th parameter is the cross section type.
Some shapes are:

0 :
square

0.0 to 1.0 :
rounded squares

1 :
circle

1.0 to 2.0 :
rounded diamonds

2 :
diamond

2.0 to 3.0 :
partially concave diamonds

3 :
concave diamond

Field Strength

The numerical value at a point in space generated by the function is multiplied by the Field Strength. The set of
points where the function evaluates to zero are unaffected by any positive value of this parameter, so if you are
just using the function on its own with threshold = 0, the generated surface is still the same.
In some cases, the field strength has a considerable effect on the speed and accuracy of rendering the surface. In
general, increasing the field strength speeds up the rendering, but if you set the value too high the surface starts
to break up and may disappear completely.
Setting the field strength to a negative value produces the inverse of the surface, like making the function
negative.

Field Limit

This will not make any difference to the generated surface if you are using threshold that is within the field limit
(and will kill the surface completely if the threshold is greater than the field limit). However, it may make a
huge difference to the rendering times.
If you use the function to generate a pigment, then all points that are a long way from the surface will have the
same color, the color that corresponds to the numerical value of the field limit.

SOR Switch

If greater than zero, the curve is swept out as a surface of revolution (SOR).
If the value is zero or negative, the curve is extruded linearly in the Z direction.

7.7 functions.inc 285

SOR Offset

If the SOR switch is on, then the curve is shifted this distance in the X direction before being swept out.

SOR Angle

If the SOR switch is on, then the curve is rotated this number of degrees about the Z axis before being swept
out.

Invert Isosurface

Sometimes, when you render a surface, you may find that you get only the shape of the container. This could
be caused by the fact that some of the build in functions are defined inside out.
We can invert the isosurface by negating the whole function:
-(function) - threshold

7.7.2 Internal Functions

Here is a list of the internal functions in the order they appear in the ”functions.inc” include file

f algbr cyl1(x,y,z, P0, P1, P2, P3, P4). An algebraic cylinder is what you get if you take any 2d curve and
plot it in 3d. The 2d curve is simply extruded along the third axis, in this case the z axis.
With the SOR Switch switched on, the figure-of-eight curve will be rotated around the Y axis instead of being
extruded along the Z axis.

• P0 : Field Strength

• P1 : Field Limit

• P2 : SOR Switch

• P3 : SOR Offset

• P4 : SOR Angle

f algbr cyl2(x,y,z, P0, P1, P2, P3, P4). An algebraic cylinder is what you get if you take any 2d curve and
plot it in 3d. The 2d curve is simply extruded along the third axis, in this case the z axis.
With the SOR Switch switched on, the cross section curve will be rotated around the Y axis instead of being
extruded along the Z axis.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Field Limit

• P2 : SOR Switch

• P3 : SOR Offset

• P4 : SOR Angle

286 Include Files

f algbr cyl3(x,y,z, P0, P1, P2, P3, P4). An algebraic cylinder is what you get if you take any 2d curve and
plot it in 3d. The 2d curve is simply extruded along the third axis, in this case the Z axis.
With the SOR Switch switched on, the cross section curve will be rotated around the Y axis instead of being
extruded along the Z axis.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Field Limit

• P2 : SOR Switch

• P3 : SOR Offset

• P4 : SOR Angle

f algbr cyl4(x,y,z, P0, P1, P2, P3, P4). An algebraic cylinder is what you get if you take any 2d curve and
plot it in 3d. The 2d curve is simply extruded along the third axis, in this case the z axis.
With the SOR Switch switched on, the cross section curve will be rotated around the Y axis instead of being
extruded along the Z axis.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Field Limit

• P2 : SOR Switch

• P3 : SOR Offset

• P4 : SOR Angle

f bicorn(x,y,z, P0, P1). The surface is a surface of revolution.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Scale. The mathematics of this surface suggest that the shape should be different for different values
of this parameter. In practice the difference in shape is hard to spot. Setting the scale to 3 gives a surface
with a radius of about 1 unit

f bifolia(x,y,z, P0, P1). The bifolia surface looks something like the top part of a a paraboloid bounded
below by another paraboloid.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Scale. The surface is always the same shape. Changing this parameter has the same effect as adding
a scale modifier. Setting the scale to 1 gives a surface with a radius of about 1 unit

f blob(x,y,z, P0, P1, P2, P3, P4). This function generates blobs that are similar to a CSG blob with two
spherical components. This function only seems to work with negative threshold settings.

• P0 : X distance between the two components

• P1 : Blob strength of component 1

• P2 : Inverse blob radius of component 1

• P3 : Blob strength of component 2

• P4 : Inverse blob radius of component 2

f blob2(x,y,z, P0, P1, P2, P3). The surface is similar to a CSG blob with two spherical components.

7.7 functions.inc 287

• P0 : Separation. One blob component is at the origin, and the other is this distance away on the X axis

• P1 : Inverse size. Increase this to decrease the size of the surface

• P2 : Blob strength

• P3 : Threshold. Setting this parameter to 1 and the threshold to zero has exactly the same effect as setting
this parameter to zero and the threshold to -1

f boy surface(x,y,z, P0, P1). For this surface, it helps if the field strength is set low, otherwise the surface has
a tendency to break up or disappear entirely. This has the side effect of making the rendering times extremely
long.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Scale. The surface is always the same shape. Changing this parameter has the same effect as adding
a scale modifier

f comma(x,y,z, P0). The ’comma’ surface is very much like a comma-shape.

• P0 : Scale

f cross ellipsoids(x,y,z, P0, P1, P2, P3). The ’cross ellipsoids’ surface is like the union of three crossed
ellipsoids, one oriented along each axis.

• P0 : Eccentricity. When less than 1, the ellipsoids are oblate, when greater than 1 the ellipsoids are prolate,
when zero the ellipsoids are spherical (and hence the whole surface is a sphere)

• P1 : Inverse size. Increase this to decrease the size of the surface

• P2 : Diameter. Increase this to increase the size of the ellipsoids

• P3 : Threshold. Setting this parameter to 1 and the threshold to zero has exactly the same effect as setting
this parameter to zero and the threshold to -1

f crossed trough(x,y,z, P0)

• P0 : Field Strength (Needs a negative field strength or a negated function)

f cubic saddle(x,y,z, P0). For this surface, it helps if the field strength is set quite low, otherwise the surface
has a tendency to break up or disappear entirely.

• P0 : Field Strength (Needs a negative field strength or a negated function)

f cushion(x,y,z, P0)

• P0 : Field Strength (Needs a negative field strength or a negated function)

f devils curve(x,y,z, P0)

• P0 : Field Strength (Needs a negative field strength or a negated function)

f devils curve 2d(x,y,z, P0, P1, P2, P3, P4, P5). Thef devils curve 2d curve can be extruded along the
z axis, or using the SOR parameters it can be made into a surface of revolution. The X and Y factors control the
size of the central feature.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : X factor

• P2 : Y factor

288 Include Files

• P3 : SOR Switch

• P4 : SOR Offset

• P5 : SOR Angle

f dupin cyclid(x,y,z, P0, P1, P2, P3, P4, P5)

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Major radius of torus

• P2 : Minor radius of torus

• P3 : X displacement of torus

• P4 : Y displacement of torus

• P5 : Radius of inversion

f ellipsoid(x,y,z, P0, P1, P2). f ellipsoid generates spheres and ellipsoids. Needs ”threshold 1”.
Setting these scaling parameters to 1/n gives exactly the same effect as performing a scale operation to increase
the scaling by n in the corresponding direction.

• P0 : X scale (inverse)

• P1 : Y scale (inverse)

• P2 : Z scale (inverse)

f enneper(x,y,z, P0)

• P0 : Field Strength (Needs a negative field strength or a negated function)

f flange cover(x,y,z, P0, P1, P2, P3)

• P0 : Spikiness. Set this to very low values to increase the spikes. Set it to 1 and you get a sphere

• P1 : Inverse size. Increase this to decrease the size of the surface. (The other parameters also drastically
affect the size, but this parameter has no other effects)

• P2 : Flange. Increase this to increase the flanges that appear between the spikes. Set it to 1 for no flanges

• P3 : Threshold. Setting this parameter to 1 and the threshold to zero has exactly the same effect as setting
this parameter to zero and the threshold to -1

f folium surface(x,y,z, P0, P1, P2). A ’folium surface’ looks something like a paraboloid glued to a plane.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Neck width factor - the larger you set this, the narrower the neck where the paraboloid meets the
plane

• P2 : Divergence - the higher you set this value, the wider the paraboloid gets

f folium surface 2d(x,y,z, P0, P1, P2, P3, P4, P5). Thef folium surface 2d curve can be rotated around
the X axis to generate the same 3d surface as thef folium surface, or it can be extruded in the Z direction (by
switching the SOR switch off)

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Neck width factor - same as the 3d surface if you are revolving it around the Y axis

7.7 functions.inc 289

• P2 : Divergence - same as the 3d surface if you are revolving it around the Y axis

• P3 : SOR Switch

• P4 : SOR Offset

• P5 : SOR Angle

f glob(x,y,z, P0). One part of this surface would actually go off to infinity if it were not restricted by the
containedby shape.

• P0 : Field Strength (Needs a negative field strength or a negated function)

f heart(x,y,z, P0)

• P0 : Field Strength (Needs a negative field strength or a negated function)

f helical torus(x,y,z, P0, P1, P2, P3, P4, P5, P6, P7, P8, P9). With some sets of parameters, it looks
like a torus with a helical winding around it. The winding optionally has grooves around the outside.

• P0 : Major radius

• P1 : Number of winding loops

• P2 : Twistiness of winding. When zero, each winding loop is separate. When set to one, each loop twists
into the next one. When set to two, each loop twists into the one after next

• P3 : Fatness of winding?

• P4 : Threshold. Setting this parameter to 1 and the threshold to zero has s similar effect as setting this
parameter to zero and the threshold to 1

• P5 : Negative minor radius? Reducing this parameter increases the minor radius of the central torus.
Increasing it can make the torus disappear and be replaced by a vertical column. The value at which the
surface switches from one form to the other depends on several other parameters

• P6 : Another fatness of winding control?

• P7 : Groove period. Increase this for more grooves

• P8 : Groove amplitude. Increase this for deeper grooves

• P9 : Groove phase. Set this to zero for symmetrical grooves

f helix1(x,y,z, P0, P1, P2, P3, P4, P5, P6)

• P0 : Number of helixes - e.g. 2 for a double helix

• P1 : Period - is related to the number of turns per unit length

• P2 : Minor radius (major radius> minor radius)

• P3 : Major radius

• P4 : Shape parameter. If this is greater than 1 then the tube becomes fatter in the y direction

• P5 : Cross section type

• P6 : Cross section rotation angle (degrees)

f helix2(x,y,z, P0, P1, P2, P3, P4, P5, P6). Needs a negated function

• P0 : Not used

290 Include Files

• P1 : Period - is related to the number of turns per unit length

• P2 : Minor radius (minor radius> major radius)

• P3 : Major radius

• P4 : Not used

• P5 : Cross section type

• P6 : Cross section rotation angle (degrees)

f hex x(x,y,z, P0). This creates a grid of hexagonal cylinders stretching along the z-axis. The fatness is
controlled by the threshold value. When this value equals 0.8660254 or cos(30) the sides will touch, because
this is the distance between centers. Negating the function will inverse the surface and create a honey-comb
structure. This function is also useful as pigment function.

• P0 : No effect (but the syntax requires at least one parameter)

f hex y(x,y,z, P0). This is function forms a lattice of infinite boxes stretching along the z-axis. The fatness is
controlled by the threshold value. These boxes are rotated 60 degrees around centers, which are 0.8660254 or
cos(30) away from each other. This function is also useful as pigment function.

• P0 : No effect (but the syntax requires at least one parameter)

f hetero mf(x,y,z, P0, P1, P2, P3, P4, P5). f hetero mf (x,0,z) makes multifractal height fields and pat-
terns of ’1/f’ noise
’Multifractal’ refers to their characteristic of having a fractal dimension which varies with altitude. Built from
summing noise of a number of frequencies, the heteromf parameters determine how many, and which frequen-
cies are to be summed.
An advantage to using these instead of a heightfield {} from an image (a number of height field programs
output multifractal types of images) is that the heteromf function domain extends arbitrarily far in the x and
z directions so huge landscapes can be made without losing resolution or having to tile a height field. Other
functions of interest aref ridged mf andf ridge.

• P0 : H is the negative of the exponent of the basis noise frequencies used in building these functions (each
frequency f’s amplitude is weighted by the factor f - H). In landscapes, and many natural forms, the
amplitude of high frequency contributions are usually less than the lower frequencies.
When H is 1, the fractalization is relatively smooth (”1/f noise”).
As H nears 0, the high frequencies contribute equally with low frequencies as in ”white noise”.

• P1 : Lacunarity’ is the multiplier used to get from one ’octave’ to the next. This parameter affects the size
of the frequency gaps in the pattern. Make this greater than 1.0

• P2 : Octaves is the number of different frequencies added to the fractal. Each ’Octave’ frequency is the
previous one multiplied by ’Lacunarity’, so that using a large number of octaves can get into very high
frequencies very quickly.

• P3 : Offset is the ’base altitude’ (sea level) used for the heterogeneous scaling

• P4 : T scales the ’heterogeneity’ of the fractal. T=0 gives ’straight 1/f’ (no heterogeneous scaling). T=1
suppresses higher frequencies at lower altitudes

• P5 : Generator type used to generate the noise3d. 0, 1, 2 and 3 are legal values.

f hunt surface(x,y,z, P0)

• P0 : Field Strength (Needs a negative field strength or a negated function)

7.7 functions.inc 291

f hyperbolic torus(x,y,z, P0, P1, P2)

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Major radius: separation between the centers of the tubes at the closest point

• P2 : Minor radius: thickness of the tubes at the closest point

f isect ellipsoids(x,y,z, P0, P1, P2, P3). The ’isect ellipsoids’ surface is like the intersection of three
crossed ellipsoids, one oriented along each axis.

• P0 : Eccentricity. When less than 1, the ellipsoids are oblate, when greater than 1 the ellipsoids are prolate,
when zero the ellipsoids are spherical (and hence the whole surface is a sphere)

• P1 : Inverse size. Increase this to decrease the size of the surface

• P2 : Diameter. Increase this to increase the size of the ellipsoids

• P3 : Threshold. Setting this parameter to 1 and the threshold to zero has exactly the same effect as setting
this parameter to zero and the threshold to -1

f kampyle of eudoxus(x,y,z, P0, P1, P2). The ’kampyle of eudoxus’ is like two infinite planes with a dimple
at the center.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Dimple: When zero, the two dimples punch right through and meet at the center. Non-zero values
give less dimpling

• P2 : Closeness: Higher values make the two planes become closer

f kampyle of eudoxus 2d(x,y,z, P0, P1, P2, P3, P4, P5)The 2d curve that generates the above surface can
be extruded in the Z direction or rotated about various axes by using the SOR parameters.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Dimple: When zero, the two dimples punch right through and meet at the center. Non-zero values
give less dimpling

• P2 : Closeness: Higher values make the two planes become closer

• P3 : SOR Switch

• P4 : SOR Offset

• P5 : SOR Angle

f klein bottle(x,y,z, P0)

• P0 : Field Strength (Needs a negative field strength or a negated function)

f kummer surface v1(x,y,z, P0). The Kummer surface consists of a collection of radiating rods.

• P0 : Field Strength (Needs a negative field strength or a negated function)

f kummer surface v2(x,y,z, P0, P1, P2, P3). Version 2 of the kummer surface only looks like radiating rods
when the parameters are set to particular negative values. For positive values it tends to look rather like a
superellipsoid.

• P0 : Field Strength (Needs a negative field strength or a negated function)

292 Include Files

• P1 : Rod width (negative): Setting this parameter to larger negative values increases the diameter of the
rods

• P2 : Divergence (negative): Setting this number to -1 causes the rods to become approximately cylindrical.
Larger negative values cause the rods to become fatter further from the origin. Smaller negative numbers
cause the rods to become narrower away from the origin, and have a finite length

• P3 : Influences the length of half of the rods. Changing the sign affects the other half of the rods. 0 has
no effect

f lemniscate of gerono(x,y,z, P0). The ”Lemniscate of Gerono” surface is an hourglass shape. Two
teardrops with their ends connected.

• P0 : Field Strength (Needs a negative field strength or a negated function)

f lemniscate of gerono 2d(x,y,z, P0, P1, P2, P3, P4, P5). The 2d version of the Lemniscate can be ex-
truded in the Z direction, or used as a surface of revolution to generate the equivalent of the 3d version, or
revolved in different ways.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Size: increasing this makes the 2d curve larger and less rounded

• P2 : Width: increasing this makes the 2d curve fatter

• P3 : SOR Switch

• P4 : SOR Offset

• P5 : SOR Angle

f mesh1(x,y,z, P0, P1, P2, P3, P4) The overall thickness of the threads is controlled by the isosurface
threshold, not by a parameter. If you render a mesh1 with zero threshold, the threads have zero thickness
and are therefore invisible. Parameters P2 and P4 control the shape of the thread relative to this threshold
parameter.

• P0 : Distance between neighboring threads in the x direction

• P1 : Distance between neighboring threads in the z direction

• P2 : Relative thickness in the x and z directions

• P3 : Amplitude of the weaving effect. Set to zero for a flat grid

• P4 : Relative thickness in the y direction

f mitre(x,y,z, P0). The ’Mitre’ surface looks a bit like an ellipsoid which has been nipped at each end with a
pair of sharp nosed pliers.

• P0 : Field Strength (Needs a negative field strength or a negated function)

f nodal cubic(x,y,z, P0). The ’Nodal Cubic’ is something like what you would get if you were to extrude the
Stophid2D curve along the X axis and then lean it over.

• P0 : Field Strength (Needs a negative field strength or a negated function)

f noise3d(x,y,z)

f noise generator(x,y,z, P0)

• P0 : Noise generator number

7.7 functions.inc 293

f odd(x,y,z, P0)

• P0 : Field Strength (Needs a negative field strength or a negated function)

f ovals of cassini(x,y,z, P0, P1, P2, P3). The Ovals of Cassini are a generalization of the torus shape.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Major radius - like the major radius of a torus

• P2 : Filling. Set this to zero, and you get a torus. Set this to a higher value and the hole in the middle
starts to heal up. Set it even higher and you get an ellipsoid with a dimple

• P3 : Thickness. The higher you set this value, the plumper is the result

f paraboloid(x,y,z, P0). This paraboloid is the surface of revolution that you get if you rotate a parabola
about the Y axis.

• P0 : Field Strength (Needs a negative field strength or a negated function)

f parabolic torus(x,y,z, P0, P1, P2)

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Major radius

• P2 : Minor radius

f ph(x,y,z) = atan2(sqrt(x*x + z*z), y)
When used alone, the ”PH” function gives a surface that consists of all points that are at a particular latitude,
i.e. a cone. If you use a threshold of zero (the default) this gives a cone of width zero, which is invisible. Also
look atf th andf r

f pillow(x,y,z, P0)

• P0 : Field Strength

f piriform(x,y,z, P0). The piriform surface looks rather like half a lemniscate.

• P0 : Field Strength

f piriform 2d(x,y,z, P0, P1, P2, P3, P4, P5, P6). The 2d version of the ”Piriform” can be extruded in the
Z direction, or used as a surface of revolution to generate the equivalent of the 3d version.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Size factor 1: increasing this makes the curve larger

• P2 : Size factor 2: making this less negative makes the curve larger but also thinner

• P3 : Fatness: increasing this makes the curve fatter

• P4 : SOR Switch

• P5 : SOR Offset

• P6 : SOR Angle

f poly4(x,y,z, P0, P1, P2, P3, P4). This f poly4 can be used to generate the surface of revolution of any
polynomial up to degree 4.
To put it another way: If we call the parameters A, B, C, D, E; then this function generates the surface of
revolution formed by revolving ”x = A + By + Cy2 + Dy3 + Ey4” around the Y axis.

294 Include Files

• P0 : Constant

• P1 : Y coefficient

• P2 : Y2 coefficient

• P3 : Y3 coefficient

• P4 : Y4 coefficient

f polytubes(x,y,z, P0, P1, P2, P3, P4, P5). The ’Polytubes’ surface consists of a number of tubes. Each
tube follows a 2d curve which is specified by a polynomial of degree 4 or less. If we look at the parameters,
then this function generates ”P0” tubes which all follow the equation ” x = P1 + P2y + P3y2 + P4y3 + P5y4 ”
arranged around the Y axis.
This function needs a positive threshold (fatness of the tubes).

• P0 : Number of tubes

• P1 : Constant

• P2 : Y coefficient

• P3 : Y2 coefficient

• P4 : Y3 coefficient

• P5 : Y4 coefficient

f quantum(x,y,z, P0). It resembles the shape of the electron density cloud for one of the d orbitals.

• P0 : Not used, but required

f quartic paraboloid(x,y,z, P0). The ’Quartic Paraboloid’ is similar to a paraboloid, but has a squarer shape.

• P0 : Field Strength (Needs a negative field strength or a negated function)

f quartic saddle(x,y,z, P0). The ’Quartic saddle’ is similar to a saddle, but has a squarer shape.

• P0 : Field Strength

f quartic cylinder(x,y,z, P0, P1, P2). The ’Quartic cylinder’ looks a bit like a cylinder that is swallowed
an egg.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Diameter of the ”egg”

• P2 : Controls the width of the tube and the vertical scale of the ”egg”

f r(x,y,z) = sqrt(x*x + y*y + z*z)
When used alone, the ”R” function gives a surface that consists of all the points that are a specific distance
(threshold value) from the origin, i.e. a sphere. Also look atf ph andf th

f ridge(x,y,z, P0, P1, P2, P3, P4, P5). This function is mainly intended for modifying other surfaces as
you might use a height field or to use as pigment function. Other functions of interest aref hetero mf and
f ridged mf.

• P0 : Lambda

• P1 : Octaves

• P2 : Omega

7.7 functions.inc 295

• P3 : Offset

• P4 : Ridge

• P5 : Generator type used to generate the noise3d. 0, 1, 2 and 3 are legal values.

f ridged mf(x,y,z, P0, P1, P2, P3, P4, P5). The ”Ridged Multifractal” surface can be used to create mul-
tifractal height fields and patterns. ’Multifractal’ refers to their characteristic of having a fractal dimension
which varies with altitude. They are built from summing noise of a number of frequencies. The fridgedmf
parameters determine how many, and which frequencies are to be summed, and how the different frequencies
are weighted in the sum.
An advantage to using these instead of aheight field{} from an image is that the ridgedmf function domain
extends arbitrarily far in the x and z directions so huge landscapes can be made without losing resolution or
having to tile a height field. Other functions of interest aref hetero mf andf ridge.

• P0 : H is the negative of the exponent of the basis noise frequencies used in building these functions (each
frequency f’s amplitude is weighted by the factor fE- H). When H is 1, the fractalization is relatively
smooth. As H nears 0, the high frequencies contribute equally with low frequencies

• P1 : Lacunarity is the multiplier used to get from one ”octave” to the next in the ”fractalization”.
This parameter affects the size of the frequency gaps in the pattern. (Use values greater than 1.0)

• P2 : Octaves is the number of different frequencies added to the fractal. Each octave frequency is the
previous one multiplied by ”Lacunarity”. So, using a large number of octaves can get into very high
frequencies very quickly

• P3 : Offset gives a fractal whose fractal dimension changes from altitude to altitude. The high frequencies
at low altitudes are more damped than at higher altitudes, so that lower altitudes are smoother than higher
areas

• P4 : Gain weights the successive contributions to the accumulated fractal result to make creases stick up
as ridges

• P5 : Generator type used to generate the noise3d. 0, 1, 2 and 3 are legal values.

f rounded box(x,y,z, P0, P1, P2, P3). The Rounded Box is defined in a cube from<-1, -1, -1> to <1, 1,
1>. By changing the ” Scale” parameters, the size can be adjusted, without affecting the Radius of curvature.

• P0 : Radius of curvature. Zero gives square corners, 0.1 gives corners that match ”sphere{0, 0.1}”

• P1 : Scale x

• P2 : Scale y

• P3 : Scale z

f sphere(x,y,z, P0)

• P0: radius of the sphere

f spikes(x,y,z, P0, P1, P2, P3, P4)

• P0 : Spikiness. Set this to very low values to increase the spikes. Set it to 1 and you get a sphere

• P1 : Hollowness. Increasing this causes the sides to bend in more

• P2 : Size. Increasing this increases the size of the object

• P3 : Roundness. This parameter has a subtle effect on the roundness of the spikes

296 Include Files

• P4 : Fatness. Increasing this makes the spikes fatter

f spikes 2d(x,y,z, P0, P1, P2, P3) =2-D function : f = f(x, z) - y

• P0 : Height of central spike

• P1 : Frequency of spikes in the X direction

• P2 : Frequency of spikes in the Z direction

• P3 : Rate at which the spikes reduce as you move away from the center

f spiral(x,y,z, P0, P1, P2, P3, P4, P5)

• P0 : Distance between windings

• P1 : Thickness

• P2 : Outer diameter of the spiral. The surface behaves as if it is containedby a sphere of this diameter

• P3 : Not used

• P4 : Not used

• P5 : Cross section type

f steiners roman(x,y,z, P0). The ”Steiners Roman” is composed of four identical triangular pads which
together make up a sort of rounded tetrahedron. There are creases along the X, Y and Z axes where the pads
meet.

• P0 : Field Strength (Needs a negative field strength or a negated function)

f strophoid(x,y,z, P0, P1, P2, P3). The ”Strophoid” is like an infinite plane with a bulb sticking out of it.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Size of bulb. Larger values give larger bulbs. Negative values give a bulb on the other side of the
plane

• P2 : Sharpness. When zero, the bulb is like a sphere that just touches the plane. When positive, there is a
crossover point. When negative the bulb simply bulges out of the plane like a pimple

• P3 : Flatness. Higher values make the top end of the bulb fatter

f strophoid 2d(x,y,z, P0, P1, P2, P3, P4, P5, P6). The 2d strophoid curve can be extruded in the Z direc-
tion or rotated about various axes by using the SOR parameters.

• P0 : Field Strength

• P1 : Size of bulb. Larger values give larger bulbs. Negative values give a bulb on the other side of the
plane

• P2 : Sharpness. When zero, the bulb is like a sphere that just touches the plane. When positive, there is a
crossover point. When negative the bulb simply bulges out of the plane like a pimple

• P3 : Fatness. Higher values make the top end of the bulb fatter

• P4 : SOR Switch

• P5 : SOR Offset

• P6 : SOR Angle

7.7 functions.inc 297

f superellipsoid(x,y,z, P0, P1). Needs a negative field strength or a negated function.

• P0 : east-west exponentx

• P1 : north-south exponent

f th(x,y,z) = atan2(x, z)
f th() is a function that is only useful when combined with other surfaces.
It produces a value which is equal to the ”theta” angle, in radians, at any point. The theta angle is like the
longitude coordinate on the Earth. It stays the same as you move north or south, but varies from east to west.
Also look atf ph andf r

f torus(x,y,z, P0, P1)

• P0 : Major radius

• P1 : Minor radius

f torus2(x,y,z, P0, P1, P2). This is different from the ftorus function which just has the major and minor
radii as parameters.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Major radius

• P2 : Minor radius

f torus gumdrop(x,y,z, P0). The ”Torus Gumdrop” surface is something like a torus with a couple of gum-
drops hanging off the end.

• P0 : Field Strength (Needs a negative field strength or a negated function)

f umbrella(x,y,z, P0)

• P0 : Field Strength (Needs a negative field strength or a negated function)

f witch of agnesi(x,y,z, P0, P1, P2, P3, P4, P5). The ”Witch of Agnesi” surface looks something like a
witches hat.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Controls the width of the spike. The height of the spike is always about 1 unit

f witch of agnesi 2d(x,y,z, P0, P1, P2, P3, P4, P5). The 2d version of the ”Witch of Agnesi” curve can
be extruded in the Z direction or rotated about various axes by use of the SOR parameters.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Controls the size of the spike

• P2 : Controls the height of the spike

• P3 : SOR Switch

• P4 : SOR Offset

• P5 : SOR Angle

298 Include Files

7.7.3 Pre defined functions

eval pigment(Pigm, Vect), This macro evaluates the color of a pigment at a specific point. Some pigments
require more information than simply a point, slope pattern based pigments for example, and will not work with
this macro. However, most pigments will work fine.
Parameters:

• Vect = The point at which to evaluate the pigment.

• Pigm = The pigment to evaluate.

f snoise3d(x, y, z). Just like fnoise3d(), but returns values in the range [-1, 1].

f sine wave(val, amplitude, frequency). Turns a ramping waveform into a sine waveform.

f scallop wave(val, amplitude, frequency). Turns a ramping waveform into a ”scallopwave” waveform.

Pattern functions

Predefined pattern functions, useful for building custom function patterns or performing ”displacement map-
ping” on isosurfaces. Many of them are not really useful for these purposes, they are simply included for
completeness.

Some are not implemented at all because they require special parameters that must be specified in the definition,
or information that is not available to pattern functions. For this reason, you probably would want to define your
own versions of these functions.

All of these functions take three parameters, the XYZ coordinates of the point to evaluate the pattern at.

f agate(x, y, z)

f boxed(x, y, z)

f bozo(x, y, z)

f brick(x, y, z)

f bumps(x, y, z)

f checker(x, y, z)

f crackle(x, y, z)

This pattern has many more options, this function uses the defaults.

f cylindrical(x, y, z)

f dents(x, y, z)

f gradientX(x, y, z)

f gradientY(x, y, z)

f gradientZ(x, y, z)

f granite(x, y, z)

f hexagon(x, y, z)

f leopard(x, y, z)

7.8 glass.inc, glassold.inc 299

f mandel(x, y, z)

Only the basic mandel pattern is implemented, its variants and the other fractal patterns are not
implemented.

f marble(x, y, z)

f onion(x, y, z)

f planar(x, y, z)

f radial(x, y, z)

f ripples(x, y, z)

f spherical(x, y, z)

f spiral1(x, y, z)

f spiral2(x, y, z)

f spotted(x, y, z)

f waves(x, y, z)

f wood(x, y, z)

f wrinkles(x, y, z)

7.8 glass.inc, glassold.inc

This file contains glass materials using new features introduced in POV 3.1 and 3.5. The old glass.inc file is
still included for backwards compatibility (it is named glassold.inc, and is included by glass.inc, so you do not
need to change any scenes), but these materials will give more realistic results.

7.8.1 Glass colors (with transparency)

Col Glass Beerbottle

Col Glass Bluish

Col Glass Clear

Col Glass Dark Green

Col Glass General

Col Glass Green

Col Glass Old

Col Glass Orange

Col Glass Ruby

Col Glass Vicksbottle

Col Glass Winebottle

Col Glass Yellow

Table 7.6: glass.inc glass colors with transparency

7.8.2 Glass colors (without transparency, for fadecolor)

7.8.3 Glass finishes

F Glass5, ..., F Glass10

300 Include Files

Col Amber 01

Col Amber 02

Col Amber 03

Col Amber 04

Col Amber 05

Col Amber 06

Col Amber 07

Col Amber 08

Col Amber 09

Col Amethyst 01

Col Amethyst 02

Col Amethyst 03

Col Amethyst 04

Col Amethyst 05

Col Amethyst 06

Col Apatite 01

Col Apatite 02

Col Apatite 03

Col Apatite 04

Col Apatite 05

Col Aquamarine 01

Col Aquamarine 02

Col Aquamarine 03

Col Aquamarine 04

Col Aquamarine 05

Col Aquamarine 06

Col Azurite 01

Col Azurite 02

Col Azurite 03

Col Azurite 04

Col Beerbottle

Col Blue 01

Col Blue 02

Col Blue 03

Col Blue 04

Col Citrine 01

Col Dark Green

Col Emerald 01

Col Emerald 02

Col Emerald 03

Col Emerald 04

Col Emerald 05

Col Emerald 06

Col Emerald 07

Col Fluorite 01

Col Fluorite 02

Col Fluorite 03

Col Fluorite 04

Col Fluorite 05

Col Fluorite 06

Col Fluorite 07

Col Fluorite 08

Col Fluorite 09

Col Green

Col Green 01

Col Green 02

Col Green 03

Col Green 04

Col Gypsum 01

Col Gypsum 02

Col Gypsum 03

Col Gypsum 04

Col Gypsum 05

Col Gypsum 06

Col Orange

Col Red 01

Col Red 02

Col Red 03

Col Red 04

Col Ruby

Col Ruby 01

Col Ruby 02

Col Ruby 03

Col Ruby 04

Col Ruby 05

Col Sapphire 01

Col Sapphire 02

Col Sapphire 03

Col Topaz 01

Col Topaz 02

Col Topaz 03

Col Tourmaline 01

Col Tourmaline 02

Col Tourmaline 03

Col Tourmaline 04

Col Tourmaline 05

Col Tourmaline 06

Col Vicksbottle

Col Winebottle

Col Yellow

Col Yellow 01

Col Yellow 02

Col Yellow 03

Col Yellow 04

Table 7.7: glass.inc glass colors without transparency for fadecolor

7.8 glass.inc, glassold.inc 301

7.8.4 Glass interiors

I Glass1, ..., I Glass4

I Glass Fade Sqr1 (identical toI Glass1)
I Glass Fade Exp1 (identical toI Glass2)
I Glass Fade Exp2 (identical toI Glass3)
I Glass Fade Exp3 (identical toI Glass4)
Glass interiors with various fadepower settings.

I Glass Dispersion1, I Glass Dispersion2

Glass interiors with dispersion.I Glass Dispersion1 has an approximately natural glass dispersion.
I Glass Dispersion2 is exaggerated.

I Glass Caustics1, I Glass Caustics2

Glass interiors with caustics.

7.8.5 Glass interior macros

I Glass Exp(Distance) andI Glass Sqr(Distance).
These macros return an interior with either exponential or fadepower 2 falloff, and a fadedistance of Distance.

7.8.6 glassold.inc

This file contains glass textures for POV-Ray versions 3.1 and earlier. These textures do not take advantage of
the new features introduced with POV-Ray 3.5 and are included for backwards compatability, you will get better
results with the materials in glass.inc.

These textures are designed to be used with the IGlass interior, also defined in this file.

Glass finishes

F Glass1, ..., F Glass4

Glass textures

T Glass1

Simple clear glass.

T Glass2

More like an acrylic plastic.

T Glass3

An excellent lead crystal glass.

T Glass4

T Old Glass

T Winebottle Glass

302 Include Files

T Beerbottle Glass

T Ruby Glass

T Green Glass

T Dark Green Glass

T Yellow Glass

T Orange Glass

Orange/amber glass.

T Vicksbottle Glass

7.9 math.inc

This file contains many general math functions and macros.

7.9.1 Float functions and macros

even(N). A function to test whether N is even, returns 1 when true, 0 when false.
Parameters

• N = Input value

odd(N). A function to test whether N is odd, returns 1 when true, 0 when false.
Parameters

• N = Input value

Interpolate(GC, GS, GE, TS, TE, Method). Interpolation macro, interpolates between the float valuesTS and
TE. The method of interpolation is cosine, linear or exponential. The position where to evaluate the interpolation
is determined by the position ofGC in the rangeGS - GE. See example.
Parameters:

• GC = global current, float value within the range GS - GE

• GS = global start

• GE = global end

• TS = target start

• TE = target end

• Method = interpolation method, float value:

– Method < 0 : exponential, using the value of Method as exponent.

– Method = 0 : cosine interpolation.

– Method > 0 : exponential, using the value of Method as exponent.

* Method = 1 : linear interpolation,

Example:

7.9 math.inc 303

#declare A = Interpolate(0.5, 0, 1, 0, 10, 1);
#debug str(A,0,2)
// result A = 5.00

#declare A = Interpolate(0.0,-2, 2, 0, 10, 1);
#debug str(A,0,2)
// result A = 5.00

#declare A = Interpolate(0.5, 0, 1, 0, 10, 2);
#debug str(A,0,2)
// result A = 2.50

Mean(A). A macro to compute the average of an array of values.
Parameters:

• A = An array of float or vector values.

Std Dev(A, M). A macro to compute the standard deviation.
Parameters:

• A = An array of float values.

• M = Mean of the floats in the array.

GetStats(ValArr). This macro declares a global array named ”StatisticsArray” containing: N, Mean, Min,
Max, and Standard Deviation
Parameters:

• A = An array of float values.

Histogram(ValArr, Intervals). This macro declares a global, 2D array named ”HistogramArray”. The first
value in the array is the center of the interval/bin, the second the number of values in that interval.
Parameters:

• ValArr = An array with values.

• Intervals = The desired number of intervals/bins.

sind(v), cosd(v), tand(v), asind(v), acosd(v), atan2d(a, b). These functions are versions of the
trigonometric functions using degrees, instead of radians, as the angle unit.
Parameters:
The same as for the analogous built-in trig function.

max3(a, b, c). A function to find the largest of three numbers.
Parameters:

• a, b, c = Input values.

min3(a, b, c). A function to find the smallest of three numbers.
Parameters:

• a, b, c = Input values.

f sqr(v). A function to square a number.
Parameters:

• v = Input value.

304 Include Files

sgn(v). A function to show the sign of the number. Returns -1 or 1 depending on the sign of v.
Parameters:

• v = Input value.

clip(V, Min, Max). A function that limits a value to a specific range, if it goes outside that range it is ”clipped”.
Input values larger thanMax will return Max, those less thanMin will return Min.
Parameters:

• V = Input value.

• Min = Minimum of output range.

• Max = Maximum of output range.

clamp(V, Min, Max). A function that limits a value to a specific range, if it goes outside that range it is
”clamped” to this range, wrapping around. As the input increases or decreases outside the given range, the
output will repeatedly sweep through that range, making a ”sawtooth” waveform.
Parameters:

• V = Input value.

• Min = Minimum of output range.

• Max = Maximum of output range.

adj range(V, Min, Max). A function that adjusts input values in the range [0, 1] to a given range. An input
value of 0 will returnMin, 1 will returnMax, and values outside the [0, 1] range will be linearly extrapolated (the
graph will continue in a straight line).
Parameters:

• V = Input value.

• Min = Minimum of output range.

• Max = Maximum of output range.

adj range2(V, InMin, InMax, OutMin, OutMax). Like f range(), but adjusts input values in the range[InMin,

InMax] to the range[OutMin, OutMax].
Parameters:

• V = Input value.

• InMin = Minimum of input range.

• InMax = Maximum of input range.

• OutMin = Minimum of output range.

• OutMax = Maximum of output range.

7.9.2 Vector functions and macros

These are all macros in the current version because functions can not take vector parameters, but this may
change in the future.

VSqr(V). Square each individual component of a vector, equivalent toV*V.
Parameters:

7.9 math.inc 305

• V = Vector to be squared.

VPow(V, P), VPow5D(V, P). Raise each individual component of a vector to a given power.
Parameters:

• V = Input vector.

• P = Power.

VEq(V1, V2). Tests for equal vectors, returns true if all three components ofV1equal the respective components
of V2.
Parameters:

• V1, V2 = The vectors to be compared.

VEq5D(V1, V2). A 5D version ofVEq(). Tests for equal vectors, returns true if all 5 components ofV1 equal the
respective components ofV2.
Parameters:

• V1, V2 = The vectors to be compared.

VZero(V). Tests for a< 0, 0, 0> vector.
Parameters:

• V = Input vector.

VZero5D(V). Tests for a< 0, 0, 0, 0, 0> vector.
Parameters:

• V = Input vector.

VLength5D(V). Computes the length of a 5D vector.
Parameters:

• V = Input vector.

VNormalize5D(V). Normalizes a 5D vector.
Parameters:

• V = Input vector.

VDot5D(V1, V2). Computes the dot product of two 5D vectors. See vdot() for more information on dot products.
Parameters:

• V = Input vector.

VCos Angle(V1, V2). Compute the cosine of the angle between two vectors.
Parameters:

• V1, V2 = Input vectors.

VAngle(V1, V2), VAngleD(V1, V2). Compute the angle between two vectors.VAngle() returns the angle in
radians,VAngleD() in degrees.
Parameters:

• V1, V2 = Input vectors.

VRotation(V1, V2, Axis), VRotationD(V1, V2, Axis).Compute the rotation angle from V1 to V2 around
Axis. Axis should be perpendicular to both V1 and V2. The output will be in the range between -pi and pi
radians or between -180 degrees and 180 degrees if you are using the degree version. However, if Axis is set to

306 Include Files

<0,0,0> the output will always be positive or zero, the same result you will get with the VAngle() macros.
Parameters:

• V1, V2 = Input vectors.

VDist(V1, V2). Compute the distance between two points.
Parameters:

• V1, V2 = Input vectors.

VPerp To Vector(V). Find a vector perpendicular to the given vector.
Parameters:

• V = Input vector.

VPerp To Plane(V1, V2). Find a vector perpendicular to both given vectors. In other words, perpendicular to
the plane defined by the two input vectors
Parameters:

• V1, V2 = Input vectors.

VPerp Adjust(V1, Axis). Find a vector perpendicular to Axis and in the plane of V1 and Axis. In other words,
the new vector is a version of V1 adjusted to be perpendicular to Axis.
Parameters:

• V1, Axis = Input vectors.

VProject Plane(V1, Axis). Project vector V1 onto the plane defined by Axis.
Parameters:

• V1 = Input vectors.

• Axis = Normal of the plane.

VProject Axis(V1, Axis). Project vector V1 onto the axis defined by Axis.
Parameters:

• V1, Axis = Input vectors.

VMin(V), VMax(V). Find the smallest or largest component of a vector.
Parameters:

• V = Input vector.

VWith Len(V, Len). Create a vector parallel to a given vector but with a given length.
Parameters:

• V = Direction vector.

• Len = Length of desired vector.

7.9.3 Vector Analysis

SetGradientAccuracy(Value): all below macros make use of a constant named ’GradientFn Accuracy’ for
numerical approximation of the derivatives. This constant can be changed with the macro, the default value is
0.001.

7.9 math.inc 307

fn Gradient(Fn): macro calculating the gradient of a function as a function.
Parameters:

• Fn = function to calculate the gradient from.

Output: the length of the gradient as a function.

fn Gradient Directional(Fn, Dir): macro calculating the gradient of a function in one direction as a function.
Parameters:

• Fn = function to calculate the gradient from.

• Dir = direction to calculate the gradient.

Output: the gradient in that direction as a function.

fn Divergence(Fnx, Fny, Fnz): macro calculating the divergence of a (vector) function as a function.
Parameters:

• Fnx, Fny, Fnz= x, y and z components of a vector function.

Output: the divergence as a function.

vGradient(Fn, p0): macro calculating the gradient of a function as a vector expression.
Parameters:

• Fn = function to calculate the gradient from.

• p0 = point where to calculate the gradient.

Output: the gradient as a vector expression.

vCurl(Fnx, Fny, Fnz, p0): macro calculating the curl of a (vector) function as a vector expression
Parameters:

• Fnx, Fny, Fnz = x, y and z components of a vector function.

• p0 = point where to calculate the gradient.

Output: the curl as a vector expression

Divergence(Fnx, Fny, Fnz, p0): macro calculating the divergence of a (vector) function as a float expression
Parameters:

• Fnx, Fny, Fnz = x, y and z components of a vector function.

• p0 = point where to calculate the gradient.

Output: the divergence as a float expression.

Gradient Length(Fn, p0): macro calculating the length of the gradient of a function as a float expression.
Parameters:

• Fn = function to calculate the gradient from.

• p0 = point where to calculate the gradient.

Output: the length of the gradient as a float expression.

Gradient Directional(Fn, p0, Dir): macro calculating the gradient of a function in one direction as a float
expression.
Parameters:

308 Include Files

• Fn = function to calculate the gradient from.

• p0 = point where to calculate the gradient.

• Dir = direction to calculate the gradient.

Output: the gradient in that direction as a float expression

7.10 metals.inc, golds.inc

These files define several metal textures. The file metals.inc contains copper, silver, chrome, and brass textures,
and golds.inc contains the gold textures.
Rendering the demo files will come in useful in using these textures.

7.10.1 metals.inc

Colors:

P Brass1

Dark brown bronze.

P Brass2

Somewhat lighter brown than Brass4. Old penny, in soft finishes.

P Brass3

Used by Steve Anger’s PolishedBrass. Slightly coppery.

P Brass4

A little yellower than Brass1.

P Brass5

Very light bronze, ranges from med tan to almost white.

P Copper1

Bronze-like. Best in finish #C.

P Copper2

Slightly brownish copper/bronze. Best in finishes #B-#D.

P Copper3

Reddish-brown copper. Best in finishes #C-#E.

P Copper4

Pink copper, like new tubing. Best in finishes #C-#E.

P Copper5

Bronze in softer finishes, gold in harder finishes.

P Chrome1

20% Gray. Used in Steve Anger’s PolishedChrome.

P Chrome2

Slightly blueish 60% gray. Good steel w/finish #A.

7.10 metals.inc, golds.inc 309

P Chrome3

50% neutral gray.

P Chrome4

75% neutral gray.

P Chrome5

95% neutral gray.

P Silver1

Yellowish silverplate. Somewhat tarnished looking.

P Silver2

Not quite as yellowish as Silver1 but more so than Silver3.

P Silver3

Reasonably neutral silver.

P Silver4

P Silver5

Finishes:

F MetalA

Very soft and dull.

F MetalB

Fairly soft and dull.

F MetalC

Medium reflectivity. Holds color well.

F MetalD

Very hard and highly polished. High reflectivity.

F MetalE

Very highly polished and reflective.

Textures:

T Brass 1A to T Brass 5E

T Copper 1A to T Copper 5E

T Chrome 1A to T Chrome 5E

T Silver 1A to T Silver 5E

7.10.2 golds.inc

This file has its own versions ofF MetalA throughF MetalB.

The gold textures themselves areT Gold 1A throughT Gold 5E.

310 Include Files

7.11 rand.inc

A collection of macros for generating random numbers, as well as 4 predefined random number streams:RdmA,

RdmB, RdmC, andRdmD. There are macros for creating random numbers in a flat distribution (all numbers equally
likely) in various ranges, and a variety of other distributions.

7.11.1 Flat Distributions

SRand(Stream). ”Signed rand()”, returns random numbers in the range [-1, 1].
Parameters:

• Stream = Random number stream.

RRand(Min, Max, Stream). Returns random numbers in the range [Min, Max].
Parameters:

• Min = The lower end of the output range.

• Max = The upper end of the output range.

• Stream = Random number stream.

VRand(Stream). Returns random vectors in a box from< 0, 0, 0> to < 1, 1, 1>
Parameters:

• Stream = Random number stream.

VRand In Box(PtA, PtB, Stream). Like VRand(), this macro returns a random vector in a box, but this version
lets you specify the two corners of the box.
Parameters:

• PtA = Lower-left-bottom corner of box.

• PtB = Upper-right-top corner of box.

• Stream = Random number stream.

VRand In Sphere(Stream). Returns a random vector in a unit-radius sphere located at the origin.
Parameters:

• Stream = Random number stream.

VRand On Sphere(Stream). Returns a random vector on the surface of a unit-radius sphere located at the origin.
Parameters:

• Stream = Random number stream.

VRand In Obj(Object, Stream) This macro takes a solid object and returns a random point that is inside it. It
does this by randomly sampling the bounding box of the object, and can be quite slow if the object occupies a
small percentage of the volume of its bounding box (because it will take more attempts to find a point inside the
object). This macro is best used on finite, solid objects (non-solid objects, such as meshes and bezier patches,
do not have a defined ”inside”, and will not work).
Parameters:

• Object = The object the macro chooses the points from.

7.11 rand.inc 311

• Stream = Random number stream.

7.11.2 Other Distributions

Continuous Symmetric Distributions

Rand Cauchy(Mu, Sigma, Stream). Cauchy distribution.
Parameters:

• Mu = Mean.

• Sigma = Standard deviation.

• Stream = Random number stream.

Rand Student(N, Stream). Student’s-t distribution.
Parameters:

• N = degrees of freedom.

• Stream = Random number stream.

Rand Normal(Mu, Sigma, Stream). Normal distribution.
Parameters:

• Mu = Mean.

• Sigma = Standard deviation.

• Stream = Random number stream.

Rand Gauss(Mu, Sigma, Stream). Gaussian distribution. Like RandNormal(), but a bit faster.
Parameters:

• Mu = Mean.

• Sigma = Standard deviation.

• Stream = Random number stream.

Continuous Skewed Distributions

Rand Spline(Spline, Stream). This macro takes a spline describing the desired distribution. The T value of
the spline is the output value, and the .y value its chance of occuring.
Parameters:

• Spline = A spline determining the distribution.

• Stream = Random number stream.

Rand Gamma(Alpha, Beta, Stream). Gamma distribution.
Parameters:

• Alpha = Shape parameter> 0.

• Beta = Scale parameter> 0.

312 Include Files

• Stream = Random number stream.

Rand Beta(Alpha, Beta, Stream). Beta variate.
Parameters:

• Alpha = Shape Gamma1.

• Beta = Scale Gamma2.

• Stream = Random number stream.

Rand Chi Square(N, Stream). Chi Square random variate.
Parameters:

• N = Degrees of freedom (integer).

• Stream = Random number stream.

Rand F Dist(N, M, Stream). F-distribution.
Parameters:

• N, M = Degrees of freedom.

• Stream = Random number stream.

Rand Tri(Min, Max, Mode, Stream). Triangular distribution
Parameters:

• Min, Max, Mode: Min < Mode< Max.

• Stream = Random number stream.

Rand Erlang(Mu, K, Stream). Erlang variate.
Parameters:

• Mu = Mean>= 0.

• K = Number of exponential samples.

• Stream = Random number stream.

Rand Exp(Lambda, Stream). Exponential distribution.
Parameters:

• Lambda = rate = 1/mean.

• Stream = Random number stream.

Rand Lognormal(Mu, Sigma, Stream). Lognormal distribution.
Parameters:

• Mu = Mean.

• Sigma = Standard deviation.

• Stream = Random number stream.

Rand Pareto(Alpha, Stream). Pareto distribution.
Parameters:

• Alpha = ?

7.12 shapes.inc, shapesold.inc, shapes2.inc, shapesq.inc 313

• Stream = Random number stream.

Rand Weibull(Alpha, Beta, Stream). Weibull distribution.
Parameters:

• Alpha = ?

• Beta = ?

• Stream = Random number stream.

Discrete Distributions

Rand Bernoulli(P, Stream) andProb(P, Stream). Bernoulli distribution. Output is true with probability equal
to the value of P and false with a probability of 1 - P.
Parameters:

• P = probability range (0-1).

• Stream = Random number stream.

Rand Binomial(N, P, Stream). Binomial distribution.
Parameters:

• N = Number of trials.

• P = Probability (0-1)

• Stream = Random number stream.

Rand Geo(P, Stream). Geometric distribution.
Parameters:

• P = Probability (0-1).

• Stream = Random number stream.

Rand Poisson(Mu, Stream). Poisson distribution.
Parameters:

• Mu = Mean.

• Stream = Random number stream.

7.12 shapes.inc, shapesold.inc, shapes2.inc, shapesq.inc

These files contain predefined shapes and shape-generation macros.

”shapes.inc” includes ”shapesold.inc” and contains many macros for working with objects, and for creating
special objects, such as bevelled text, spherical height fields, and rounded shapes.

Many of the objects in ”shapesold.inc” are not very useful in the newer versions of POV-Ray, and are kept
for backwards compatability with old scenes written for versions of POV-Ray that lacked primitives like cones,
disks, planes, etc.

314 Include Files

The file ”shapes2.inc” contains some more useful shapes, including regular polyhedrons, and ”shapesq.inc”
contains several quartic and cubic shape definitions.

Some of the shapes in ”shapesq.inc” would be much easier to generate, more flexible, and possibly faster ren-
dering as isosurfaces, but are still useful for two reasons: backwards compatability, and the fact that isosurfaces
are always finite.

7.12.1 shapes.inc

Isect(Pt, Dir, Obj, OPt) andIsectN(Pt, Dir, Obj, OPt, ONorm)

These macros are interfaces to the trace() function. Isect() only returns the intersection point, IsectN() returns
the surface normal as well. These macros return the point and normal information through their parameters, and
true or false depending on whether an intersection was found:
If an intersection is found, they return true and set OPt to the intersection point, and ONorm to the normal.
Otherwise they return false, and do not modify OPt or ONorm.
Parameters:

• Pt = The origin (starting point) of the ray.

• Dir = The direction of the ray.

• Obj = The object to test for intersection with.

• OPt = A declared variable, the macro will set this to the intersection point.

• ONorm = A declared variable, the macro will set this to the surface normal at the intersection point.

Extents(Obj, Min, Max). This macro is a shortcut for calling both minextent() and maxextent() to get the
corners of the bounding box of an object. It returns these values through the Min and Max parameters.
Parameters:

• Obj = The object you are getting the extents of.

• Min = A declared variable, the macro will set this to the minextent of the object.

• Max = A declared variable, the macro will set this to the maxextent of the object.

Center Object(Object, Axis). A shortcut for using the CenterTrans() macro with an object.
Parameters:

• Object = The object to be centered.

• Axis = See CenterTrans() in the transforms.inc documentation.

Align Object(Object, Axis, Pt). A shortcut for using the AlignTrans() macro with an object.
Parameters:

• Object = The object to be aligned.

• Axis = See AlignTrans() in the transforms.inc documentation.

• Point = The point to which to align the bounding box of the object.

Bevelled Text(Font, String, Cuts, BevelAng, BevelDepth, Depth, Offset, UseMerge). This macro at-
tempts to ”bevel” the front edges of a text object. It accomplishes this by making an intersection of multiple
copies of the text object, each sheared in a different direction. The results are no perfect, but may be entirely
acceptable for some purposes. Warning: the object generated may render considerably more slowly than an

7.12 shapes.inc, shapesold.inc, shapes2.inc, shapesq.inc 315

ordinary text object.
Parameters:

• Font = A string specifying the font to use.

• String = The text string the object is generated from.

• Cuts = The number of intersections to use in bevelling the text. More cuts give smoother results, but take
more memory and are slower rendering.

• BevelAng = The angle of the bevelled edge.

• BevelDepth = The thickness of the bevelled portion.

• Depth = The total thickness of the resulting text object.

• Offset = The offset parameter for the text object. The z value of this vector will be ignored, because the
front faces of all the letters need to be coplanar for the bevelling to work.

• UseMerge = Switch between merge (1) and union (0).

Text Space(Font, String, Size, Spacing). Computes the width of a text string, including ”white space”, it
returns the advance widths of all n letters. TextSpace gives the space a text, or a glyph, occupies in regard to
its surroundings.
Parameters:

• Font = A string specifying the font to use.

• String = The text string the object is generated from.

• Size = A scaling value.

• Spacing = The amount of space to add between the characters.

Text Width(Font, String, Size, Spacing). Computes the width of a text string, it returns the advance widths
of the first n-1 letters, plus the glyph width of the last letter. TextWidth gives the ”physical” width of the text
and if you use only one letter the ”fysical” width of one glyph.
Parameters:

• Font = A string specifying the font to use.

• String = The text string the object is generated from.

• Size = A scaling value.

• Spacing = The amount of space to add between the characters.

Align Left, Align Right, Align Center. These constants are used by theCircle Text() macro.

Circle Text(Font, String, Size, Spacing, Depth, Radius, Inverted, Justification, Angle). Creates a
text object with the bottom (or top) of the character cells aligned with all or part of a circle. This macro should
be used inside anobject{...} block.
Parameters:

• Font = A string specifying the font to use.

• String = The text string the object is generated from.

• Size = A scaling value.

• Spacing = The amount of space to add between the characters.

316 Include Files

• Depth = The thickness of the text object.

• Radius = The radius of the circle the letters are aligned to.

• Inverted = Controls what part of the text faces ”outside”. If this parameter is nonzero, the tops of the
letters will point toward the center of the circle. Otherwise, the bottoms of the letters will do so.

• Justification = Align Left, Align Right, or Align Center.

• Angle = The point on the circle from which rendering will begin. The +x direction is 0 and the +y direction
is 90 (i.e. the angle increases anti-clockwise).

Wedge(Angle). This macro creates an infinite wedge shape, an intersection of two planes. It is mainly useful in
CSG, for example to obtain a specific arc of a torus. The edge of the wedge is positioned along the y axis, and
one side is fixed to the zy plane, the other side rotates clockwise around the y axis.
Parameters:

• Angle = The angle, in degrees, between the sides of the wedge shape.

Spheroid(Center, Radius). This macro creates an unevenly scaled sphere. Radius is a vector where each
component is the radius along that axis.
Parameters:

• Center = Center of the spheroid.

• Radius = A vector specifying the radii of the spheroid.

Supertorus(MajorRadius, MinorRadius, MajorControl, MinorControl, Accuracy, MaxGradient). This
macro creates an isosurface of the torus equivalent of a superellipsoid. If you specify a MaxGradient of less
than 1, evaluate will be used. You will have to adjust MaxGradient to fit the parameters you choose, a squarer
supertorus will have a higher gradient. You may want to use the function alone in your own isosurface.
Parameters:

• MajorRadius, MinorRadius = Base radii for the torus.

• MajorControl, MinorControl = Controls for the roundness of the supertorus. Use numbers in the range
[0, 1].

• Accuracy = The accuracy parameter.

• MaxGradient = The maxgradient parameter.

Supercone(EndA, A, B, EndB, C, D). This macro creates an object similar to a cone, but where the end points
are ellipses. The actual object is an intersection of a quartic with a cylinder.
Parameters:

• EndA = Center of end A.

• A, B = Controls for the radii of end A.

• EndB = Center of end B.

• C, D = Controls for the radii of end B.

Connect Spheres(PtA, RadiusA, PtB, RadiusB). This macro creates a cone that will smoothly join two
spheres. It creates only the cone object, however, you will have to supply the spheres yourself or use the
RoundCone2() macro instead.
Parameters:

7.12 shapes.inc, shapesold.inc, shapes2.inc, shapesq.inc 317

• PtA = Center of sphere A.

• RadiusA = Radius of sphere A.

• PtB = Center of sphere B.

• RadiusB = Radius of sphere B.

Wire Box Union(PtA, PtB, Radius),

Wire Box Merge(PtA, PtB, Radius),

Wire Box(PtA, PtB, Radius, UseMerge). Creates a wire-frame box from cylinders and spheres. The resulting
object will fit entirely within a box object with the same corner points.
Parameters:

• PtA = Lower-left-front corner of box.

• PtB = Upper-right-back corner of box.

• Radius = The radius of the cylinders and spheres composing the object.

• UseMerge = Whether or not to use a merge.

Round Box Union(PtA, PtB, EdgeRadius),

Round Box Merge(PtA, PtB, EdgeRadius),

Round Box(PtA, PtB, EdgeRadius, UseMerge). Creates a box with rounded edges from boxes, cylinders and
spheres. The resulting object will fit entirely within a box object with the same corner points. The result is
slightly different from a superellipsoid, which has no truely flat areas.
Parameters:

• PtA = Lower-left-front corner of box.

• PtB = Upper-right-back corner of box.

• EdgeRadius = The radius of the edges of the box.

• UseMerge = Whether or not to use a merge.

Round Cylinder Union(PtA, PtB, Radius, EdgeRadius),

Round Cylinder Merge(PtA, PtB, Radius, EdgeRadius),

Round Cylinder(PtA, PtB, Radius, EdgeRadius, UseMerge). Creates a cylinder with rounded edges from
cylinders and tori. The resulting object will fit entirely within a cylinder object with the same end points
and radius. The result is slightly different from a superellipsoid, which has no truely flat areas.
Parameters:

• PtA, PtB = The end points of the cylinder.

• Radius = The radius of the cylinder.

• EdgeRadius = The radius of the edges of the cylinder.

• UseMerge = Whether or not to use a merge.

Round Cone Union(PtA, RadiusA, PtB, RadiusB, EdgeRadius),

Round Cone Merge(PtA, RadiusA, PtB, RadiusB, EdgeRadius),

Round Cone(PtA, RadiusA, PtB, RadiusB, EdgeRadius, UseMerge) Creates a cone with rounded edges from
cones and tori. The resulting object will fit entirely within a cone object with the same end points and radii.
Parameters:

• PtA, PtB = The end points of the cone.

318 Include Files

• RadiusA, RadiusB = The radii of the cone.

• EdgeRadius = The radius of the edges of the cone.

• UseMerge = Whether or not to use a merge.

Round Cone2 Union(PtA, RadiusA, PtB, RadiusB),

Round Cone2 Merge(PtA, RadiusA, PtB, RadiusB),

Round Cone2(PtA, RadiusA, PtB, RadiusB, UseMerge). Creates a cone with rounded edges from a cone and
two spheres. The resulting object will not fit entirely within a cone object with the same end points and radii
because of the spherical caps. The end points are not used for the conical portion, but for the spheres, a suitable
cone is then generated to smoothly join them.
Parameters:

• PtA, PtB = The centers of the sphere caps.

• RadiusA, RadiusB = The radii of the sphere caps.

• UseMerge = Whether or not to use a merge.

Round Cone3 Union(PtA, RadiusA, PtB, RadiusB),

Round Cone3 Merge(PtA, RadiusA, PtB, RadiusB)

Round Cone3(PtA, RadiusA, PtB, RadiusB, UseMerge). Like RoundCone2(), this creates a cone with rounded
edges from a cone and two spheres, and the resulting object will not fit entirely within a cone object with the
same end points and radii because of the spherical caps. The difference is that this macro takes the end points
of the conical portion and moves the spheres to be flush with the surface, instead of putting the spheres at the
end points and generating a cone to join them.
Parameters:

• PtA, PtB = The end points of the cone.

• RadiusA, RadiusB = The radii of the cone.

• UseMerge = Whether or not to use a merge.

Quad(A, B, C, D) and Smooth Quad(A, NA, B, NB, C, NC, D, ND). These macros create ”quads”, 4-sided
polygonal objects, using triangle pairs.
Parameters:

• A, B, C, D = Vertices of the quad.

• NA, NB, NC, ND = Vertex normals of the quad.

The HF Macros

There are several HF macros in shapes.inc, which generate meshes in various shapes. All the HF macros have
these things in common:

• The HF macros do not directly use an image for input, but evaluate a user-defined function. The macros
deform the surface based on the function values.

• The macros can either write to a file to be included later, or create an object directly. If you want to output
to a file, simply specify a filename. If you want to create an object directly, specify ”” as the file name (an
empty string).

7.12 shapes.inc, shapesold.inc, shapes2.inc, shapesq.inc 319

• The function values used for the heights will be taken from the square that goes from<0,0,0> to <1,1,
0> if UV height mapping is on. Otherwise the function values will be taken from the points where the
surface is (before the deformation).

• The texture you apply to the shape will be evaluated in the square that goes from<0,0,0> to <1,1,0> if
UV texture mapping is on. Otherwise the texture is evaluated at the points where the surface is (after the
deformation.

The usage of the different HF macros is described below.

HF Square (Function, UseUVheight, UseUVtexture, Res, Smooth, FileName, MnExt, MxExt). This macro
generates a mesh in the form of a square height field, similar to the built-in heightfield primitive. Also see the
general description of the HF macros above.
Parameters:

• Function = The function to use for deforming the height field.

• UseUVheight = A boolean value telling the macro whether or not to use UV height mapping.

• UseUVtexture = A boolean value telling the macro whether or not to use UV texture mapping.

• Res = A 2D vector specifying the resolution of the generated mesh.

• Smooth = A boolean value telling the macro whether or not to smooth the generated mesh.

• FileName = The name of the output file.

• MnExt = Lower-left-front corner of a box containing the height field.

• MxExt = Upper-right-back corner of a box containing the height field.

HF Sphere(Function, UseUVheight, UseUVtexture, Res, Smooth, FileName, Center, Radius, Depth).
This macro generates a mesh in the form of a spherical height field. When UV-mapping is used, the UV
square will be wrapped around the sphere starting at +x and going anti-clockwise around the y axis. Also see
the general description of the HF macros above. Parameters:

• Function = The function to use for deforming the height field.

• UseUVheight = A boolean value telling the macro whether or not to use UV height mapping.

• UseUVtexture = A boolean value telling the macro whether or not to use UV texture mapping.

• Res = A 2D vector specifying the resolution of the generated mesh.

• Smooth = A boolean value telling the macro whether or not to smooth the generated mesh.

• FileName = The name of the output file.

• Center = The center of the height field before being displaced, the displacement can, and most likely will,
make the object off-center.

• Radius = The starting radius of the sphere, before being displaced.

• Depth = The depth of the height field.

HF Cylinder(Function, UseUVheight, UseUVtexture, Res, Smooth, FileName, EndA, EndB, Radius,Depth).
This macro generates a mesh in the form of an open-ended cylindrical height field. When UV-mapping is used,
the UV square will be wrapped around the cylinder. Also see the general description of the HF macros above.
Parameters:

320 Include Files

• Function = The function to use for deforming the height field.

• UseUVheight = A boolean value telling the macro whether or not to use UV height mapping.

• UseUVtexture = A boolean value telling the macro whether or not to use UV texture mapping.

• Res = A 2D vector specifying the resolution of the generated mesh.

• Smooth = A boolean value telling the macro whether or not to smooth the generated mesh.

• FileName = The name of the output file.

• EndA, EndB = The end points of the cylinder.

• Radius = The (pre-displacement) radius of the cylinder.

• Depth = The depth of the height field.

HF Torus (Function, UseUVheight, UseUVtexture, Res, Smooth, FileName, Major, Minor, Depth). This
macro generates a mesh in the form of a torus-shaped height field. When UV-mapping is used, the UV square
is wrapped around similar to spherical or cylindrical mapping. However the top and bottom edges of the map
wrap over and under the torus where they meet each other on the inner rim. Also see the general description of
the HF macros above.
Parameters:

• Function = The function to use for deforming the height field.

• UseUVheight = A boolean value telling the macro whether or not to use UV height mapping.

• UseUVtexture = A boolean value telling the macro whether or not to use UV texture mapping.

• Res = A 2D vector specifying the resolution of the generated mesh.

• Smooth = A boolean value telling the macro whether or not to smooth the generated mesh.

• FileName = The name of the output file.

• Major = The major radius of the torus.

• Minor = The minor radius of the torus.

7.12.2 shapesold.inc

Ellipsoid, Sphere

Unit-radius sphere at the origin.

Cylinder X, Cylinder Y, Cylinder Z

Infinite cylinders.

QCone X, QCone Y, QCone Z

Infinite cones.

Cone X, Cone Y, Cone Z

Closed capped cones: unit-radius at -1 and 0 radius at +1 along each axis.

Plane YZ, Plane XZ, Plane XY

Infinite planes passing through the origin.

Paraboloid X, Paraboloid Y, Paraboloid Z

7.12 shapes.inc, shapesold.inc, shapes2.inc, shapesq.inc 321

yˆ2 + zˆ2 - x = 0

Hyperboloid, Hyperboloid Y

y - xˆ2 + zˆ2 = 0

UnitBox, Cube

A cube 2 units on each side, centered on the origin.

Disk X, Disk Y, Disk Z

”Capped” cylinders, with a radius of 1 unit and a length of 2 units, centered on the origin.

7.12.3 shapes2.inc

Tetrahedron

4-sided regular polyhedron.

Octahedron

8-sided regular polyhedron.

Dodecahedron

12-sided regular polyhedron.

Icosahedron

20-sided regular polyhedron.

Rhomboid

Three dimensional 4-sided diamond, basically a sheared box.

Hexagon

6-sided regular polygonal solid, axis along x.

HalfCone Y

Convenient finite cone primitive, pointing up in the Y axis.

Pyramid

4-sided pyramid (union of triangles, can not be used in CSG).

Pyramid2

4-sided pyramid (intersection of planes, can be used in CSG).

Square X, Square Y, Square Z

Finite planes stretching 1 unit along each axis. In other words, 2X2 unit squares.

7.12.4 shapesq.inc

Bicorn

This curve looks like the top part of a paraboloid, bounded from below by another paraboloid. The
basic equation is:
yˆ2 - (xˆ2 + zˆ2) yˆ2 - (xˆ2 + zˆ2 + 2 y - 1)ˆ2 =

Crossed Trough

This is a surface with four pieces that sweep up from the x-z plane.
The equation is: y = xˆ2 zˆ2

322 Include Files

Cubic Cylinder

A drop coming out of water? This is a curve formed by using the equation:
y = 1/2 xˆ2 (x + 1)
as the radius of a cylinder having the x-axis as its central axis. The final form of the equation is:
yˆ2 + zˆ2 = 0.5 (xˆ3 + xˆ2)

Cubic Saddle 1

A cubic saddle. The equation is: z = xˆ3 - yˆ3

Devils Curve

Variant of a devil’s curve in 3-space. This figure has a top and bottom part that are very similar to a
hyperboloid of one sheet, however the central region is pinched in the middle leaving two teardrop
shaped holes. The equation is:
xˆ4 + 2 xˆ2 zˆ2 - 0.36 xˆ2 - yˆ4 + 0.25 yˆ2 + zˆ4 = 0

Folium

This is a folium rotated about the x-axis. The formula is:
2 xˆ2 - 3 x yˆ2 - 3 x zˆ2 + yˆ2 + zˆ2 = 0

Glob 5

Glob - sort of like basic teardrop shape. The equation is:
yˆ2 + zˆ2 = 0.5 xˆ5 + 0.5 xˆ4

Twin Glob

Variant of a lemniscate - the two lobes are much more teardrop-like.

Helix, Helix 1

Approximation to the helix z = arctan(y/x). The helix can be approximated with an algebraic
equation (kept to the range of a quartic) with the following steps:
tan(z) = y/x => sin(z)/cos(z) = y/x =>
(1) x sin(z) - y cos(z) = 0 Using the taylor expansions for sin, cos about z = 0,
sin(z) = z - zˆ3/3! + zˆ5/5! - ...
cos(z) = 1 - zˆ2/2! + zˆ6/6! - ...
Throwing out the high order terms, the expression (1) can be written as:
x (z - zˆ3/6) - y (1 + zˆ2/2) = 0, or

(2) -1/6 x zˆ3 + x z + 1/2 y zˆ2 - y = 0
This helix (2) turns 90 degrees in the range 0<= z <= sqrt(2)/2. By using scale<2 2 2>, the helix
defined below turns 90 degrees in the range 0<= z <= sqrt(2) = 1.4042.

Hyperbolic Torus

Hyperbolic Torus having major radius sqrt(40), minor radius sqrt(12). This figure is generated by
sweeping a circle along the arms of a hyperbola. The equation is:
xˆ4 + 2 xˆ2 yˆ2 - 2 xˆ2 zˆ2 - 104 xˆ2 + yˆ4 - 2 yˆ2 zˆ2 + 56 yˆ2 + zˆ4 + 104 zˆ2 + 784 = 0

Lemniscate

Lemniscate of Gerono. This figure looks like two teardrops with their pointed ends connected. It is
formed by rotating the Lemniscate of Gerono about the x-axis. The formula is:
xˆ4 - xˆ2 + yˆ2 + zˆ2 = 0

Quartic Loop 1

This is a figure with a bumpy sheet on one side and something that looks like a paraboloid (but with
an internal bubble). The formula is:

7.13 skies.inc, stars.inc 323

(xˆ2 + yˆ2 + a c x)ˆ2 - (xˆ2 + yˆ2)(c - a x)ˆ2
-99*xˆ4+40*xˆ3-98*xˆ2*yˆ2-98*xˆ2*zˆ2+99*xˆ2+40*x*yˆ2
+40*x*zˆ2+yˆ4+2*yˆ2*zˆ2-yˆ2+zˆ4-zˆ2

Monkey Saddle

This surface has three parts that sweep up and three down. This gives a saddle that has a place for
two legs and a tail... The equation is:
z = c (xˆ3 - 3 x yˆ2)

The value c gives a vertical scale to the surface - the smaller the value of c, the flatter the surface
will be (near the origin).

Parabolic Torus 40 12

Parabolic Torus having major radius sqrt(40), minor radius sqrt(12). This figure is generated by
sweeping a circle along the arms of a parabola. The equation is:
xˆ4 + 2 xˆ2 yˆ2 - 2 xˆ2 z - 104 xˆ2 + yˆ4 - 2 yˆ2 z + 56 yˆ2 + zˆ2 + 104 z + 784 = 0

Piriform

This figure looks like a hersheys kiss. It is formed by sweeping a Piriform about the x-axis. A basic
form of the equation is:
(xˆ4 - xˆ3) + yˆ2 + zˆ2 = 0.

Quartic Paraboloid

Quartic parabola - a 4th degree polynomial (has two bumps at the bottom) that has been swept
around the z axis. The equation is:
0.1 xˆ4 - xˆ2 - yˆ2 - zˆ2 + 0.9 = 0

Quartic Cylinder

Quartic Cylinder - a Space Needle?

Steiner Surface

Steiners quartic surface

Torus 40 12

Torus having major radius sqrt(40), minor radius sqrt(12).

Witch Hat

Witch of Agnesi.

Sinsurf

Very rough approximation to the sin-wave surface z = sin(2 pi x y).
In order to get an approximation good to 7 decimals at a distance of 1 from the origin would require a
polynomial of degree around 60, which would require around 200,000 coefficients. For best results,
scale by something like<1 1 0.2>.

7.13 skies.inc, stars.inc

These files contain some predefined skies for you to use in your scenes.

skies.inc:
There are textures and pigment definitions in this file. All pigment definitions start with ”P”, all sky spheres
start with ”S ”, all textures start with ”T”, and all objects start with ”O”.

324 Include Files

stars.inc:
This file contains predefined starfield textures. The starfields become denser and more colorful with the number,
with Starfield6 being the densest and most colorful.

7.13.1 skies.inc

Pigments:

P Cloud1

P Cloud2

P Cloud3

Sky Spheres:

S Cloud1

This skysphere uses PCloud2 and PCloud3.

S Cloud2

This skysphere uses PCloud4.

S Cloud3

This skysphere uses PCloud2.

S Cloud4

This skysphere uses PCloud3.

S Cloud5

This skysphere uses a custom pigment.

Textures:

T Cloud1

2-layer texture using PCloud1 pigment, contains clear regions.

T Cloud2

1-layer texture, contains clear regions.

T Cloud3

2-layer texture, contains clear regions.

Objects:

O Cloud1

Sphere, radius 10000 with TCloud1 texture.

O Cloud2

Union of 2 planes, with TCloud2 and TCloud3.

7.13.2 stars.inc

Starfield1

Starfield2

7.14 stones.inc, stones1.inc, stones2.inc, stoneold.inc 325

Starfield3

Starfield4

Starfield5

Starfield6

7.14 stones.inc, stones1.inc, stones2.inc, stoneold.inc

The two files stones1.inc and stones2.inc contain lists of predefined stone textures.

The file ”stones1.inc” contains texture definitions for TGrnt0 to TGrnt29, TGrnt1a to TGrnt24a, and T-
Stone0 to TStone24.

The T GrntXX, T GrntXXa, and CrackX textures are ”building blocks that are used to create the final ”usable”
T StoneX textures (and other textures that *you* design, of course!)

The T GrntXX textures generally contain no transparency, but the TGrntXXa textures do contain transparency.
The CrackX textures are clear with thin opaque bands, simulating cracks.

The file ”stones2.inc” provides additional stone textures, and contains texture definitions for TStone25 to T-
Stone44.

The file ”stones.inc” simply includes both ”stones1.inc” and ”stones2.inc”, and the file ”stoneold.inc” provides
backwards compatability for old scenes, the user is advised to use the textures in ”stones1.inc” instead.

7.14.1 stones1.inc

T Grnt0

Gray/Tan with Rose.

T Grnt1

Creamy Whites with Yellow & Light Gray.

T Grnt2

Deep Cream with Light Rose, Yellow, Orchid, & Tan.

T Grnt3

Warm tans olive & light rose with cream.

T Grnt4

Orchid, Sand & Mauve.

T Grnt5

Medium Mauve Med.Rose & Deep Cream.

T Grnt6

Med. Orchid, Olive & Dark Tan ”mud pie”.

T Grnt7

Dark Orchid, Olive & Dark Putty.

T Grnt8

326 Include Files

Rose & Light Cream Yellows

T Grnt9

Light Steely Grays

T Grnt10

Gray Creams & Lavender Tans

T Grnt11

Creams & Grays Kahki

T Grnt12

Tan Cream & Red Rose

T Grnt13

Cream Rose Orange

T Grnt14

Cream Rose & Light Moss w/Light Violet

T Grnt15

Black with subtle chroma

T Grnt16

White Cream & Peach

T Grnt17

Bug Juice & Green

T Grnt18

Rose & Creamy Yellow

T Grnt19

Gray Marble with White feather Viens

T Grnt20

White Marble with Gray feather Viens

T Grnt21

Green Jade

T Grnt22

Clear with White feather Viens (has some transparency)

T Grnt23

Light Tan to Mauve

T Grnt24

Light Grays

T Grnt25

Moss Greens & Tan

T Grnt26

Salmon with thin Green Viens

T Grnt27

Dark Green & Browns

7.14 stones.inc, stones1.inc, stones2.inc, stoneold.inc 327

T Grnt28

Red Swirl

T Grnt29

White, Tan, w/ thin Red Viens

T Grnt0a

Translucent TGrnt0

T Grnt1a

Translucent TGrnt1

T Grnt2a

Translucent TGrnt2

T Grnt3a

Translucent TGrnt3

T Grnt4a

Translucent TGrnt4

T Grnt5a

Translucent TGrnt5

T Grnt6a

Translucent TGrnt6

T Grnt7a

Translucent TGrnt7

T Grnt8a

Aqua Tints

T Grnt9a

Transmit Creams With Cracks

T Grnt10a

Transmit Cream Rose & light yellow

T Grnt11a

Transmit Light Grays

T Grnt12a

Transmit Creams & Tans

T Grnt13a

Transmit Creams & Grays

T Grnt14a

Cream Rose & light moss

T Grnt15a

Transmit Sand & light Orange

T Grnt16a

Cream Rose & light moss (again?)

T Grnt17a

328 Include Files

???

T Grnt18a

???

T Grnt19a

Gray Marble with White feather Viens with Transmit

T Grnt20a

White Feather Viens

T Grnt21a

Thin White Feather Viens

T Grnt22a

???

T Grnt23a

Transparent Green Moss

T Grnt24a

???

T Crack1

T Crack & Red Overtint

T Crack2

Translucent Dark TCracks

T Crack3

Overtint Green w/ Black TCracks

T Crack4

Overtint w/ White TCrack

The StoneXX textures are the complete textures, ready to use.

T Stone1

Deep Rose & Green Marble with large White Swirls

T Stone2

Light Greenish Tan Marble with Agate style veining

T Stone3

Rose & Yellow Marble with fog white veining

T Stone4

Tan Marble with Rose patches

T Stone5

White Cream Marble with Pink veining

T Stone6

Rose & Yellow Cream Marble

T Stone7

Light Coffee Marble with darker patches

T Stone8

7.14 stones.inc, stones1.inc, stones2.inc, stoneold.inc 329

Gray Granite with white patches

T Stone9

White & Light Blue Marble with light violets

T Stone10

Dark Brown & Tan swirl Granite with gray undertones

T Stone11

Rose & White Marble with dark tan swirl

T Stone12

White & Pinkish Tan Marble

T Stone13

Medium Gray Blue Marble

T Stone14

Tan & Olive Marble with gray white veins

T Stone15

Deep Gray Marble with white veining

T Stone16

Peach & Yellow Marble with white veining

T Stone17

White Marble with gray veining

T Stone18

Green Jade with white veining

T Stone19

Peach Granite with white patches & green trim

T Stone20

Brown & Olive Marble with white veining

T Stone21

Red Marble with gray & white veining

T Stone22

Dark Tan Marble with gray & white veining

T Stone23

Peach & Cream Marble with orange veining

T Stone24

Green & Tan Moss Marble

7.14.2 stones2.inc

T Stone25, ..., T Stone44

330 Include Files

7.15 stdinc.inc

This file simply includes the most commonly used include files, so you can get all of them with a single #include.
The files included are:

• colors.inc

• shapes.inc

• transforms.inc

• consts.inc

• functions.inc

• math.inc

• rand.inc

7.16 strings.inc

This include contains macros for manipulating and generating text strings.

CRGBStr(C, MinLen, Padding) andCRGBFTStr(C, MinLen, Padding)

These macros convert a color to a string. The format of the output string is ”rgb< R, G, B>” or ”rgbft < R, G,
B, F, T>”, depending on the macro being called.
Parameters:

• C = The color to be turned into a string.

• MinLen = The minimum length of the individual components, analogous to the second parameter of str().

• Padding = The padding to use for the components, see the third parameter of the str() function for details.

Str(A). This macro creates a string containing a float with the systems default precision. It is a shortcut for
using the str() function.
Parameters:

• A = The float to be converted to a string.

VStr2D(V), VStr(V). These macros create strings containing vectors using POV syntax (<X,Y,Z>) with the
default system precision. VStr2D() works with 2D vectors, VStr() with 3D vectors. They are shortcuts for
using thevstr() function.
Parameters:

• V = The vector to be converted to a string.

Vstr2D(V,L,P), Vstr(V,L,P). These macros create strings containing vectors using POV syntax (<X,Y,Z>)
with user specified precision. Vstr2D() works with 2D vectors, Vstr() with 3D vectors. They are shortcuts for
using the vstr() function. The function of L and P is the same as invstr specified in String Functions.
Parameters:

• V = The vector to be converted to a string.

• L = Minimum length of the string and the type of left padding used if the string’s representation is shorter
than the minimum.

7.17 textures.inc 331

• P = Number of digits after the decimal point.”

Triangle Str(A, B, C) andSmooth Triangle Str(A, NA, B, NB, C, NC)

These macros take vertex and normal information and return a string representing a triangle in POV-Ray syntax.
They are mainly useful for generating mesh files.
Parameters:

• A, B, C = Triangle vertex points.

• NA, NB, NC = Triangle vertex normals (SmoothTriangleStr() only).

Parse String(String). This macro takes a string, writes it to a file, and then includes that file. This has the
effect of parsing that string: ”Parse String("MyColor")” will be seen by POV-Ray as ”MyColor”.
Parameters:

• String = The string to be parsed.

7.17 textures.inc

This file contains many predefined textures, including wood, glass, and metal textures, and a few texture/pattern
generation macros.

7.17.1 Stones

Stone Pigments:

Jade Map, Jade

Drew Wells’ superb Jade. Color map works nicely with other textures, too.

Red Marble Map, Red Marble

Classic white marble with red veins. Over-worked, like checkers.

White Marble Map, White Marble

White marble with black veins.

Blood Marble Map, Blood Marble

Light blue and black marble with a thin red vein.

Blue Agate Map, Blue Agate

A grey blue agate – kind of purplish.

Sapphire Agate Map, Sapphire Agate

Deep blue agate – almost glows.

Brown Agate Map, Brown Agate

Brown and white agate – very pretty.

Pink Granite Map, Pink Granite

Umm, well, pink granite.

Stone textures:

PinkAlabaster

Gray-pink alabaster or marble. Layers are scaled for a unit object and relative to each other.

332 Include Files

Note: This texture has very tiny dark blue specks that are often mistaken for rendering errors. They
are not errors. Just a strange texture design.

Underlying surface is very subtly mottled with bozo.
Second layer texture has some transmit values, yet a fair amount of color.
Veining is kept quite thin in color map and by the largish scale.

7.17.2 Skies

Sky pigments:

Blue Sky Map, Blue Sky

Basic blue sky with clouds.

Bright Blue Sky

Bright blue sky with very white clouds.

Blue Sky2

Another sky.

Blue Sky3

Small puffs of white clouds.

Blood Sky

Red sky with yellow clouds – very surreal.

Apocalypse

Black sky with red and purple clouds.
Try adding turbulence values from 0.1 - 5.0 – CdW

Clouds

White clouds with transparent sky.

FBM Clouds

Shadow Clouds

A multilayered cloud texture (a real texture, not a pigment).

7.17.3 Woods

Wood pigments:

Several wooden pigments by Tom Price:

Cherry Wood

A light reddish wood.

Pine Wood

A light tan wood whiteish rings.

Dark Wood

Dark wood with a,ish hue to it.

Tan Wood

Light tan wood with brown rings.

7.17 textures.inc 333

White Wood

A very pale wood with tan rings – kind of balsa-ish.

Tom Wood

Brown wood - looks stained.

DMFWood1, DMFWood2, DMFWood3, DMFWood4, DMFWood5

The scaling in these definitions is relative to a unit-sized object (radius 1).

Note: woods are functionally equivalent to a log lying along the z axis. For best results, think like
a woodcutter trying to extract the nicest board out of that log. A little tilt along the x axis will give
elliptical rings of grain like you would expect to find on most boards. Experiment.

Wood textures:

DMFWood6

This is a three-layer wood texture. Renders rather slowly because of the transparent layers and the
two layers of turbulence, but it looks great. Try other colors of ”varnish” for simple variations.

DMFLightOak

Is this really oak? I dunno. Quite light, maybe more like spruce.

DMFDarkOak

Looks like old desk oak if used correctly.

EMBWood1

Wood by Eric Barish

Doug Otwell woods:

Yellow Pine

Yellow pine, close grained.

Rosewood

Sandalwood

makes a great burled maple, too

7.17.4 Glass

Glass Finish is a generic glass finish,Glass Interior is a generic glass interior, it just adds an ior of 1.5.

Glass materials:

M Glass

Just glass.

M Glass2

Probably more of a ”Plexiglas” than glass.

M Glass3

An excellent lead crystal glass!

M Green Glass

Glass textures contributed by Norm Bowler, of Richland WA. NBglassfinish is used by these materials.

334 Include Files

M NBglass

M NBoldglass

M NBwinebottle

M NBbeerbottle

A few color variations on Norm’s glass.

M Ruby Glass

M Dark Green Glass

M Yellow Glass

M Orange Glass

M Vicks Bottle Glass

7.17.5 Metals

Metal finishes:

Metal

Generic metal finish.

SilverFinish

Basic silver finish

Metallic Finish

Metal textures:

Chrome Metal, Brass Metal, Bronze Metal, Gold Metal, Silver Metal, Copper Metal

A series of metallic textures using the Metal finish (except for ChromeMetal, which has a custom
finish). There are identical textures ending inTexture instead ofMetal, but use of those names is
discouraged.

Polished Chrome

A highly reflective Chrome texture.

Polished Brass

A highly reflective brass texture.

New Brass

Beautiful military brass texture!

Spun Brass

Spun Brass texture for cymbals & such

Brushed Aluminum

Brushed aluminum (brushed along X axis)

Silver1

Silver2

Silver3

7.17 textures.inc 335

Brass Valley

Sort of a ”Black Hills Gold”, black, white, and orange specks or splotches.

Rust

Rusty Iron

Soft Silver

New Penny

Tinny Brass

Gold Nugget

Aluminum

Bright Bronze

7.17.6 Special textures

Candy Cane

Red & white stripes - Looks best on a y axis Cylinder.
It ”spirals” because it’s gradient on two axis.

Peel

Orange and Clear stripes spiral around the texture to make an object look like it was ”Peeled”. Now,
you too can be M.C. Escher!

Y Gradient

X Gradient

M Water

Wavy water material. Requires a sub-plane, and may require scaling to fit your scene.
WARNING: Water texture has been changed to MWater material, see explanation in the ”glass”
section of this file.

Cork

Lightning CMap1, Lightning1, and Lightning CMap2, Lightning2

These are just lightning textures, they look like arcing electricity...earlier versions misspelled them
as ”Lightening”.

Starfield

A starfield texture by Jeff Burton

7.17.7 Texture and pattern macros

Irregular Bricks Ptrn (Mortar Thickness, X-scaling, Variation, Roundness). This function pattern cre-
ates a pattern of bricks of varying lengths on the x-y plane. This can be useful in building walls that do not look
like they were built by a computer. Note that mortar thickness between bricks can vary somewhat, too.
Parameters:

• Mortar Thickness = Thickness of the mortar (0-1).

336 Include Files

• X-scaling = The scaling of the bricks (but not the mortar) in the x direction.

• Variation = The amount by which brick lengths will vary (0=none, 1=100%).

• Roundness = The roundness of the bricks (0.01=almost rectangular, 1=very round).

Tiles Ptrn(). This macro creates a repeating box pattern on the x-y plane. It can be useful for creating grids.
The cells shade continuously from the center to the edges.
Parameters: None.

Hex Tiles Ptrn(). This macro creates a pattern that is a sort of cross between the hexagon pattern and a
repeating box pattern. The hexagonal cells shade continuously from the center to the edges.
Parameters: None.

Star Ptrn (Radius, Points, Skip). This macro creates a pattern that resembles a star. The pattern is in the
x-y plane, centered around the origin.
Parameters:

• Radius = The radius of a circle drawn through the points of the star.

• Points = The number of points on the star.

• Skip = The number of points to skip when drawing lines between points to form the star. A normal
5-pointed star skips 2 points. A Star of David also skips 2 points. Skip must be less than Points/2 and
greater than 0. Integers are preferred but not required. Skipping 1 point makes a regular polygon with
Points sides.

• Pigment = The pigment to be applied to the star.

• Background = The pigment to be applied to the background.

7.18 transforms.inc

Several useful transformation macros. All these macros produce transformations, you can use them anywhere
you can use scale, rotate, etc. The descriptions will assume you are working with an object, but the macros will
work fine for textures, etc.

Shear Trans(A, B, C). This macro reorients and deforms an object so its original XYZ axes point along A, B,
and C, resulting in a shearing effect when the vectors are not perpendicular. You can also use vectors of different
lengths to affect scaling, or use perpendicular vectors to reorient the object.
Parameters:

• A, B, C = Vectors representing the new XYZ axes for the transformation.

Matrix Trans(A, B, C, D). This macro provides a way to specify a matrix transform with 4 vectors. The effects
are very similar to that of the ShearTrans() macro, but the fourth parameter controls translation.
Parameters:

• A, B, C, D = Vectors for each row of the resulting matrix.

Axial Scale Trans(Axis, Amt). A kind of directional scale, this macro will ”stretch” an object along a specified
axis.
Parameters:

• Axis = A vector indicating the direction to stretch along.

7.18 transforms.inc 337

• Amt = The amount to stretch.

Axis Rotate Trans(Axis, Angle). This is equivalent to the transformation done by the vaxisrotate() function,
it rotates around an arbitrary axis.
Parameters:

• Axis = A vector representing the axis to rotate around.

• Angle = The amount to rotate by.

Rotate Around Trans(Rotation, Point). Ordinary rotation operates around the origin, this macro rotates
around a specific point.
Parameters:

• Rotation = The rotation vector, the same as the parameter to the rotate keyword.

• Point = The point to rotate around.

Reorient Trans(Axis1, Axis2). This alignsAxis1 to Axis2 by rotating the object around a vector perpendicular
to both axis1 and axis2.
Parameters:

• Axis1 = Vector to be rotated.

• Axis2 = Vectors to be rotated towards.

Point At Trans(YAxis). This macro is similar to ReorientTrans(), but it points the y axis along Axis.
Parameters:

• YAxis = The direction to point the y axis in.

Center Trans(Object, Axis). Calculates a transformation which will center an object along a specified axis.
You indicate the axes you want to center along by adding ”x”, ”y”, and ”z” together in the Axis parameter.

Note: this macro actually computes the transform to center the bounding box of the object, which may not be
entirely accurate. There is no way to define the ”center” of an arbitrary object.

Parameters:

• Object = The object the center transform is being computed for.

• Axis = The axes to center the object on.

Usage:

object {MyObj Center_Trans(MyObj, x)} //center along x axis

You can also center along multiple axes:

object {MyObj Center_Trans(MyObj, x+y)} //center along x and y axis

Align Trans(Object, Axis, Pt). Calculates a transformation which will align the sides of the bounding box of
an object to a point. Negative values on Axis will align to the sides facing the negative ends of the coordinate
system, positive values will align to the opposite sides, 0 means not to do any alignment on that axis.
Parameters:

• Object = The object being aligned.

338 Include Files

• Axis = A combination of +x, +y, +z, -x, -y, and -z, or a vector where each component is -1, 0, or +1
specifying the faces of the bounding box to align to the point.

• Point = The point to which to align the bounding box of the object.

Usage:

object {
MyObj
Align_Trans(MyObj, x, Pt) //Align right side of object to be

//coplanar with Pt
Align_Trans(MyObj,-y, Pt) //Align bottom of object to be

// coplanar with Pt
}

vtransform(Vect, Trans) andvinv transform(Vect, Trans).
Thevtransform() macro takes a transformation (rotate, scale, translate, etc...) and a point, and returns the result
of applying the transformation to the point. Thevinv transform() macro is similar, but applies the inverse of
the transform, in effect ”undoing” the transformation. You can combine transformations by enclosing them in a
transform block.
Parameters:

• Vect = The vector to which to apply the transformation.

• Trans = The transformation to apply to Vect.

Spline Trans(Spline, Time, SkyVector, ForeSight, Banking). This macro aligns an object to a spline for a
given time value. The Z axis of the object will point in the forward direction of the spline and the Y axis of the
object will point upwards.
Parameters:

• Spline = The spline that the object is aligned to.

• Time = The time value to feed to the spline, for example clock.

• Sky = The vector that is upwards in your scene, usually y.

• Foresight = A positive value that controls how much in advance the object will turn and bank. Values
close to 0 will give precise results, while higher values give smoother results. It will not affect parsing
speed, so just find the value that looks best.

• Banking = How much the object tilts when turning. The amount of tilting is equally much controlled by
the ForeSight value.

Usage:

object {MyObj Spline_Trans(MySpline, clock, y, 0.1, 0.5)}

7.19 woodmaps.inc, woods.inc

The file woodmaps.inc contains colormaps designed for use in wood textures. The MWoodXA maps are
intended to be used in the first layer of a multilayer texture, but can be used in single-layer textures. The
M WoodXB maps contain transparent areas, and are intended to be used in upper texture layers.

7.19 woodmaps.inc, woods.inc 339

The file woods.inc contains predefined wood textures and pigments.

The pigments are prefixed with P, and do not have colormaps, allowing you to specify a color map from
woodmaps.inc or create your own. There are two groups, ”A” and ”B”: the A series is designed to work better
on the bottom texture layer, and the B series is designed for the upper layers, with semitransparent color maps.
The pigments with the same number were designed to work well together, but you do not necessarily have to
use them that way.

The textures are prefixed with T, and are ready to use. They are designed with the major axis of the woodgrain
”cylinder” aligned along the Z axis. With the exception of the few of the textures which have a small amount of
rotation built-in, the textures will exhibit a very straight grain pattern unless you apply a small amount of x-axis
rotation to them (generally 2 to 4 degrees seems to work well).

7.19.1 woodmaps.inc

Color maps:

M Wood1A, ..., M Wood19A

M Wood1B, ..., M Wood19B

7.19.2 woods.inc

Pigments:

P WoodGrain1A, ..., P WoodGrainA

P WoodGrain1B, ..., P WoodGrainB

Textures:

T Wood1

Natural oak (light)

T Wood2

Dark brown

T Wood3

Bleached oak (white)

T Wood4

Mahogany (purplish-red)

T Wood5

Dark yellow with reddish overgrain

T Wood6

Cocabola (red)

T Wood7

Yellow pine (ragged grain)

T Wood8

Dark brown. Walnut?

340 Include Files

T Wood9

Yellowish-brown burl (heavily turbulated)

T Wood10

Soft pine (light yellow, smooth grain)

T Wood11

Spruce (yellowish, very straight, fine grain)

T Wood12

Another very dark brown. Walnut-stained pine, perhaps?

T Wood13

Very straight grained, whitish

T Wood14

Red, rough grain

T Wood15

Medium brown

T Wood16

Medium brown

T Wood17

Medium brown

T Wood18

Orange

T Wood19, ..., T Wood30

Golden Oak.

T Wood31

A light tan wood - heavily grained (variable coloration)

T Wood32

A rich dark reddish wood, like rosewood, with smooth-flowing grain

T Wood33

Similar to T WoodB, but brighter

T Wood34

Reddish-orange, large, smooth grain.

T Wood35

Orangish, with a grain more like a veneer than a plank

7.20 Other files

There are various other files in the include collection, including font files, color maps, and images for use in
height fields or imagemaps, and includes that are too small to have their own section.

7.20 Other files 341

7.20.1 logo.inc

The official POV-Ray logo designed by Chris Colefax, in two versions

Povray Logo

The POV-Ray logo object

Povray Logo Prism

The POV-Ray logo as a prism

Povray Logo Bevel

The POV-Ray logo as a beveled prism

7.20.2 raddef.inc

This file defines a macro that sets some common radiosity settings. These settings are extremely general and
are intended for ease of use, and do not necessarily give the best results.

Usage:

#include "rad_def.inc"
global_settings {

...
radiosity {

Rad_Settings(Setting, Normal, Media)
}

}

Parameters:

• Setting = Quality setting. Use one of the predefined constants:

– RadiosityDefault

– RadiosityDebug

– RadiosityFast

– RadiosityNormal

– Radiosity2Bounce

– RadiosityFinal

– RadiosityOutdoorLQ

– RadiosityOutdoorHQ

– RadiosityOutdoorLight

– RadiosityIndoorLQ

– RadiosityIndoorHQ

• Normal = Boolean value, whether or not to use surface normal modifiers for radiosity samples.

342 Include Files

• Media = Boolean value, whether or not to calculate media for radiosity samples.

7.20.3 screen.inc

Screen.inc will enable you to place objects and textures right in front of the camera. When you move the camera,
the objects placed with screen.inc will follow the movement and stay in the same position on the screen. One
use of this is to place your signature or a logo in the corner of the image.

You can only use screen.inc with the perspective camera. Screen.inc will automatically create a default camera
definition for you when it is included. All aspects of the camera can than be changed, by invoking the appropriate
’Set Camera...’ macros in your scene. After calling these setup macros you can use the macros ScreenObject
and ScreenPlane.

Note: even though objects aligned using screen.inc follow the camera, they are still part of the scene. That
means that they will be affected by perspective, lighting, the surroundings etc.

For an example of use, see the screen.pov demo file.

Set Camera Location(Loc) Changes the position of the default camera to a new location as specified by theLoc

vector.

Set Camera Look At(LookAt) Changes the position the default camera looks at to a new location as specified by
theLookAt vector.

Set Camera Aspect Ratio(Aspect) Changes the default aspect ratio,Aspect is a float value, usually width di-
vided by the height of the image.

Set Camera Aspect(Width,Height) Changes the default aspect ratio of the camera.

Set Camera Sky(Sky) Sets a new Sky-vector for the camera.

Set Camera Zoom(Zoom) The amount to zoom in or out,Zoom is a float.

Set Camera Angle(Angle) Sets a new camera angle.

Set Camera(Location, LookAt, Angle) Setlocation, look at andangle in one go.

Reset Camera() Resets the camera to its default values.

Screen Object (Object, Position, Spacing, Confine, Scaling) Puts an object in front of the camera.
Parameters:

• Object = The object to place in front of the screen.

• Position = UV coordinates for the object.<0,0> is lower left corner of the screen and<1,1> is upper
right corner.

• Spacing = Float describing minimum distance from object to the borders. UV vector can be used to get
different horizontal and vertical spacing.

• Confine = Set to true to confine objects to visible screen area. Set to false to allow objects to be outside
visible screen area.

• Scaling = If the object intersects or interacts with the scene, try to move it closer to the camera by
decreasing Scaling.

7.20 Other files 343

Screen Plane (Texture, Scaling, BLCorner, TRCorner) ScreenPlane is a macro that will place a texture of
your choice on a plane right in front of the camera.
Parameters:

• Texture = The texture to be displayed on the camera plane.<0,0,0> is lower left corner and<1,1,0>
is upper right corner.

• Scaling = If the plane intersects or interacts with the scene, try to move it closer to the camera by
decreasing Scaling.

• BLCorner = The bottom left corner of the ScreenPlane.

• TRCorner = The top right corner of the ScreenPlane.

7.20.4 stdcam.inc

This file simply contains a camera, a lightsource, and a ground plane.

7.20.5 stage1.inc

This file simply contains a camera, a lightsource, and a ground plane, and includes colors.inc, textures.inc, and
shapes.inc.

7.20.6 sunpos.inc

This file only contains the sunpos() macro

sunpos(Year, Month, Day, Hour, Minute, Lstm, LAT, LONG). The macro returns the position of the sun, for a
given date, time, and location on earth. The suns position is also globally declared as the vectorSolarPosition.
Two other declared vectors are theAz (Azimuth) andAl (Altitude), these can be useful for aligning an object
(media container) with the sunlight.
Assumption: in the scene north is in the +Z direction, south is -Z.
Parameters:

• Year= The year in four digits.

• Month= The month number (1-12).

• Day= The day number (1-31).

• Hour= The hour of day in 24 hour format (0-23).

• Minute= The minutes (0-59).

• Lstm= Meridian of your local time zone in degrees (+1 hour = +15 deg, east = positive, west = negative)

• LAT= Lattitude in degrees.decimal, northern hemisphere = positive, southern = negative

• LONG= Longitude in degrees.decimal, east = positive, west is negative

Use :

344 Include Files

#include "sunpos.inc"

light_source {
//Greenwich, noon on the longest day of 2000
SunPos(2000, 6, 21, 12, 2, 0, 51.4667, 0.00)
rgb 1

}

cylinder{
<-2,0,0>,<2,0,0>,0.1
rotate <0, Az-90, Al> //align cylinder with sun
texture {...}

}

7.20.7 font files (*.ttf)

The fonts cyrvetic.ttf and timrom.ttf were donated to the POV-Team by their creator, Ted Harrison
(CompuServe:70220,344) and were built using his FontLab for Windows by SoftUnion, Ltd. of St. Pe-
tersburg, Russia.

The font crystal.ttf was donated courtesy of Jerry Fitzpatrick, Red Mountain Corporation, redmtn [at] ix.netcom.
com

The font povlogo.ttf is created by Fabien Mosen and based on the POV-Ray logo design by Chris Colefax.

crystal.ttf

A fixed space programmer’s font.

cyrvetic.ttf

A proportional spaces sans-serif font.

timrom.ttf

A proportional spaces serif font.

povlogo.ttf

Only contains the POV-Ray logo.

7.20.8 colormap files (*.map)

These are 255-color colormaps, and are in individual files because of their size.

ash.map

benediti.map

bubinga.map

cedar.map

marbteal.map

orngwood.map

pinkmarb.map

7.20 Other files 345

rdgranit.map

teak.map

whiteash.map

7.20.9 image files (*.png, *.pot, *.df3)

bumpmap .png

A color mandelbrot fractal image, presumably intended for use as a bumpmap.

fract003.png

Some kind of fractal landscape, with color for blue water, brown land, and white peaks.

maze.png

A maze.

mtmand.pot

A grayscale mandelbrot fractal.

mtmandj.png

A 2D color julia fractal.

plasma2.png, plasma3.png

”Plasma fractal” images, mainly useful for landscape height fields. The file plasma3.png is a
smoother version of plasma2.png, plasma1.png does not exist.

povmap.png

The text ”Persistance of Vision” in green on a blue background, framed in black and red.

test.png

A ”test image”, the image is divided into 4 areas of different colors (magenta, yellow, cyan, red)
with black text on them, and the text ”POV-Ray” is centered on the image in white.

spiral.df3

A 3D bitmap density file. A spiral, ”galaxy” shape.

346 Include Files

Chapter 8

Quick Reference

This is a consolidation of the entire syntax for the POV-Ray’s Scene Description Language. Note that the syntax
conventions used here are slightly different than those used in the user documentation.

The following syntax conventions are used:

ITEM

An item not in brackets indicates that it is a required item.

[ITEM]

Brackets surround an optional item. If brackets are part of the item, that is noted where applicable.

ITEM...

An ellipsis indicates an item that may be used one or more times.

[ITEM...]

An ellipsis within brackets indicates an item that may be used zero or more times.

ITEM ITEM

Two or more juxtaposed items indicates that they should be used in the given order.

ITEM | ITEM

A pipe separates two or more alternatives from which only one item should be used.

ITEM & ITEM

An ampersand separates two or more items that may be used in any order.

Juxtaposition has precedence over the pipe or ampersand. In the following example, you would select one of
the keyword and vector pairs. For that last pair, the keyword itself is optional.

rgb 3D VECTOR —rgbf 4D VECTOR —rgbt 4D VECTOR — [rgbft] 5D VECTOR

Some item names are simply descriptive in nature. An indication of the item’s type is given by a prefix on the
item name, as follows:

F

A FLOAT item

I

An INT item

348 Quick Reference

V

A VECTOR item

V4

A 4-D VECTOR item

NOTE: this document provides only the syntax of the Scene Description Language (SDL). The intent is to
provide a single reference for all statements and keywords. It does not provide definitions for the numerous
keywords nor explain their usage.

8.1 Quick Reference Contents

The Scene
Language Basics

Floats
Vectors
Colors
User-Defined Functions
Strings
Arrays
Splines

Language Directives
File Inclusion
Identifier Declaration
File Input/Output
Default Texture
Version Compatibility
Conditional Directives
Message Streams
Macros
Embedded Directives

Transformations
Camera
Lights

Light Source
Light Group

Objects
Finite Solid Objects
Finite Patch Objects
Infinite Solid Objects
Isosurface
Parametric
Constructive Solid Geometry

Object Modifiers
UV Mapping
Material
Interior
Interior Texture

Texture
Plain Texture
Layered Texture
Patterned Texture
Pigment
Normal
Finish
Pattern
Pattern Modifiers

Media
Atmospheric Effects

Background
Fog
Sky Sphere
Rainbow

Global Settings
Radiosity
Photons

Table 8.1: Quick Reference Overview

8.2 The Scene 349

8.2 The Scene

Describe a POV-Ray scene:

SCENE:
SCENE ITEM...

SCENEITEM:
LANGUAGE DIRECTIVE | CAMERA | LIGHT | OBJECT | ATMOSPHERIC EFFECT | GLOBAL SETTINGS

Quick Reference Contents

8.3 Language Basics

8.3.1 Floats

Float Expressions

FLOAT:
NUMERIC TERM [SIGN NUMERIC TERM]...

SIGN:
+ | -

NUMERIC TERM:
NUMERIC FACTOR [MULT NUMERIC FACTOR]...

MULT:
* | /

NUMERIC EXPRESSION:
FLOAT LITERAL | FLOAT IDENTIFIER | SIGN NUMERIC EXPRESSION | FLOAT FUNCTION | FLOAT -

BUILT IN IDENT | (FULL EXPRESSION) | ! NUMERIC EXPRESSION | VECTOR. DOT ITEM | FLOAT -

FUNCTION INVOCATION

FLOAT LITERAL:
[DIGIT...][.]DIGIT...[EXP[SIGN]DIGIT...]

DIGIT:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

EXP:
e | E

FLOAT FUNCTION:
abs (FLOAT) | acos (FLOAT) | acosh (FLOAT) | asc (STRING) | asin (FLOAT) | asinh

(FLOAT) | atan (FLOAT) | atanh (FLOAT) | atan2 (FLOAT,FLOAT) | ceil (FLOAT) |

cos (FLOAT) | cosh (FLOAT) | defined (IDENTIFIER) | degrees (FLOAT) | dimensions

(ARRAY IDENTIFIER) | dimension size (ARRAY IDENTIFIER,INT) | div (FLOAT,FLOAT)

| exp (FLOAT) | file exists (STRING) | floor (FLOAT) | int (FLOAT) | inside

(SOLID OBJECT IDENT, VECTOR) | ln (FLOAT) | log (FLOAT) | max (FLOAT,FLOAT[,FLOAT]...)

| min (FLOAT,FLOAT[,FLOAT]...) | mod (FLOAT,FLOAT) | pow (FLOAT,FLOAT) | radians

350 Quick Reference

(FLOAT) | rand (FLOAT) | seed (FLOAT) | select (FLOAT,FLOAT,FLOAT,[FLOAT]) | sin

(FLOAT) | sinh (FLOAT) | sqrt (FLOAT) | strcmp (STRING,STRING) | strlen (STRING)

| tan (FLOAT) | tanh (FLOAT) | val (STRING) | vdot (VECTOR,VECTOR) | vlength

(VECTOR)

FLOAT BUILT IN IDENT:
BOOLEAN KEYWORD | clock | clock delta | clock on | final clock | final frame |

frame number | image height | image width | initial clock | initial frame |

pi | version

BOOLEAN KEYWORD:
true | yes | on | false | no | off

FULL EXPRESSION:
LOGICAL EXPRESSION [? FULL EXPRESSION : FULL EXPRESSION]

LOGICAL EXPRESSION:
REL TERM [LOGICAL OPERATOR REL TERM]...

LOGICAL OPERATOR:
& | |

REL TERM:
FLOAT [REL OPERATOR FLOAT]...

REL OPERATOR:
< | <= | = | >= | > | !=

DOT ITEM:
x | y | z | t | u | v | red | green | blue | filter | transmit | gray

INT:
FLOAT

Any fractional part is discarded.

BOOL:
BOOLEAN KEYWORD | LOGICAL EXPRESSION

Quick Reference Contents

8.3.2 Vectors

Vector Expressions

VECTOR:
VECTOR TERM [SIGN VECTOR TERM]...

VECTOR TERM:
VECTOR EXPRESSION [MULT VECTOR EXPRESSION]...

VECTOR EXPRESSION:

8.3 Language Basics 351

VECTOR LITERAL | VECTOR IDENTIFIER | SIGN VECTOR EXPRESSION | VECTOR FUNCTION | VECTOR -

BUILT IN IDENT | ! VECTOR EXPRESSION | FLOAT | VECTOR FUNCTION INVOCATION | COLOR -

FUNCTION INVOCATION | SPLINE INVOCATION

VECTOR LITERAL:
< FLOAT, FLOAT [, FLOAT [, FLOAT [, FLOAT]]] >

VECTOR FUNCTION:
min extent (OBJECT IDENTIFIER) | max extent (OBJECT IDENTIFIER) | trace (OBJECT IDENTIFIER,

VECTOR,VECTOR[,VECTOR IDENTIFIER]) | vaxis rotate (VECTOR,VECTOR,FLOAT) | vcross

(VECTOR,VECTOR) | vrotate (VECTOR,VECTOR) | vnormalize (VECTOR) | vturbulence

(FLOAT,FLOAT,FLOAT,VECTOR)

VECTOR BUILT IN IDENT:
x | y | z | t | u | v

Quick Reference Contents

8.3.3 Colors

Color Expressions

COLOR:
[color] COLOR BODY | colour COLOR BODY

COLOR BODY:
COLOR VECTOR | COLOR KEYWORD GROUP | COLOR IDENTIFIER

COLOR VECTOR:
rgb 3D VECTOR | rgbf 4D VECTOR | rgbt 4D VECTOR | [rgbft] 5D VECTOR

COLOR KEYWORD GROUP:
[COLOR IDENTIFIER] COLOR KEYWORD ITEMS

COLOR KEYWORD ITEMS:
[red FLOAT] & [green FLOAT] & [blue FLOAT] & [filter FLOAT] & [transmit FLOAT]

Quick Reference Contents

8.3.4 User defined Functions

User-Defined Functions

USERFUNCTION:
FLOAT USER FUNCTION | VECTOR USER FUNCTION | COLOR USER FUNCTION

FLOAT USERFUNCTION:
function { FN FLOAT } | function (IDENT LIST) { FN FLOAT } | function { pattern

{ PATTERN [PATTERN MODIFIERS]} }

IDENT LIST:
IDENT ITEM [, IDENT LIST]

The maximum number of parameter identifiers is 56. An identifier may not be repeated in the list.

352 Quick Reference

IDENT ITEM:
x | y | z | u | v | PARAM IDENTIFIER

PATTERN:
MAP PATTERN | brick [BRICK ITEM] | checker | hexagon | object { LIST OBJECT }

VECTOR USERFUNCTION:
function { SPECIAL VECTOR FUNCTION }

SPECIAL VECTOR FUNCTION:
TRANSFORM | SPLINE

COLOR USERFUNCTION:
function { PIGMENT }

Specify a float expression in a user-defined function:

FN FLOAT
LOGIC AND [OR LOGIC AND]

OR:
|

LOGIC AND:
REL TERM [AND REL TERM]

AND:
&

REL TERM:
TERM [REL OPERATOR TERM]

REL OPERATOR:
< | <= | = | >= | > | !=

TERM:
FACTOR [SIGN FACTOR]

SIGN:
+ | -

FACTOR:
EXPRESSION [MULT EXPRESSION]

MULT:
* | /

EXPRESSION:
FLOAT LITERAL | FLOAT IDENTIFIER | FN FLOAT FUNCTION | FLOAT BUILT IN IDENT | (FN FLOAT

) | IDENT ITEM | SIGN EXPRESSION | VECTOR FUNCTION INVOCATION. FN DOT ITEM | COLOR -

FUNCTION INVOCATION. FN DOT ITEM | FLOAT FUNCTION INVOCATION

FN DOT ITEM:
DOT ITEM | hf

FN FLOAT FUNCTION:

8.3 Language Basics 353

abs (FN FLOAT) | acos (FN FLOAT) | acosh (FN FLOAT) | asin (FN FLOAT) | asinh

(FN FLOAT) | atan (FN FLOAT) | atanh (FN FLOAT) | atan2 (FN FLOAT,FN FLOAT) | ceil

(FN FLOAT) | cos (FN FLOAT) | cosh (FN FLOAT) | degrees (FN FLOAT) | exp (FN -

FLOAT) | floor (FN FLOAT) | int (FN FLOAT) | ln (FN FLOAT) | log (FN FLOAT) | max

(FN FLOAT,FN FLOAT[,FN FLOAT]...) | min (FN FLOAT,FN FLOAT[,FN FLOAT]...) | mod

(FN FLOAT,FN FLOAT) | pow (FN FLOAT,FN FLOAT) | prod (IDENTIFIER, FN FLOAT, FN -

FLOAT, FN FLOAT) | radians (FN FLOAT) | sin (FN FLOAT) | sinh (FN FLOAT) | sqrt

(FN FLOAT) | sum (IDENTIFIER, FN FLOAT, FN FLOAT, FN FLOAT) |tan (FN FLOAT) | tanh

(FN FLOAT) | select (FN FLOAT,FN FLOAT,FN FLOAT [,FN FLOAT])

Create an identifier for a user-defined function:

USERFUNCTION DECLARATION:
#declare FLOAT FUNCTION IDENTIFIER = FLOAT USER FUNCTION |

#local FLOAT FUNCTION IDENTIFIER = FLOAT USER FUNCTION |

#declare VECTOR FUNCTION IDENTIFIER = VECTOR USER FUNCTION |

#local VECTOR FUNCTION IDENTIFIER = VECTOR USER FUNCTION |

#declare COLOR FUNCTION IDENTIFIER = COLOR USER FUNCTION |

#local COLOR FUNCTION IDENTIFIER = COLOR USER FUNCTION

Reference a user-defined function:

FLOAT FUNCTION INVOCATION:
FLOAT FUNCTION IDENTIFIER (FN PARAM LIST)

VECTOR FUNCTION INVOCATION:
VECTOR FUNCTION IDENTIFIER (FN PARAM LIST)

COLOR FUNCTION INVOCATION:
COLOR FUNCTION IDENTIFIER (FN PARAM LIST)

FN PARAM LIST:
FN PARAM ITEM [, FN PARAM LIST]

FN PARAM ITEM:
x | y | z | u | v | FLOAT

Quick Reference Contents

8.3.5 Strings

String Expressions

STRING:
STRING FUNCTION | STRING IDENTIFIER | STRING LITERAL

STRING FUNCTION:
chr (INT) | concat (STRING,STRING[,STRING]...) | str (FLOAT,INT,INT) | strlwr

(STRING) | strupr (STRING) | substr (STRING,INT,INT) | vstr (INT,VECTOR,STRING,

INT,INT)

STRING LITERAL:
QUOTE [CHARACTER...] QUOTE

Limited to 256 characters.

354 Quick Reference

QUOTE:
"

CHARACTER:
Any ASCII or Unicode character, depending on thecharsetsetting inglobal settings. The follow-
ing escape sequences might be useful when writing to files or message streams:
\a - alarm
\b - backspace
\f - form feed
\n - new line
\r - carriage return
\t - horizontal tab
\uNNNN- unicode character four-digit code
\v - vertical tab
\\ - backslash
\’ - single quote
\" - double quote

Quick Reference Contents

8.3.6 Arrays

Define an array:

ARRAY DECLARATION:
#declare ARRAY IDENTIFIER = array DIMENSION... [ARRAY INITIALIZER] |

#local ARRAY IDENTIFIER = array DIMENSION... [ARRAY INITIALIZER]

Limited to five dimensions.

DIMENSION:
[INT]

The brackets here are part of the dimension specification. The integer must be greater than zero.

ARRAY INITIALIZER:
{ ARRAY INITIALIZER [, ARRAY INITIALIZER]... } |

{ RVALUE [, RVALUE]... }

Place a value into an array:

ARRAY ELEMENT ASSIGNMENT:
#declare ARRAY REFERENCE =RVALUE [;] |

#local ARRAY REFERENCE = RVALUE [;]

The semicolon is required for a FLOAT, VECTOR or COLOR assignment.

Reference an array:

ARRAY REFERENCE:
ARRAY IDENTIFIER ELEMENT...

ELEMENT:
[INT]

The brackets here are part of the element specification.

8.4 Language Directives 355

Quick Reference Contents

8.3.7 Splines

Define a spline:

SPLINE:
spline { SPLINE ITEMS }

SPLINE ITEMS
[SPLINE TYPE] PATH LIST | SPLINE IDENTIFIER [SPLINE TYPE][PATH LIST]

SPLINE TYPE:
linear spline | quadratic spline | cubic spline | natural spline

PATH LIST:
FLOAT, VECTOR [[,] PATH LIST]

Reference a spline:

SPLINE INVOCATION:
SPLINE IDENTIFIER (FLOAT [, SPLINE TYPE])

Quick Reference Contents

8.4 Language Directives

Control the parsing of sections of the scene file:

LANGUAGE DIRECTIVE:
INCLUDE DIRECTIVE | IDENTIFIER DECLARATION | UNDEF DIRECTIVE | FOPEN DIRECTIVE | FCLOSE -

DIRECTIVE | READ DIRECTIVE | WRITE DIRECTIVE | DEFAULT DIRECTIVE | VERSION DIRECTIVE |

IF DIRECTIVE | IFDEF DIRECTIVE | IFNDEF DIRECTIVE | SWITCH DIRECTIVE | WHILE DIRECTIVE

| TEXT STREAM DIRECTIVE | MACRO DEFINITION

Quick Reference Contents

8.4.1 File Inclusion

Insert content of another scene file:

INCLUDE DIRECTIVE:
#include FILE NAME

File inclusion may be nested at most 10 levels deep.

FILE NAME:
STRING

Quick Reference Contents

356 Quick Reference

8.4.2 Identifier Declaration

Create an identifier for a value, object, etc.

IDENTIFIER DECLARATION:
#declare IDENTIFIER = RVALUE [;] |

#local IDENTIFIER = RVALUE [;]

Up to 127 characters, starting with a letter, consisting of letters, digits and/or the underscore. The
semicolon is required for a FLOAT, VECTOR or COLOR declaration.

RVALUE:
FLOAT | VECTOR | COLOR | USER FUNCTION | STRING | ARRAY REFERENCE | SPLINE | TRANSFORM

| CAMERA | LIGHT | OBJECT | MATERIAL | INTERIOR | TEXTURE | TEXTURE MAP | PIGMENT |

COLOR MAP | PIGMENT MAP | NORMAL | SLOPE MAP | NORMAL MAP | FINISH | MEDIA | DENSITY |

DENSITY MAP | FOG | RAINBOW | SKY SPHERE

Destroy an identifier:

UNDEF DIRECTIVE:
#undef IDENTIFIER

Quick Reference Contents

8.4.3 File Input/Output

Open a text file:

FOPENDIRECTIVE:
#fopen FILE HANDLE IDENTIFIER FILE NAME OPEN TYPE

OPENTYPE:
read | write | append

Close a text file:

FCLOSEDIRECTIVE:
#fclose FILE HANDLE IDENTIFIER

Read string, float and/or vector values from a text file:

READ DIRECTIVE:
#read (FILE HANDLE IDENTIFIER, DATA IDENTIFIER [, DATA IDENTIFIER]...)

Usedefined(FILE HANDLE IDENTIFIER) to detect end-of-file after a read.

DATA IDENTIFIER:
UNDECLARED IDENTIFIER | FLOAT IDENTIFIER | VECTOR IDENTIFIER | STRING IDENTIFIER |

ARRAY REFERENCE

May read a value into an array reference if the array element’s type has already been established.

Write string, float and/or vector values to a text file:

WRITE DIRECTIVE:
#write (FILE HANDLE IDENTIFIER, DATA ITEM [, DATA ITEM]...)

DATA ITEM:

8.4 Language Directives 357

FLOAT | VECTOR | STRING

Quick Reference Contents

8.4.4 Default Texture

Specify a default texture, pigment, normal or finish:

DEFAULT DIRECTIVE:
#default { DEFAULT ITEM }

DEFAULT ITEM:
PLAIN TEXTURE | PIGMENT | NORMAL | FINISH

Quick Reference Contents

8.4.5 Version Identfier

Specify the POV-Ray compatibility version number:

VERSION DIRECTIVE:
#version FLOAT;

Quick Reference Contents

8.4.6 Control Flow Directives

Conditionally parse a section of the scene file, depending on a boolean expression:

IF DIRECTIVE:
#if (BOOL) TOKENS [#else TOKENS] #end

TOKENS:
Any number of POV-Ray keywords, identifiers, values and/or punctuation.

Conditionally parse a section of the scene file, depending on the existence of an identifier:

IFDEF DIRECTIVE:
#ifdef (IDENTIFIER) TOKENS [#else TOKENS] #end

IFNDEF DIRECTIVE:
#ifndef (IDENTIFIER) TOKENS [#else TOKENS] #end

Conditionally parse a section of the scene file, depending on the value of a float expression:

SWITCH DIRECTIVE:
#switch (FLOAT) SWITCH CLAUSE... [#else TOKENS] #end

SWITCH CLAUSE:
#case (FLOAT) TOKENS [#break] |

#range (F LOW, F HIGH) TOKENS [#break]

Repeat a section of the scene file while a boolean condition is true:

358 Quick Reference

WHILE DIRECTIVE:
#while (LOGICAL EXPRESSION) TOKENS #end

Quick Reference Contents

8.4.7 Message Streams

Send a message to a text stream:

TEXT STREAM DIRECTIVE:
#debug STRING | #error STRING | #warning STRING

Quick Reference Contents

8.4.8 Macro

Define a macro:

MACRO DEFINITION:
#macro MACRO IDENTIFIER ([PARAM IDENTIFIER [, PARAM IDENTIFIER]...]) TOKENS #end

A parameter identifier may not be repeated in the list.

Invoke a macro:

MACRO INVOCATION:
MACRO IDENTIFIER ([ACTUAL PARAM [, ACTUAL PARAM]...])

ACTUAL PARAM:
IDENTIFIER | RVALUE

Quick Reference Contents

8.4.9 Embedded Directives

Some directives may be embedded in CAMERA, LIGHT, OBJECT and ATMOSPHERICEFFECT state-
ments. However, the directives should only include items (if any) that are valid for a given statement.
Also, they should not disrupt the required order of items, where applicable.

EMBEDDED DIRECTIVE:
IDENTIFIER DECLARATION | UNDEF DIRECTIVE | READ DIRECTIVE | WRITE DIRECTIVE | IF -

DIRECTIVE | IFDEF DIRECTIVE | IFNDEF DIRECTIVE | SWITCH DIRECTIVE | WHILE DIRECTIVE |

TEXT STREAM DIRECTIVE

Quick Reference Contents

8.5 Transformations

Rotate, resize, move, or otherwise manipulate the coordinates of an object or texture

TRANSFORMATION:

8.6 Camera 359

rotate VECTOR | scale VECTOR | translate VECTOR | TRANSFORM | MATRIX

TRANSFORM:
transform TRANSFORM IDENTIFIER | transform { [TRANSFORM ITEM...] }

TRANSFORMITEM:
TRANSFORM IDENTIFIER | TRANSFORMATION | inverse

MATRIX:
matrix < F VAL00, F VAL01, F VAL02, F VAL10, F VAL11, F VAL12, F VAL20, F VAL21, F -

VAL22, F VAL30, F VAL31, F VAL32 >

Quick Reference Contents

8.6 Camera

Describe the position, projection type and properties of the camera viewing the scene

CAMERA:
Jump to SDL
camera { [CAMERA TYPE] [CAMERA ITEMS] [CAMERA MODIFIERS] } |

camera { CAMERA IDENTIFIER [TANSFORMATIONS ...] }

CAMERA TYPE:
perspective | orthographic | fisheye | ultra wide angle | omnimax | panoramic

| spherical | cylinder CYLINDER TYPE

CYLINDER TYPE:
1 | 2 | 3 | 4

CAMERA ITEMS:
[location VECTOR] & [right VECTOR] & [up VECTOR] & [direction VECTOR] & [sky

VECTOR]

CAMERA MODIFIERS:
[angle [angle F HORIZONTAL] [,F VERTICAL]] & [look at VECTOR] & [FOCAL BLUR] & [NORMAL]

& [TRANSFORMATION...]

FOCAL BLUR:
aperture FLOAT & blur samples INT & [focal point VECTOR] & [confidence FLOAT] &

[variance FLOAT]

Quick Reference Contents

8.7 Lights

Specify light sources for the scene or for specific objects

LIGHT:
LIGHT SOURCE | LIGHT GROUP

Describe the position, type and properties of a light source for the scene:

360 Quick Reference

LIGHT SOURCE:
Jump to SDL
light source { V LOCATION, COLOR [LIGHT SOURCE ITEMS] }

LIGHT SOURCEITEMS:
[LIGHT TYPE] & [AREA LIGHT ITEMS] & [LIGHT MODIFIERS]

LIGHT TYPE:
spotlight [SPOTLIGHT ITEMS] | cylinder [SPOTLIGHT ITEMS]

SPOTLIGHTITEMS:
[radius FLOAT] & [falloff FLOAT] & [tightness FLOAT] & [point at VECTOR]

AREA LIGHT ITEMS:
area light V AXIS1, V AXIS2, I SIZE1, I SIZE2 [AREA LIGHT MODIFIERS]

AREA LIGHT MODIFIERS:
[adaptive INT] & [jitter] & [circular] & [orient]

LIGHT MODIFIERS:
[LIGHT PHOTONS] & [looks like { OBJECT }] & [TRANSFORMATION...] & [fade distance

FLOAT] & [fade power FLOAT] & [media attenuation [BOOL]] & [media interaction

[BOOL]] & [shadowless] & [projected through { OBJECT IDENTIFIER }] & [parallel

[point at VECTOR]]

Specify how a light source should interact with photons:

LIGHT PHOTONS:
photons { LIGHT PHOTON ITEMS }

LIGHT PHOTONITEMS:
[refraction BOOL] & [reflection BOOL] & [area light]

Quick Reference Contents

8.7.1 Lightgroup

Assign objects to specific light sources:

LIGHT GROUP:
Jump to SDL
light group { LIGHT GROUP ITEM... [LIGHT GROUP MODIFIERS] }

LIGHT GROUPITEM:
LIGHT SOURCE | OBJECT | LIGHT GROUP

LIGHT GROUPMODIFIERS:
[global lights BOOL] & [TRANSFORMATION...]

Quick Reference Contents

8.8 Objects 361

8.8 Objects

Describe an object in the scene

OBJECT:
FINITE SOLID OBJECT | FINITE PATCH OBJECT | INFINITE SOLID OBJECT | ISOSURFACE | PARAMETRIC

| CSG OBJECT | OBJECT STATEMENT

OBJECTSTATEMENT:
object { OBJECT IDENTIFIER [OBJECT MODIFIERS] }

Quick Reference Contents

8.8.1 Finite Solid Objects

Describe a solid finite shape:

FINITE SOLID OBJECT:
BLOB | BOX | CONE | CYLINDER | HEIGHT FIELD | JULIA FRACTAL | LATHE | PRISM | SPHERE |

SPHERE SWEEP | SUPERELLIPSOID | SOR | TEXT | TORUS

The blob object:

BLOB:
Jump to SDL
blob { [threshold FLOAT] BLOB ITEM... [BLOB MODIFIERS] }

BLOB ITEM:
sphere { V CENTER, F RADIUS, [strength] F STRENGTH [COMPONENT MODIFIERS] } |

cylinder { V END1, V END2, F RADIUS, [strength] F STRENGTH [COMPONENT MODIFIERS] }

COMPONENTMODIFIERS:
[TEXTURE] & [PIGMENT] & [NORMAL] & [FINISH] & [TRANSFORMATION...]

BLOB MODIFIERS:
[hierarchy [BOOL]] & [sturm [BOOL]] & [OBJECT MODIFIERS]

The box object:

BOX:
Jump to SDL
box { V CORNER1, V CORNER2 [BOX MODIFIERS] }

BOX MODIFIERS:
[UV MAPPING] & [OBJECT MODIFIERS]

The cone object:

CONE:
Jump to SDL
cone { V BASE CENTER, F BASE RADIUS, V CAP CENTER, F CAP RADIUS [open] [OBJECT MODIFIERS]

}

The cylinder object:

362 Quick Reference

CYLINDER:
Jump to SDL
cylinder { V BASE CENTER, V CAP CENTER, F RADIUS [open] [OBJECT MODIFIERS] }

The height field object:

HEIGHT FIELD:
Jump to SDL
height field { HF IMAGE [HF MODIFIERS] }

HF IMAGE:
FUNCTION IMAGE | [HF TYPE] FILE NAME

HF TYPE:
gif | tga | pot | png | pgm | ppm | jpeg | tiff | sys

HF MODIFIERS:
[hierarchy [BOOL]] & [smooth] & [water level FLOAT] & [OBJECT MODIFIERS]

The Julia fractal object:

JULIA FRACTAL:
Jump to SDL
julia fractal { 4D VECTOR [JF ITEMS] [OBJECT MODIFIERS] }

JF ITEMS:
[ALGEBRA ITEM] & [max iteration INT] & [precision FLOAT] & [slice V4 NORMAL, F -

DISTANCE]

ALGEBRA ITEM:
quaternion [QUATER FUNCTION] | hypercomplex [HYPER FUNCTION]

QUATER FUNCTION:
sqr | cube

HYPER FUNCTION:
sqr | cube | exp | reciprocal | sin | asin | sinh | asinh | cos | acos | cosh

| acosh | tan | atan | tanh | atanh | ln | pwr (FLOAT,FLOAT)

The lathe object:

LATHE:
Jump to SDL
lathe { [LATHE SPLINE TYPE] I NUM POINTS, POINT LIST [LATHE MODIFIERS] }

LATHE SPLINE TYPE:
linear spline | quadratic spline | cubic spline | bezier spline

POINT LIST:
2D VECTOR [, 2D VECTOR]...

The quantity of 2DVECTORs is specified by the INUM POINTS value.

LATHE MODIFIERS:
[sturm [BOOL]] & [UV MAPPING] & [OBJECT MODIFIERS]

The prism object:

PRISM:

8.8 Objects 363

Jump to SDL
prism { [PRISM ITEMS] F HEIGHT1, F HEIGHT2, I NUM POINTS, POINT LIST [open] [PRISM -

MODIFIERS] }

PRISM ITEMS:
[PRISM SPLINE TYPE] & [PRISM SWEEP TYPE]

PRISM SPLINE TYPE:
linear spline | quadratic spline | cubic spline | bezier spline

PRISM SWEEPTYPE:
linear sweep | conic sweep

PRISM MODIFIERS:
[sturm [BOOL]] & [OBJECT MODIFIERS]

The sphere object:

SPHERE:
Jump to SDL
sphere { V CENTER, F RADIUS [SPHERE MODIFIERS] }

SPHEREMODIFIERS:
[UV MAPPING] & [OBJECT MODIFIERS]

The sphere sweep object:

SPHERESWEEP:
Jump to SDL
sphere sweep { SWEEP SPLINE TYPE I NUM SPHERES, SPHERE LIST [tolerance F DEPTH -

TOLERANCE] [OBJECT MODIFIERS] }

SWEEPSPLINE TYPE:
linear spline | b spline | cubic spline

SPHERELIST:
V CENTER, F RADIUS [, SPHERE LIST]

The quantity of VCENTER, FRADIUS pairs is specified by the INUM SPHERES value.

The superquadric ellipsoid object:

SUPERELLIPSOID:
Jump to SDL
superellipsoid { < FLOAT, FLOAT > [OBJECT MODIFIERS] }

The surface of revolution object:

SOR:
Jump to SDL
sor { I NUM POINTS, POINT LIST [open] [SOR MODIFIERS] }

SORMODIFIERS:
[sturm [BOOL]] & [UV MAPPING] & [OBJECT MODIFIERS]

The text object:

TEXT:
Jump to SDL

364 Quick Reference

text { ttf FILE NAME STRING F THICKNESS, V OFFSET [OBJECT MODIFIERS] }

The torus object:

TORUS:
Jump to SDL
torus { F MAJOR RADIUS, F MINOR RADIUS [TORUS MODIFIERS] }

TORUSMODIFIERS:
[sturm [BOOL]] & [UV MAPPING] & [OBJECT MODIFIERS]

Quick Reference Contents

8.8.2 Finite Patch Objects

Describe a totally thin, finite shape:

FINITE PATCH OBJECT:
Jump to SDL
BICUBIC PATCH | DISC | MESH | MESH2 | POLYGON | TRIANGLE | SMOOTH TRIANGLE

The bicubic patch object:

BICUBIC PATCH:
Jump to SDL
bicubic patch { PATCH ITEMS [PATCH UV VECTORS] CONTROL POINTS [BICUBIC PATCH MODIFIERS]

}

PATCH ITEMS:
type PATCH TYPE & [u steps INT] & [v steps INT] & [flatness FLOAT]

PATCH TYPE:
0 | 1

PATCH UV VECTORS:
uv vectors V2 CORNER1, V2 CORNER2, V2 CORNER3, V2 CORNER4

CONTROL POINTS:
16 VECTORs, optionally separated by commas.

BICUBIC PATCH MODIFIERS:
[UV MAPPING] & [OBJECT MODIFIERS]

The disc object:

DISC:
Jump to SDL
disc { V CENTER, V NORMAL, F RADIUS [, F HOLE RADIUS] [OBJECT MODIFIERS] }

The mesh object:

MESH:
Jump to SDL
mesh { MESH TRIANGLE... [MESH MODIFIERS] }

MESH TRIANGLE:

8.8 Objects 365

triangle { V CORNER1, V CORNER2, V CORNER3 [MESH UV VECTORS] [MESH TEXTURE] } |

smooth triangle { V CORNER1, V NORMAL1, V CORNER2, V NORMAL2, V CORNER3, V NORMAL3

[MESH UV VECTORS] [MESH TEXTURE] }

MESH UV VECTORS:
uv vectors V2 CORNER1, V2 CORNER2, V2 CORNER3

MESH TEXTURE:
texture { TEXTURE IDENTIFIER } |

texture list { TEXTURE IDENTIFIER TEXTURE IDENTIFIER TEXTURE IDENTIFIER }

MESH MODIFIERS:
[inside vector V DIRECTION] & [hierarchy [BOOL]] & [UV MAPPING] & [OBJECT MODIFIERS]

The mesh2 object:

MESH2:
Jump to SDL
mesh2 { MESH2 VECTORS [TEXTURE LIST] MESH2 INDICES [MESH2 MODIFIERS] }

MESH2 VECTORS:
VERTEX VECTORS [NORMAL VECTORS] [UV VECTORS]

VERTEX VECTORS:
vertex vectors { I NUM VERTICES, VECTOR [, VECTOR]... }

NORMAL VECTORS:
normal vectors { I NUM NORMALS, VECTOR [, VECTOR]... }

UV VECTORS:
uv vectors { I NUM UV VECTORS, 2D VECTOR [, 2D VECTOR]... }

TEXTURE LIST:
texture list { I NUM TEXTURES, TEXTURE [, TEXTURE]... }

MESH2 INDICES:
FACE INDICES [NORMAL INDICES] [UV INDICES]

FACE INDICES:
face indices { I NUM FACES, FACE INDICES ITEM [, FACE INDICES ITEM]... }

FACE INDICES ITEM:
VECTOR [, I TEXTURE INDEX [, I TEXTURE INDEX, I TEXTURE INDEX]]

NORMAL INDICES:
normal indices { I NUM FACES, VECTOR [, VECTOR]... }

UV INDICES:
uv indices { I NUM FACES, VECTOR [, VECTOR]... }

MESH2 MODIFIERS:
[inside vector V DIRECTION] & [UV MAPPING] & [OBJECT MODIFIERS]

The polygon object:

POLYGON:
Jump to SDL
polygon { I NUM POINTS, V POINT [, V POINT]... [OBJECT MODIFIERS] }

366 Quick Reference

The quantity of VPOINTs is specified by the INUM POINTS value.

The triangle object:

TRIANGLE:
Jump to SDL
triangle { V CORNER1, V CORNER2, V CORNER3 [OBJECT MODIFIERS] }

The smooth triangle object:

SMOOTH TRIANGLE:
Jump to SDL
smooth triangle { V CORNER1, V NORMAL1, V CORNER2, V NORMAL2, V CORNER3, V NORMAL3

[OBJECT MODIFIERS] }

Quick Reference Contents

8.8.3 Infinite Solid Objects

Describe a solid, possibly infinite, shape:

INFINITE SOLID OBJECT:
PLANE | POLY | CUBIC | QUARTIC | QUADRIC

The plane object:

PLANE:
Jump to SDL
plane { V NORMAL, F DISTANCE [OBJECT MODIFIERS] }

The poly object:

POLY:
Jump to SDL
poly { ORDER, < POLY COEFFICIENTS > [POLY MODIFIERS] }

ORDER:
An integer value between 2 and 15 inclusive.

POLY COEFFICIENTS:
A quantityn of FLOATs separated by commas, wheren is ((ORDER+1)*(ORDER+2)*(ORDER+3))/6.

POLY MODIFIERS:
[sturm [BOOL]] & [OBJECT MODIFIERS]

The cubic object:

CUBIC:
cubic { < CUBIC COEFFICIENTS > [POLY MODIFIERS] }

CUBIC COEFFICIENTS:
20 FLOATs separated by commas.

The quartic object:

QUARTIC:
quartic { < QUARTIC COEFFICIENTS > [POLY MODIFIERS] }

8.8 Objects 367

QUARTIC COEFFICIENTS:
35 FLOATs separated by commas.

The quadric object:

QUADRIC:
Jump to SDL
quadric { < FLOAT, FLOAT, FLOAT >, < FLOAT, FLOAT, FLOAT >, < FLOAT, FLOAT, FLOAT

>, FLOAT [OBJECT MODIFIERS] }

Quick Reference Contents

8.8.4 Isosurface

Describe a surface via a mathematical function:

ISOSURFACE:
Jump to SDL
isosurface { FLOAT USER FUNCTION [ISOSURFACE ITEMS] [OBJECT MODIFIERS] }

ISOSURFACEITEMS:
[contained by { CONTAINER }] & [threshold FLOAT] & [accuracy FLOAT] & [max -

gradient FLOAT [evaluate F MIN ESTIMATE, F MAX ESTIMATE, F ATTENUATION]] & [open]

& [INTERSECTION LIMIT]

CONTAINER:
sphere { V CENTER, F RADIUS } | box { V CORNER1, V CORNER2 }

INTERSECTIONLIMIT:
max trace INT | all intersections

Quick Reference Contents

8.8.5 Parametric

Describe a surface using functions to locate points on the surface:

PARAMETRIC:
Jump to SDL
parametric { FLOAT USER FUNCTION, FLOAT USER FUNCTION, FLOAT USER FUNCTION 2D VECTOR,

2D VECTOR [PARAMETRIC ITEMS] [UV MAPPING] & [OBJECT MODIFIERS] }

PARAMETRIC ITEMS:
[contained by { CONTAINER }] & [max gradient FLOAT] & [accuracy FLOAT] & [precompute

I DEPTH, x, y, z]

CONTAINER:
sphere { V CENTER, F RADIUS } | box { V CORNER1, V CORNER2 }

Quick Reference Contents

368 Quick Reference

8.8.6 CSG

Describe one complex shape from multiple shapes:

CSGOBJECT:
Jump to SDL
UNION | INTERSECTION | DIFFERENCE | MERGE

Combine multiple shapes into one:

UNION:
union { UNION OBJECT UNION OBJECT... [UNION MODIFIERS] }

UNION OBJECT:
OBJECT | LIGHT

UNION MODIFIERS:
[split union BOOL] & [OBJECT MODIFIERS]

Create a new shape from the overlapping portions of multiple shapes:

INTERSECTION:
intersection { SOLID OBJECT SOLID OBJECT... [INTERSECTION MODIFIERS] }

SOLID OBJECT:
FINITE SOLID OBJECT | INFINITE SOLID OBJECT | ISOSURFACE | CSG OBJECT

INTERSECTIONMODIFIERS:
[cutaway textures] & [OBJECT MODIFIERS]

Subtract one or more shapes from another:

DIFFERENCE:
difference { SOLID OBJECT SOLID OBJECT... [DIFFERENCE MODIFIERS] }

DIFFERENCEMODIFIERS:
[cutaway textures] & [OBJECT MODIFIERS]

Combine multiple shapes into one, removing internal surfaces:

MERGE:
merge { SOLID OBJECT SOLID OBJECT... [OBJECT MODIFIERS] }

Quick Reference Contents

8.9 Object Modifiers

Manipulate the appearance of an object

OBJECTMODIFIERS:
[OBJECT PHOTONS] & [CLIPPED BY] & [BOUNDED BY] & [MATERIAL] & [INTERIOR] & [INTERIOR -

TEXTURE] & [TEXTURE] & [PIGMENT] & [NORMAL] & [FINISH] & [TRANSFORMATION...] & [no -

shadow] & [no image [BOOL]] & [no reflection {BOOL]] & [inverse] & [double illuminate [BOOL]]

& [hollow [BOOL]]

Specify how an object should interact with photons:

8.9 Object Modifiers 369

OBJECTPHOTONS:
Jump to SDL
photons { OBJECT PHOTON ITEMS }

OBJECTPHOTONITEMS:
[target [F SPACING MULT]] & [refraction BOOL] & [reflection BOOL] & [collect

BOOL] & [pass through [BOOL]]

Slice a portion of a shape:

CLIPPEDBY:
clipped by { UNTEXTURED SOLID OBJECT... } |

clipped by { bounded by }

UNTEXTURED SOLID OBJECT:
FINITE SOLID OBJECT | INFINITE SOLID OBJECT

Note, neither with a texture applied.

Specify a bounding shape for an object:

BOUNDED BY:
bounded by { UNTEXTURED SOLID OBJECT... } |

bounded by { clipped by }

Quick Reference Contents

8.9.1 UV Mapping

Map a texture to an object using surface coordinates:

UV MAPPING:
Jump to SDL
uv mapping PIGMENT | pigment { uv mapping PIGMENT BODY } |

uv mapping NORMAL | normal { uv mapping NORMAL BODY } |

uv mapping TEXTURE | texture { uv mapping TEXTURE BODY }

Quick Reference Contents

8.9.2 Material

Group together surface textures and interior properties:

MATERIAL:
material { [MATERIAL IDENTIFIER] [MATERIAL ITEM ...] }

MATERIAL ITEMS:
TEXTURE | INTERIOR TEXTURE | INTERIOR | TRANSFORMATION

Quick Reference Contents

370 Quick Reference

8.9.3 Interior

Describe the interior of an object:

INTERIOR:
Jump to SDL
interior { [INTERIOR IDENTIFIER] [INTERIOR ITEMS] }

INTERIOR ITEMS:
[ior FLOAT] & [dispersion FLOAT] & [dispersion samples INT] & [caustics FLOAT]

& [fade distance FLOAT] & [fade power FLOAT] & [fade color COLOR] & [MEDIA...]

Quick Reference Contents

8.9.4 Interior Texture

Describe the interior surface of an object:

INTERIOR TEXTURE:
interior texture { TEXTURE BODY }

Quick Reference Contents

8.10 Texture

Describe the surface of an object

TEXTURE:
PLAIN TEXTURE | LAYERED TEXTURE | PATTERNED TEXTURE

Quick Reference Contents

8.10.1 Plain Texture

Describe a texture consisting of a single pigment, normal and finish:

PLAIN TEXTURE:
texture { PLAIN TEXTURE BODY }

PLAIN TEXTURE BODY:
[PLAIN TEXTURE IDENT] [PNF IDENTIFIERS] [PNF ITEMS]

PNF IDENTIFIERS:
[PIGMENT IDENTIFIER] & [NORMAL IDENTIFIER] & [FINISH IDENTIFIER]

PNF ITEMS:
[PIGMENT] & [NORMAL] & [FINISH] & [TRANSFORMATION...]

Quick Reference Contents

8.10 Texture 371

8.10.2 Layered Texture

Describe a texture consisting of two or more semi-transparent layers:

LAYERED TEXTURE:
Jump to SDL
texture { LAYERED TEXTURE IDENT } |

PLAIN TEXTURE PLAIN TEXTURE...

Quick Reference Contents

8.10.3 Patterned Texture

Describe a texture using a pattern or blending function:

PATTERNEDTEXTURE:
Jump to SDL
texture { PATTERNED TEXTURE BODY }

PATTERNEDTEXTURE BODY:
PATTERNED TEXTURE IDENT [TRANSFORMATION...] | TEXTURE PATTERN [PATTERN MODIFIERS] |

MATERIAL MAP [TRANSFORMATION...]

TEXTURE PATTERN:
TEXTURE LIST PATTERN | MAP PATTERN TEXTURE MAP

TEXTURE LIST PATTERN:
brick TEXTURE, TEXTURE [BRICK ITEMS] |

checker TEXTURE, TEXTURE |

hexagon TEXTURE, TEXTURE, TEXTURE |

object { LIST OBJECT TEXTURE, TEXTURE }

BRICK ITEMS:
[brick size VECTOR] & [mortar FLOAT]

LIST OBJECT:
UNTEXTURED SOLID OBJECT | UNTEXTURED SOLID OBJECT IDENT

TEXTURE MAP:
texture map { TEXTURE MAP BODY } [BLEND MAP MODIFIERS]

TEXTURE MAP BODY:
TEXTURE MAP IDENTIFIER | TEXTURE MAP ENTRY...

There may be from 2 to 256 map entries.

TEXTURE MAP ENTRY:
[FLOAT TEXTURE BODY]

The brackets here are part of the map entry.

TEXTURE BODY:
PLAIN TEXTURE BODY | LAYERED TEXTURE IDENT | PATTERNED TEXTURE BODY

MATERIAL MAP:
material map { BITMAP IMAGE [BITMAP MODIFIERS] TEXTURE... }

372 Quick Reference

Quick Reference Contents

8.10.4 Pigment

Describe a color or pattern of colors for a texture:

PIGMENT:
Jump to SDL
pigment { PIGMENT BODY }

PIGMENT BODY:
[PIGMENT IDENTIFIER] [PIGMENT TYPE] [PIGMENT MODIFIERS]

PIGMENT TYPE:
COLOR | COLOR LIST PATTERN | PIGMENT LIST PATTERN | IMAGE MAP | MAP PATTERN [COLOR MAP]

| MAP PATTERN PIGMENT MAP

COLOR LIST PATTERN:
brick [COLOR [, COLOR]] [BRICK ITEMS] |

checker [COLOR [, COLOR]] |

hexagon [COLOR [, COLOR [, COLOR]]] |

object { LIST OBJECT [COLOR [, COLOR]] }

PIGMENT LIST PATTERN:
brick PIGMENT, PIGMENT [BRICK ITEMS] |

checker PIGMENT, PIGMENT |

hexagon PIGMENT, PIGMENT, PIGMENT |

object { LIST OBJECT PIGMENT, PIGMENT }

IMAGE MAP:
image map {BITMAP IMAGE [IMAGE MAP MODIFIER...] [BITMAP MODIFIERS] }

IMAGE MAP MODIFIER:
filter I PALETTE, F AMOUNT | filter all F AMOUNT | transmit I PALETTE, F AMOUNT |

transmit all F AMOUNT

COLOR MAP:
color map { COLOR MAP BODY } [BLEND MAP MODIFIERS] |

colour map { COLOR MAP BODY } [BLEND MAP MODIFIERS]

COLOR MAP BODY:
COLOR MAP IDENTIFIER | COLOR MAP ENTRY...

There may be from 2 to 256 map entries.

COLOR MAP ENTRY:
[FLOAT COLOR]

The brackets here are part of the map entry.

PIGMENT MAP:
pigment map { PIGMENT MAP BODY } [BLEND MAP MODIFIERS]

PIGMENT MAP BODY:
PIGMENT MAP IDENTIFIER | PIGMENT MAP ENTRY...

There may be from 2 to 256 map entries.

8.10 Texture 373

PIGMENT MAP ENTRY:
[FLOAT PIGMENT BODY]

The brackets here are part of the map entry.

PIGMENT MODIFIERS:
[QUICK COLOR] & [PATTERN MODIFIERS]

QUICK COLOR:
quick color COLOR | quick colour COLOR

Quick Reference Contents

8.10.5 Normal

Simulate the visual or tactile surface characteristics of a texture:

NORMAL:
Jump to SDL
normal { NORMAL BODY }

NORMAL BODY:
[NORMAL IDENTIFIER] [NORMAL TYPE] [NORMAL MODIFIERS]

NORMAL TYPE:
NORMAL PATTERN | BUMP MAP

NORMAL PATTERN:
NORMAL LIST PATTERN |

MAP PATTERN [F DEPTH] [SLOPE MAP] |

MAP PATTERN NORMAL MAP

NORMAL LIST PATTERN:
brick NORMAL, NORMAL [BRICK ITEMS] | brick [F DEPTH] [BRICK ITEMS] |

checker NORMAL, NORMAL | checker [F DEPTH] |

hexagon NORMAL, NORMAL, NORMAL | hexagon [F DEPTH] |

object { LIST OBJECT NORMAL, NORMAL } | object { LIST OBJECT } [F DEPTH]

NORMAL MAP:
normal map { NORMAL MAP BODY } [BLEND MAP MODIFIERS]

NORMAL MAP BODY:
NORMAL MAP IDENTIFIER | NORMAL MAP ENTRY...

There may be from 2 to 256 map entries.

NORMAL MAP ENTRY:
[FLOAT NORMAL BODY]

The brackets here are part of the map entry.

SLOPEMAP:
slope map { SLOPE MAP BODY } [BLEND MAP MODIFIERS]

SLOPEMAP BODY:
SLOPE MAP IDENTIFIER | SLOPE MAP ENTRY...

There may be from 2 to 256 map entries.

374 Quick Reference

SLOPEMAP ENTRY:
[FLOAT, < F HEIGHT, F SLOPE >]

The brackets here are part of the map entry.

BUMP MAP:
bump map { BITMAP IMAGE [BUMP MAP MODIFIERS] }

BUMP MAP MODIFIERS:
[BITMAP MODIFIERS] & [BUMP METHOD] & [bump size FLOAT]

BUMP METHOD:
use index | use color | use colour

NORMAL MODIFIERS:
[PATTERN MODIFIERS] & [bump size FLOAT] & [no bump scale [BOOL]] & [accuracy FLOAT]

Quick Reference Contents

8.10.6 Finish

Describe the reflective properties of a surface:

FINISH:
Jump to SDL
finish { [FINISH IDENTIFIER] [FINISH ITEMS] }

FINISH ITEMS:
[ambient COLOR] & [diffuse FLOAT] & [brilliance FLOAT] & [PHONG] & [SPECULAR] &

[REFLECTION] & [IRID] & [crand FLOAT] & [conserve energy [BOOL]]

PHONG:
phong FLOAT & [phong size FLOAT] & [metallic [FLOAT]]

SPECULAR:
specular FLOAT & [roughness FLOAT] & [metallic [FLOAT]]

REFLECTION:
reflection COLOR [reflection exponent FLOAT] |

reflection { [COLOR,] COLOR [REFLECTION ITEMS] }

REFLECTIONITEMS:
[fresnel BOOL] & [falloff FLOAT] & [exponent FLOAT] & [metallic [FLOAT]]

Must also useinterior {ior FLOAT} in the object whenfresnel is used.

IRID:
irid { F AMOUNT [IRID ITEMS] }

IRID ITEMS:
[thickness FLOAT] & [turbulence FLOAT]

Quick Reference Contents

8.10 Texture 375

8.10.7 Pattern

Specify a pattern function for a texture, pigment, normal or density:

MAP PATTERN:
Jump to SDL
AGATE | average | boxed | bozo | bumps | cells | CRACKLE | cylindrical | DENSITY -

FILE | dents | FACETS | FRACTAL | function { FN FLOAT } | gradient VECTOR | granite

| IMAGE PATTERN | leopard | marble | onion | pigment pattern { PIGMENT BODY } |

planar | QUILTED | radial | ripples | SLOPE | spherical | spiral1 I NUM ARMS |

spiral2 I NUM ARMS | spotted | waves | wood | wrinkles

AGATE:
agate [agate turb FLOAT]

CRACKLE:
crackle [CRACKLE TYPES]

CRACKLE TYPES:
[form VECTOR] & [metric FLOAT] & [offset FLOAT] & [solid]

DENSITY FILE:
density file df3 FILE NAME [interpolate DENSITY INTERPOLATE]

DENSITY INTERPOLATE:
0 | 1 | 2

FACETS:
facets FACETS TYPE

Note,facets can only be used as anormal pattern.

FACETSTYPE:
coords F SCALE | size F SIZE FACTOR

FRACTAL:
MANDELBROT FRACTAL | JULIA FRACTAL | MAGNET MANDEL FRACTAL | MAGNET JULIA FRACTAL

MANDELBROT FRACTAL:
mandel I ITERATIONS [exponent INT] [exterior EXTERIOR TYPE, F FACTOR] [interior

INTERIOR TYPE, F FACTOR]

JULIA FRACTAL:
julia V2 COMPLEX, I ITERATIONS [exponent INT] [exterior EXTERIOR TYPE, F FACTOR]

[interior INTERIOR TYPE, F FACTOR]

MAGNET MANDEL FRACTAL:
magnet MAGNET TYPE mandel I ITERATIONS [exterior EXTERIOR TYPE, F FACTOR] [interior

INTERIOR TYPE, F FACTOR]

MAGNET TYPE:
1 | 2

MAGNET JULIA FRACTAL:
magnet MAGNET TYPE julia V2 COMPLEX, I ITERATIONS [exterior EXTERIOR TYPE, F FACTOR]

[interior INTERIOR TYPE, F FACTOR]

376 Quick Reference

EXTERIOR TYPE:
0 | 1 | 2 | 3 | 4 | 5 | 6

INTERIOR TYPE:
0 | 1 | 2 | 3 | 4 | 5 | 6

IMAGE PATTERN:
image pattern {BITMAP IMAGE [IMAGE PATTERN MODIFIERS] }

IMAGE PATTERN MODIFIERS:
[BITMAP MODIFIERS] & [use alpha]

QUILTED:
quilted [control0 FLOAT] [control1 FLOAT]

SLOPE:
slope { V DIRECTION [, F LOW SLOPE, F HIGH SLOPE] [altitude VECTOR [, F LOW ALT, F -

HIGH ALT]] }
Theslope pattern does not work in media densities.

Quick Reference Contents

8.10.8 Pattern Modifiers

Modify the evaluation of a pattern function:

PATTERN MODIFIERS:
Jump to SDL
[TURBULENCE] & [WARP...] & [TRANSFORMATION...] & [noise generator NG TYPE]

NG TYPE:
1 | 2 | 3

TURBULENCE:
turbulence VECTOR & [octaves INT] & [omega FLOAT] & [lambda FLOAT]

WARP:
warp { WARP ITEM }

WARP ITEM:
REPEAT WARP | BLACK HOLE WARP | TURBULENCE | CYLINDRICAL WARP | SPHERICAL WARP | TOROIDAL -

WARP | PLANAR WARP

REPEATWARP:
repeat VECTOR [offset VECTOR] [flip VECTOR]

BLACK HOLE WARP:
black hole V LOCATION, F RADIUS [BLACK HOLE ITEMS]

BLACK HOLE ITEMS:
[strength FLOAT] & [falloff FLOAT] & [inverse] & [repeat VECTOR [turbulence

VECTOR]]

CYLINDRICAL WARP:
cylindrical [orientation VECTOR] [dist exp FLOAT]

8.10 Texture 377

SPHERICALWARP:
spherical [orientation VECTOR] [dist exp FLOAT]

TOROIDAL WARP:
toroidal [orientation VECTOR] [dist exp FLOAT] [major radius FLOAT]

PLANAR WARP:
planar [V NORMAL, F DISTANCE]

Modify the usage of a blend map:

BLEND MAP MODIFIERS:
Jump to SDL

frequencyFLOAT & [phaseFLOAT] & [WAVEFORM]

WAVEFORM:
Jump to SDL
ramp wave | triangle wave | sine wave | scallop wave | cubic wave | poly wave

[F EXPONENT]

Specify a two-dimensional bitmap image for a pattern:

BITMAP IMAGE:
FUNCTION IMAGE | BITMAP TYPE FILE NAME

FUNCTION IMAGE:
Jump to SDL
function I WIDTH, I HEIGHT { FUNCTION IMAGE BODY }

FUNCTION IMAGE BODY:
PIGMENT | FN FLOAT | pattern { PATTERN [PATTERN MODIFIERS] }

PATTERN:
MAP PATTERN | brick [BRICK ITEMS] | checker | hexagon | object { LIST OBJECT }

BITMAP TYPE:
Jump to SDL
gif | tga | iff | ppm | pgm | png | jpeg | tiff | sys

Modify how a 2-D bitmap is to be applied to a 3-D surface:

BITMAP MODIFIERS:
Jump to SDL
[once] & [map type MAP TYPE] & [interpolate INTERPOLATE TYPE]

MAP TYPE:
0 | 1 | 2 | 5

INTERPOLATE TYPE:
2 | 4

Quick Reference Contents

378 Quick Reference

8.11 Media

Describe particulate matter

MEDIA:
Jump to SDL
media { [MEDIA IDENTIFIER] [MEDIA ITEMS] }

MEDIA ITEMS:
[method METHOD TYPE] & [intervals INT] & [samples I MIN, I MAX] & [confidence

FLOAT] & [variance FLOAT] & [ratio FLOAT] & [absorption COLOR] & [emission COLOR]

& [aa threshold FLOAT] & [aa level INT] & [SCATTERING] & [DENSITY...] & [TRANSFORMATION...]

& [collect BOOL]

METHOD TYPE:
1 | 2 | 3

SCATTERING:
scattering { SCATTERING TYPE, COLOR [eccentricity FLOAT] [extinction FLOAT] }

SCATTERINGTYPE:
1 | 2 | 3 | 4 | 5

DENSITY:
density { DENSITY BODY }

DENSITY BODY:
[DENSITY IDENTIFIER] [DENSITY TYPE] [PATTERN MODIFIERS]

DENSITY TYPE:
COLOR | COLOR LIST PATTERN | DENSITY LIST PATTERN | MAP PATTERN [COLOR MAP] | MAP -

PATTERN DENSITY MAP

DENSITY LIST PATTERN:
brick DENSITY, DENSITY [BRICK ITEMS] |

checker DENSITY, DENSITY |

hexagon DENSITY, DENSITY, DENSITY |

object { LIST OBJECT DENSITY, DENSITY }

DENSITY MAP:
density map { DENSITY MAP BODY } [BLEND MAP MODIFIERS]

DENSITY MAP BODY:
DENSITY MAP IDENTIFIER | DENSITY MAP ENTRY...

There may be from 2 to 256 map entries.

DENSITY MAP ENTRY:
[FLOAT DENSITY BODY]

The brackets here are part of the map entry.

Quick Reference Contents

8.12 Atmospheric Effects 379

8.12 Atmospheric Effects

Describe various background and atmospheric features

ATMOSPHERICEFFECT:
MEDIA | BACKGROUND | FOG | SKY SPHERE | RAINBOW

Quick Reference Contents

8.12.1 Background

Specify a background color for the scene:

BACKGROUND:
background { COLOR }

Quick Reference Contents

8.12.2 Fog

Simulate a hazy or foggy atmosphere:

FOG:
Jump to SDL
CONSTANT FOG | GROUND FOG

CONSTANT FOG:
fog { [FOG IDENTIFIER] [fog type 1] FOG ITEMS }

FOG ITEMS:
distance FLOAT & COLOR & [TURBULENCE [turb depth FLOAT]]

GROUND FOG:
fog { [FOG IDENTIFIER] fog type 2 GROUND FOG ITEMS }

GROUND FOG ITEMS:
FOG ITEMS & fog offset FLOAT & fog alt FLOAT & [up VECTOR [TRANSFORMATION...]]

Quick Reference Contents

8.12.3 Sky Sphere

Specify a sky pigment:

SKY SPHERE:
sky sphere { [SKY SPHERE IDENTIFIER] [SKY SPHERE ITEM...] }

SKY SPHEREITEM:
PIGMENT | TRANSFORMATION

Quick Reference Contents

380 Quick Reference

8.12.4 Rainbow

Specify a rainbow arc:

RAINBOW:
Jump to SDL
rainbow { [RAINBOW IDENTIFIER] [RAINBOW ITEMS] }

RAINBOW ITEMS:
direction VECTOR & angle FLOAT & width FLOAT & distance FLOAT & COLOR MAP & [jitter

FLOAT] & [up VECTOR] & [arc angle FLOAT] & [falloff angle FLOAT]

Quick Reference Contents

8.13 Global Settings

Specify various settings that apply to the entire scene

GLOBAL SETTINGS:
Jump to SDL
global settings { GLOBAL SETTING ITEMS }

GLOBAL SETTING ITEMS:
[adc bailout FLOAT] & [ambient light COLOR] & [assumed gamma FLOAT] & [hf gray -

16 [BOOL]] & [irid wavelength COLOR] & [charset GLOBAL CHARSET] & [max intersections

INT] & [max trace level INT] & [number of waves INT] & [noise generator NG TYPE]

& [RADIOSITY] & [PHOTONS]

GLOBAL CHARSET:
ascii | utf8 | sys

NG TYPE:
1 | 2 | 3

Quick Reference Contents

8.13.1 Radiosity

Enable radiosity to compute diffuse inter-reflection of light:

RADIOSITY:
Jump to SDL
radiosity { [RADIOSITY ITEMS] }

RADIOSITY ITEMS:
[adc bailout FLOAT] & [always sample BOOL] & [brightness FLOAT] & [count INT]

& [error bound FLOAT] & [gray threshold FLOAT] & [load file FILE NAME] & [low -

error factor FLOAT] & [max sample FLOAT] & [media BOOL] & [minimum reuse FLOAT]

& [nearest count INT] & [normal BOOL] & [pretrace end FLOAT] & [pretrace start

FLOAT] & [recursion limit INT] & [save file FILE NAME]

Quick Reference Contents

8.13 Global Settings 381

8.13.2 Photons

Enable photon mapping to render reflective and refractive caustics:

PHOTONS:
Jump to SDL
photons { PHOTON QUANTITY [PHOTON ITEMS] }

PHOTONQUANTITY:
spacing FLOAT | count INT

PHOTONITEMS:
[gather I MIN, I MAX] & [media I MAX STEPS [, F FACTOR]] & [jitter FLOAT] & [max -

trace level INT] & [adc bailout FLOAT] & [save file FILE NAME] & [load file FILE -

NAME] & [autostop FLOAT] & [expand thresholds F INCREASE, F MIN] & [radius [FLOAT,

FLOAT, FLOAT, FLOAT]]

Quick Reference Contents

382 Quick Reference

Index

+a, 27
+am, 27
+b, 14
+c, 8
+d, 9
+ec, 7
+ef, 5
+ep, 11
+er, 7
+f, 12
+fc, 12
+fn, 12
+fp, 12
+fs, 12
+ft, 12
+ga, 23
+gd, 23
+gf, 23
+gi, 8
+gr, 23
+gs, 23
+gw, 23
+h, 6
+hi, 17
+hn, 15
+hs, 15
+ht, 14
+htc, 14
+htn, 14
+htp, 14
+hts, 14
+htt, 14
+htx, 14
+i, 16
+j, 27
+k, 3
+kc, 5
+kff, 4
+kfi, 4
+ki, 4

+l, 17
+mb, 26
+mv, 17
+o, 13
+p, 11
+q, 25
+r, 27
+sc, 7
+sf, 5
+sp, 11
+sr, 7
+su, 27
+ua, 12
+ud, 11
+uf, 6
+ul, 26
+uo, 6
+ur, 27
+uv, 26
+v, 11
+w, 6
+wl, 24
+x, 7
-a, 27
-b, 14
-c, 8
-d, 9
-f, 12
-ga, 23
-gd, 23
-gf, 23
-gr, 23
-gs, 23
-gw, 23
-h, 25
-j, 27
-kc, 5
-mb, 26
-p, 11
-su, 27

384 INDEX

-ua, 12
-ud, 11
-uf, 6
-ul, 26
-uo, 6
-ur, 27
-uv, 26
-v, 11
-x, 7
#break, 79
#case, 79
#debug, 80
#declare, 70
#default, 75
#else, 77
#end, 77
#error, 80
#fclose, 74
#fopen, 73
#if, 77
#ifdef, 78
#ifndef, 78
#include, 69
#local, 70
#macro, 82
#range, 79
#read, 74
#render, 80
#statistics, 80
#switch, 79
#undef, 73
#version, 76
#warning, 80
#while, 80
#write, 75

aa level, 258
media, 254

aa threshold, 258
media, 254

abs, 41
absorption, 255

media, 254
accuracy, 146

isosurface, 145
normal, 183
normals, 186
parametric, 147, 148

acos, 41

julia, 124
julia fractal, 121

acosd, 303
acosh, 41

julia, 124
julia fractal, 121

adaptive, 160
light source, 153

adcbailout, 102
global settings, 101, 102
photons, 265
radiosity, 109

adj range, 304
adj range2, 304
agate, 207

keyword, 207
pattern, 207

agateturb, 231
agate, 207
pattern modifier, 231

Align Object, 314
Align Trans, 337
all, 181
All Console

ini-option, 23
All File

ini-option, 24
all intersections, 147

isosurface, 145
alpha, 182
altitude, 227

slope, 227
alwayssample, 109
ambient, 190

finish, 190
ambientlight, 102

global settings, 101, 102
angle, 89

camera, 87, 89
rainbow, 100

Animation
cyclic, 5
external loop, 3
field rendering, 6
internal loop, 3
options, 3
subsets of frames, 5

Antialias
ini-option, 27

INDEX 385

Antialias Depth
ini-option, 27

Antialias Threshold
ini-option, 27

aperture, 95
camera, 87

append, 73
arc angle, 100

rainbow, 100
arealight, 158

light source, 153, 158
Array

declaring, 65
identifiers, 65
initialization, 66

array, 65
quickref, 354

arrays
quickref, 354

asc, 41
ascii, 106

global settings, 101
asin, 41

julia, 124
julia fractal, 121

asind, 303
asinh, 41

julia, 124
julia fractal, 121

assumedgamma, 103
global settings, 101, 103

atan, 124
julia fractal, 121

atan2, 41
atan2d, 303
atanh, 41

julia, 124
julia fractal, 121

atmosphere, 253
atmospheric effects

quickref, 379
autostop, 265
average, 208

keyword, 208
pattern, 208

Axial ScaleTrans, 336
Axis RotateTrans, 337

b spline, 128

spheresweep, 128
background, 97

keyword, 97
quickref, 379

BevelledText, 314
bezier, 134
Bezier Patch, 134
bezierspline, 125

lathe, 124
prism, 126

bicubic patch, 134
keyword, 134

Bits PerColor
ini-option, 12

black hole, 236
warp, 235, 236

blob, 114
component, 115
component, cylinder, 115
component, sphere, 115
keyword, 114

Blobs, 114
blue, 54
Blur, 95
blur samples, 95

camera, 87
BMP output, 12
boolean, 44
boundedby, 167

object modifier, 167
Bounding

ini-option, 26
BoundingThreshold

ini-option, 26
box, 117

keyword, 117
boxed, 209

keyword, 209
pattern, 209

bozo, 209
keyword, 209
pattern, 209

break, 79
brick, 209

keyword, 209
pattern, 209

brick size, 231
brick, 209
pattern modifier, 231

386 INDEX

brightness, 109
brilliance, 192

finish, 190
Buffer Output, 14
Buffer Size, 14
bumpmap, 188

normal, 183
bumpsize, 189

normal, 183
bumps, 210

keyword, 210
pattern, 210

Camera
coordinate system, 91
focal blur, 95
placing, 88
types of, 93

camera, 87
keyword, 87

case, 79
caustics, 252

interior, 247
simulated, 252

ceil, 41
cells, 210

keyword, 210
pattern, 210

CenterObject, 314
CenterTrans, 337
charset

global settings, 101, 106
checker, 210

keyword, 210
pattern, 210

chr, 64
CHSL2RGB, 276
CHSV2RGB, 276
Circle Text, 315
circular, 160

light source, 153
clamp, 304
clip, 304
clippedby, 166

object modifier, 166
Clock

ini-option, 3
clock, 44
clock delta, 45

clock on, 45
collect, 266
Color

common pitfalls, 55
functions, user-defined, 61
identifiers, 55
keywords, 54
operators, 55
specifying, 52
vectors, 54

color, 52
quickref, 351

color map, 177
density, 259
pigment, 175
rainbow, 100

colors
quickref, 351

colour, 52
quickref, 351

colour map, 177
pigment, 175

comment, 37
component, 115

blob, 114
composite, 150
concat, 64
conditional directives

quickref, 357
cone, 117

keyword, 117
confidence, 95

camera, 87
focal blur, 95
media, 254, 258

conic sweep, 127
prism, 126

ConnectSpheres, 316
conserveenergy, 195

finish, 190
constant fog, 98
Constructive Solid Geometry

quickref, 368
containedby, 146

isosurface, 145, 146
parametric, 147, 148

contents
quickref, 348

ContinueTrace

INDEX 387

ini-option, 8
control0, 231

pattern modifier, 231
quilted, 225

control1, 231
pattern modifier, 231
quilted, 225

ConvertColor, 276
Coordinate system

camera, 91
coords, 214

facets, 214
cos, 41

julia, 124
julia fractal, 121

cosd, 303
cosh, 41

julia, 124
julia fractal, 121

count, 110
crackle, 211

keyword, 211
pattern, 211

crand, 192
finish, 190

CreateIni
ini-option, 8

CRGB2HSL, 276
CRGB2HSV, 276
CRGBStr, 330
Cross Section Type, 284
CSG, 149

difference, 152
intersection, 151
merge, 152
union, 150

cube, 123
julia fractal, 121

cubic, 143
keyword, 143

cubic spline, 125
lathe, 124
prism, 126
spheresweep, 128

cubic wave, 231
pattern modifier, 231, 234

cutawaytextures, 206
Cyclic Animation, 5
cylinder, 118

blob, 114
blob component, 115
camera, 87
keyword, 118
light source, 153, 157

cylindrical, 213
keyword, 213
pattern, 213
projection, 94
warp, 235, 242

debug, 80
debug.inc, 282

DebugConsole
ini-option, 23

DebugFile
ini-option, 24

Declare
ini-option, 15

declare, 70
Declaring

arrays, 65
default, 75
Default Output Directory, 13
default texture

quickref, 357
Default values

bicubic patch, 134
blob, 115
camera, 87
disc, 136
fog, 97
global settings, 101
height field, 119
interior, 247
isosurface, 146
julia fractal, 122
lathe, 124
light source, 154
media, 254
mesh, 137
parametric, 148
pattern modifiers, 232
photons, 264
poly, 142
prism, 126
rainbow, 100
sor, 130
spheresweep, 129

388 INDEX

torus, 133
defined, 42
degrees, 42
density

media, 254
densityfile, 213

keyword, 213
pattern, 213

densitymap, 260
dents, 214

keyword, 214
pattern, 214

Depth of field, 95
df3, 213

densityfile, 213
difference, 152

keyword, 152
diffuse

finish, 190
dimensionsize, 42
dimensions, 42
direction, 90

camera, 87
rainbow, 100

Directives
#language, #declare vs. #local, 71
language, 68
language, #banner, 81
language, #break, 79
language, #case, 79
language, #debug, 80, 81
language, #declare, 70
language, #default, 75
language, #else, 77
language, #end, 77, 80
language, #error, 80
language, #fclose, 74
language, #fopen, 73
language, #if, 77
language, #ifdef, 78
language, #ifndef, 78
language, #include, 69
language, #local, 70
language, #macro, 82
language, #range, 79
language, #read, 74
language, #render, 81
language, #statistics, 81
language, #status, 81

language, #switch, 79
language, #undef, 73
language, #version, 76
language, #warning, 80
language, #while, 80
language, #write, 75
language, conditional, 77
language, default texture, 75
language, file I/O, 73
language, identifiers, 70
language, identifiers, destroying, 73
language, user messages, 80
name collisions, 72

Directory
default output, 13

disc, 136
keyword, 136

dispersion, 251
interior, 247
photons, 271

dispersionsamples, 251
interior, 247

Display
ini-option, 9

Display Gamma, 9
for your display, 10
ini-option, 9

dist exp, 242
warp, 235

distance, 98
fog, 97, 98
rainbow, 100

div, 42
Divergence, 307
doubleilluminate, 171

object modifier, 171
Draw Vistas

ini-option, 11
dynamic maxgradient, 146

eccentricity, 256
media, 254

else, 77
emission, 255

media, 254
end, 77
End Column

ini-option, 7
End Row, 7

INDEX 389

ini-option, 7
error, 80

debug.inc, 282
error bound, 111
eval pigment, 298
evaluate, 146

isosurface, 145
even, 302
exp, 42

julia, 124
julia fractal, 121

expandthresholds, 270
exponent, 195

finish, 190
julia, 215
mandel, 215
reflection, 195

Expressions
float, 38
vector, 47

Extents, 314
exterior, 215

julia, 215
magnet, 215
mandel, 215

extinction, 255
media, 254

f algbr cyl1, 285
f algbr cyl2, 285
f algbr cyl3, 286
f algbr cyl4, 286
f bicorn, 286
f bifolia, 286
f blob, 286
f blob2, 286
f boy surface, 287
f comma, 287
f crossellipsoids, 287
f crossedtrough, 287
f cubic saddle, 287
f cushion, 287
f devils curve, 287
f devils curve2d, 287
f dupin cyclid, 288
f ellipsoid, 288
f enneper, 288
f flangecover, 288
f folium surface, 288

f folium surface2d, 288
f glob, 289
f heart, 289
f helical torus, 289
f helix1, 289
f helix2, 289
f heteromf, 290
f hex x, 290
f hex y, 290
f hunt surface, 290
f hyperbolictorus, 291
f isectellipsoids, 291
f kampyleof eudoxus, 291
f kampyleof eudoxus2d, 291
f klein bottle, 291
f kummersurfacev1, 291
f kummersurfacev2, 291
f lemniscateof gerono, 292
f lemniscateof gerono2d, 292
f mesh1, 292
f mitre, 292
f nodal cubic, 292
f noise3d, 292
f noisegenerator, 292
f odd, 293
f ovalsof cassini, 293
f parabolictorus, 293
f paraboloid, 293
f ph, 293
f pillow, 293
f piriform, 293
f piriform 2d, 293
f poly4, 293
f polytubes, 294
f quantum, 294
f quartic cylinder, 294
f quarticparaboloid, 294
f quartic saddle, 294
f r, 294
f ridge, 294
f ridgedmf, 295
f roundedbox, 295
f scallopwave, 298
f sinewave, 298
f snoise3d, 298
f sphere, 295
f spikes, 295
f spikes2d, 296
f spiral, 296

390 INDEX

f sqr, 303
f steinersroman, 296
f strophoid, 296
f strophoid2d, 296
f superellipsoid, 297
f th, 297
f torus, 297
f torus2, 297
f torusgumdrop, 297
f umbrella, 297
f witch of agnesi, 297
f witch of agnesi2d, 297
face indices, 137

mesh2, 137
facets, 214

keyword, 214
pattern, 214

fadecolor, 252
interior, 247

fadecolour, 252
fadedistance, 163

interior, 247, 252
light source, 153, 163

fadepower, 163
interior, 247, 252
light source, 153, 163

falloff, 155
finish, 190
light source, 153, 155
reflection, 195
warp, 235, 236

falloff angle, 100
rainbow, 100

false, 44
FatalConsole

ini-option, 23
FatalError Command

ini-option, 18
FatalError Return, 20
FatalFile

ini-option, 24
fclose, 74
Field Render, 6
file i/o

quickref, 356
file inclusion

quickref, 355
file exists, 42
filter, 52

bitmap modfier, 181
Final Clock

ini-option, 4
final clock, 45
Final Frame

ini-option, 4
final frame, 46
Finding include files, 17
finish, 190

keyword, 190
quickref, 374

fisheye, 93
camera, 87

flatness, 134
bicubic patch, 134

flip, 239
warp, 235

Float
boolean, 44
built-in constants, 44
built-in variables, 44
expressions, 38
functions, 41
functions, user-defined, 60
identifiers, 39
literals, 39
operators, 40

float
quickref, 349

float expressions
quickref, 349

floats
quickref, 349

floor, 42
fn Divergence, 307
fn Gradient, 306
fn GradientDirectional, 307
focal point, 95

camera, 87
fog, 97

keyword, 97
quickref, 379

fog alt, 98
fog, 97

fog offset, 98
fog, 97

fog type, 98
fog, 97

fopen, 73

INDEX 391

form, 211
crackle, 211

fractal, 121
Fractal Object, 121
framenumber, 45
frequency, 231

pattern modifier, 231, 233
radial, 227

fresnel, 195
finish, 190

function, 57
as pattern, 217
height field, 119
internal bitmap, 218
isosurface, 145
parametric, 147
pattern, 217

function image
pattern, 218

Functions, 57
float, 41
internal, 62
string, 63
user-defined, 57
user-defined, color, 61
user-defined, float, 60
user-defined, vector, 61
vector, 49
vs. macros, 59

Gamma
image file, 104
monitor, 103
scene file, 104

gamma
determining your display, 10
test image, 10

gather, 265
GetStats, 303
gif, 180

height field, 119
global settings

quickref, 380
global lights, 164

light group, 164
global settings, 101

keyword, 101
gradient, 219

keyword, 219

pattern, 219
GradientDirectional, 307
GradientLength, 307
granite, 219

keyword, 219
pattern, 219

gray, 55
gray threshold, 110
green, 54
ground fog, 98

halo, 196
keyword, 196

Height
ini-option, 6

height field, 119
keyword, 119

Hex Tiles Ptrn, 336
hexagon, 220

keyword, 220
pattern, 220

HF Cylinder, 319
hf gray 16, 105

global settings, 101, 105
HF Sphere, 319
HF Square, 319
HF Torus, 320
hierarchy, 116

blob, 114, 116
height field, 119, 121
mesh, 136, 137

Histogram, 303
HistogramGrid Size

ini-option, 15
HistogramName

ini-option, 15
HistogramType

ini-option, 14
hollow, 169

object modifier, 169
hypercomplex, 122

julia fractal, 121

identifier, 32
declaration, quickref, 356

Identifiers, 32
array, 65
color, 55
declaring, 70

392 INDEX

destroying, 73
float, 39
string, 63
vector, 48

if, 77
ifdef, 78
iff, 180
ifndef, 78
imageheight, 46
imagemap, 180

pigment, 175
imagepattern, 221

keyword, 221
pattern, 221

imagewidth, 46
include, 69

standard files, 273
Include Files

finding, 17
Include Path, 17
IncludeHeader

ini-option, 17
ini files

constant, 15
Initial Clock

ini-option, 4
initial clock, 45
Initial Frame

ini-option, 4
initial frame, 45
Initialization

arrays, 66
Input File Name

ini-option, 16
inside, 42
insidevector, 137

mesh, 136
mesh2, 137

int, 42
interior, 247

fadedistance, 252
fadepower, 252
julia, 215
keyword, 247
magnet, 215
mandel, 215
quickref, 370

interior texture, 370
interior texture, 205

keyword, 205
internal, 62

functions.inc, 283
Interpolate

macro, 302
interpolate, 231

densityfile, 213
imagepattern, 221
pattern modifier, 231, 245

intersection, 151
keyword, 151

intervals, 258
media, 254

inverse, 169
object modifier, 169
warp, 235

ior, 251
interior, 247

irid, 196
finish, 190

irid wavelength, 105
global settings, 101, 105

IrregularBricks Ptrn, 335
Isect, 314
isosurface, 145

default values, 146
keyword, 145

Jitter
ini-option, 27

jitter, 159
anti-aliasing, 27
arealight, 159
light source, 153
photons, 265
rainbow, 100

Jitter Amount
ini.option, 27

jpeg, 180
height field, 119

julia, 215
keyword, 215
pattern, 215

julia fractal, 121
keyword, 121

Keyword
aa level, 254
aa threshold, 254

INDEX 393

absorption, 254
accuracy, 145, 147, 183
acos, 121
acosh, 121
adaptive, 153
adcbailout, 101
agate, 207
agateturb, 207
all intersections, 145
altitude, 227
ambient, 190
ambientlight, 101
angle, 87, 100
aperture, 87
arc angle, 100
arealight, 153
ascii, 101
asin, 121
asinh, 121
assumedgamma, 101
atan, 121
atanh, 121
average, 208
b spline, 128
background, 97
bezierspline, 124, 126
bicubic patch, 134
black hole, 235
blob, 114
blur samples, 87
box, 117
boxed, 209
bozo, 209
brick, 209
brick size, 209
brilliance, 190
bumpmap, 183
bumpsize, 183
bumps, 210
camera, 87
caustics, 247
cells, 210
charset, 101
checker, 210
circular, 153
color map, 175
colour map, 175
component, 114
cone, 117

confidence, 87, 254
conic sweep, 126
conserveenergy, 190
containedby, 145, 147
control0, 225
control1, 225
coords, 214
cos, 121
cosh, 121
crackle, 211
crand, 190
cube, 121
cubic, 143
cubic spline, 124, 126, 128
cylinder, 87, 114, 118, 153
cylindrical, 213, 235
density, 254
densityfile, 213
dents, 214
df3, 213
difference, 152
diffuse, 190
direction, 87, 100
disc, 136
dispersion, 247
dispersionsamples, 247
dist exp, 235
distance, 97, 100
eccentricity, 254
emission, 254
evaluate, 145
exp, 121
exponent, 190, 215
exterior, 215
extinction, 254
face indices, 137
facets, 214
fadecolor, 247
fadedistance, 153, 247
fadepower, 153, 247
falloff, 153, 190, 235
falloff angle, 100
finish, 190
fisheye, 87
flatness, 134
flip, 235
focal point, 87
fog, 97
fog alt, 97

394 INDEX

fog offset, 97
fog type, 97
form, 211
frequency, 227
fresnel, 190
function, 119, 145, 147
gif, 119
global lights, 164
global settings, 101
gradient, 219
granite, 219
halo, 196
height field, 119
hexagon, 220
hf gray 16, 101
hierarchy, 114, 119, 136
hypercomplex, 121
imagemap, 175
imagepattern, 221
insidevector, 136, 137
interior, 215, 247
interior texture, 205
interpolate, 213, 221
intersection, 151
intervals, 254
inverse, 235
ior, 247
irid, 190
irid wavelength, 101
isosurface, 145
jitter, 100, 153
jpeg, 119
julia, 215
julia fractal, 121
lambda, 97, 235
lathe, 124
leopard, 222
light group, 164
light source, 153, 164
linear spline, 124, 126, 128
linear sweep, 126
ln, 121
location, 87
look at, 87
looks like, 153
magnet, 215
mandel, 215
map type, 221
marble, 222

materialmap, 173
max gradient, 145, 147
max intersections, 101
max iteration, 121
max trace, 145
max tracelevel, 101
media, 254
mediaattenuation, 153
mediainteraction, 153
merge, 152
mesh, 136
mesh2, 137
metallic, 190
method, 254
metric, 211
mortar, 209
no bumpscale, 183
noisegenerator, 101
normal, 183
normal indices, 137
normalmap, 183
normalvectors, 137
numberof waves, 101
object, 223
octaves, 97, 235
offset, 211, 235
omega, 97, 235
omnimax, 87
once, 221
onion, 223
open, 117, 118, 126, 130, 145
orient, 153
orientation, 235
orthographic, 87
panoramic, 87
parallel, 153
parametric, 147
perspective, 87
pgm, 119
phong, 190
phongsize, 190
photon, 101
pigment, 175
pigmentmap, 175, 208
pigmentpattern, 223
planar, 224, 235
plane, 141
png, 119
point at, 153

INDEX 395

poly, 142
polygon, 139
pot, 119
precision, 121
precompute, 147
prism, 126
projectedthrough, 153
pwr, 121
quadraticspline, 124, 126
quadric, 145
quartic, 143
quaternion, 121
quick color, 175
quick colour, 175
quilted, 225
radial, 227
radiosity, 101
radius, 153
rainbow, 100
ratio, 254
reciprocal, 121
repeat, 235
right, 87
ripples, 227
roughness, 190
samples, 254
scattering, 254
shadowless, 153
sin, 121
sinh, 121
size, 214
sky, 87
sky sphere, 99
slope, 227
slopemap, 183
smooth, 119
smoothtriangle, 136, 141
solid, 211
sor, 130
specular, 190
sphere, 114, 128
spheresweep, 128
spherical, 87, 229, 235
spiral1, 229
spiral2, 229
split union, 150
spotlight, 153
spotted, 230
sqr, 121

strength, 114, 235
sturm, 114, 124, 126, 130, 133, 142
superellipsoid, 129
sys, 101, 119
tan, 121
tanh, 121
text, 131
texture, 173
texturelist, 136, 137, 205
texturemap, 173
tga, 119
thickness, 190
threshold, 114, 145
tiff, 119
tightness, 153
tolerance, 128
toroidal, 235
torus, 133
triangle, 136, 140
ttf, 131
turb depth, 97
turbulence, 97, 190, 235
type, 134
u steps, 134
ultra wide angle, 87
union, 150
up, 87, 97, 100
usealpha, 221
utf8, 101
uv indices, 137
uv vectors, 136, 137
v steps, 134
variance, 87, 254
vertexvectors, 137
warp, 235
water level, 119
waves, 230
width, 100
wood, 231
wrinkles, 231

keyword, 32
Keywords

color, 54
keywords, 32

lambda, 231
fog, 97
pattern modifier, 231, 242
warp, 235

396 INDEX

Language
directives, 68
identifiers, camera, 96

language
basics, quickref, 349
directives, quickref, 355

language basics
quickref, 349

language directives
quickref, 355

lathe, 124
keyword, 124

layered texture
quickref, 371

leopard, 222
keyword, 222
pattern, 222

Library Path
ini-option, 17

Light Sources
and photons, 266

Light Buffer
ini-option, 26

light group, 164
keyword, 164

light source, 153
arealight, 158
arealight, adaptive, 160
arealight, circular, 160
arealight, jitter, 159
arealight, orient, 161
cylinder, 157
fadedistance, 163
fadepower, 163
keyword, 153
light group, 164
looks like, 162
mediaattenuation, 164
mediainteraction, 163
parallel, 158
point light, 154
projectedthrough, 163
shadowless, 162
spotlight, 155
spotlight, falloff, 155
spotlight, radius, 155
spotlight, tightness, 155

lightgroup
quickref, 360

lights
quickref, 359

linear spline, 124
lathe, 124
prism, 126
spheresweep, 128

linear sweep, 126
prism, 126

Literals
float, 39
string, 62

literals
vector, 48

ln, 42
julia, 124
julia fractal, 121

load file, 112
photons, 265
radiosity, 112

local, 70
location, 88

camera, 87
log, 42
look at, 88

camera, 87
looks like

light source, 153, 162
low error factor, 110

macro, 82
quickref, 358

Macros, 82
declaring, 82
invoking, 82
return values in parameters, 85
returning values from, 84
vs. functions, 59
vs. splines, 68

macros
quickref, 358

magnet, 215
keyword, 215
pattern, 215

major radius, 242
mandel, 215

keyword, 215
pattern, 215

map type, 244
imagepattern, 221

INDEX 397

marble, 222
keyword, 222
pattern, 222

material, 168
object modifier, 168
quickref, 369

materialmap, 199
texture, 173

matrix, 358
Matrix Trans, 336
max, 42
max3, 303
max extent, 49
max gradient, 146

isosurface, 145, 146
parametric, 147, 148

max intersections, 107
global settings, 101, 107

max iteration, 122
julia fractal, 121

max sample, 111
max trace, 147

isosurface, 145
max tracelevel, 106

global settings, 101, 106
photons, 265

Mean, 303
Media

and photons, 267
media, 254

atmospheric, 96
density, 258
keyword, 254
object, 253
photons, 265
quickref, 378
reference, 253
types, 255

mediaattenuation, 164
light source, 153

mediainteraction, 163
light source, 153, 163

merge, 152
keyword, 152

mesh, 136
keyword, 136

mesh2, 137
keyword, 137

message streams

quickref, 358
metallic, 193

finish, 190
highlight, 193
reflection, 195

method, 258
media, 254

metric, 211
crackle, 211

min, 42
min3, 303
min extent, 49
minimum reuse, 111
mod, 42
mortar, 231

brick, 209
pattern modifier, 231

Mountains
generating with a height field, 119

Moving
camera, 88

naturalspline, 67
nearestcount, 111
no, 44
no image, 170
no reflection, 170
no bumpscale, 189

normal, 183
no image, 170

object modifier, 170
no reflection, 170

object modifier, 170
no shadow, 170

object modifier, 170
noise generator

pattern modifier, 235
noisegenerator, 231

global settings, 101, 107
pattern modifier, 231

normal, 183
keyword, 183
quickref, 373

normal indices, 137
mesh2, 137

normalmap, 187
normal, 183

normalvectors, 137
mesh2, 137

398 INDEX

numberof waves, 107
global settings, 101, 107

object, 223
keyword, 223
modifiers, quickref, 368
pattern, 223

object media, 253
Object modifiers

boundedby, 167
clippedby, 166
doubleilluminate, 171
hollow, 169
inverse, 169
material, 168
no image, 170
no reflection, 170
no shadow, 170
sturm, 171

object modifiers
quickref, 368

Objects
empty and solid, 248

objects, 113
csg, quickref, 368
finite patch, quickref, 364
finite solid, quickref, 361
infinite solid, quickref, 366
isosurface, quickref, 367
parametric, quickref, 367
quickref, 361

octaves, 231
fog, 97
pattern modifier, 231, 242
warp, 235

odd, 302
Odd Field, 6
off, 44
offset, 239

crackle, 211
repeat warp, 239
warp, 235

omega, 231
fog, 97
pattern modifier, 231, 242
warp, 235

omnimax, 94
camera, 87

on, 44

once, 244
imagepattern, 221

onion, 223
keyword, 223
pattern, 223

open, 247
cone, 117
cylinder, 118
isosurface, 145, 147
prism, 126
sor, 130

Operators
color, 55
float, 40
promotion, 49
vector, 49

Options
animation, 3
anti-aliasing, 27
bounding, automatic, 25
bounding, manual, 27
display, 9
general output, 6
height and width, 6
help screen, 25
interruption, 7
parsing, 15
partial output, 6
rendering, 25
resuming, 8
text output, 21
tracing, 25

orient, 161
light source, 153

orientation, 242
warp, 235

orthographic, 93
camera, 87

Output
BMP, 12
PNG, 12
PPM, 12
system-specific, 12
Targa, compressed, 12
Targa, uncompressed, 12

output
streams, 22

Output File
placing in a default directory, 13

INDEX 399

output formats, 12
OutputAlpha

ini-option, 12
OutputFile Name

ini-option, 13
OutputFile Type

ini-option, 12
Output to File, 12

ini-option, 12

Palette
ini-option, 9

panoramic, 94
camera, 87

parallel, 158
light source, 153, 158

parametric, 147
keyword, 147

ParseString, 331
passthrough, 266
Path

includ files, 17
Pattern

agate, 207
average, 208
boxed, 209
bozo, 209
brick, 209
bumps, 210
cells, 210
checker, 210
crackle, 211
cylindrical, 213
densityfile, 213
dents, 214
facets, 214
function, 217
function image, 218
gradient, 219
granite, 219
hexagon, 220
imagepattern, 221
julia, 215
leopard, 222
magnet, 215
mandel, 215
marble, 222
object, 223
onion, 223

pigmentpattern, 223
planar, 224
quilted, 225
radial, 227
ripples, 227
slope, 227
spherical, 229
spiral1, 229
spiral2, 229
spotted, 230
waves, 230
wood, 231
wrinkles, 231

pattern, 60
quickref, 375

Pattern modifier
warp, 235

Pattern modifiers
agateturb, 231
brick size, 231
control0, 231
control1, 231
cubic wave, 231
frequency, 231
interpolate, 231
lambda, 231
mortar, 231
noisegenerator, 231
octaves, 231
omega, 231
phase, 231
poly wave, 231
rampwave, 231
scallopwave, 231
sinewave, 231
trianglewave, 231
turbulence, 231
warp, 231

pattern modifiers
quickref, 376

patterned texture
quickref, 371

PauseWhenDone
ini-option, 11

perspective, 93
camera, 87

Perturbation
camera ray, 95

pgm, 180

400 INDEX

height field, 119
phase, 231

pattern modifier, 231, 233
phong, 193

finish, 190
phongsize, 193

finish, 190
photon

global settings, 101
photons, 263

dispersion, 271
media, 265
quickref, 381

pi, 44
pigment, 175

keyword, 175
quickref, 372

pigmentmap, 179
average, 208
pigment, 175

pigmentpattern, 223
keyword, 223
pattern, 223

Pigments
color list, 176
color maps, 177
pigment list, 179
solid color, 176

Pitfalls
color, 55

plain texture
quickref, 370

planar, 224
keyword, 224
pattern, 224
warp, 235, 242

plane, 141
keyword, 141

png, 180
height field, 119

PNG output, 12
point light

light source, 154
point at, 155

light source, 153
parallel, 158
spotlight, 155

Point At Trans, 337
poly, 142

keyword, 142
poly wave, 231

pattern modifier, 231, 234
polygon, 139

keyword, 139
PostFrameCommand

ini-option, 18
PostFrameReturn, 20
PostSceneCommand

ini-option, 18
PostSceneReturn, 20
pot, 120

height field, 119
pow, 42
ppm, 180
PPM output, 12
PreFrameCommand

ini-option, 18
PreFrameReturn, 20
PreSceneCommand

ini-option, 18
PreSceneReturn, 20
precision, 122

julia fractal, 121
precompute, 148

parametric, 147
pretraceend, 112
pretracestart, 112
PreviewEnd Size

ini-option, 11
PreviewStartSize

ini-option, 11
prism, 126

keyword, 126
prod, 58
projectedthrough, 163

light source, 153, 163
projection

cylindrical, 94
fisheye, 93
omnimax, 94
orthographic, 93
panoramic, 94
perspective, 93
spherical, 94
ultra wide angle, 93

pwr, 124
julia fractal, 121

INDEX 401

Quad, 318
quadraticspline, 125

lathe, 124
prism, 126

quadric, 145
keyword, 145

Quality
ini-option, 25

quartic, 143
keyword, 143

quaternion, 122
julia fractal, 121

quick color, 182
pigment, 175

quick colour, 182
pigment, 175

quickref, 347
arrays, 354
atmospheric effects, 379
background, 379
bitmap, 377
blendmapmodifiers, 377
brick item, 371
camera, 359
colors, 351
conditional directives, 357
contents, 348
csg objects, 368
default texture, 357
dot item, 350
embedded directives, 358
file i/o, 356
file inclusion, 355
finish, 374
finite patch objects, 364
finite solid objects, 361
floats, 349
fog, 379
function invocation, 353
global settings, 380
identifier declaration, 356
infinite solid objects, 366
interior, 370
interior texture, 370
isosurface objects, 367
language basics, 349
language directives, 355
layered texture, 371
lightgroup, 360

lights, 359
list object, 371
logical expression, 350
macros, 358
material, 369
media, 378
message streams, 358
normal, 373
object modifiers, 368
objects, 361
parametric objects, 367
pattern, 375
pattern modifiers, 376
patterned texture, 371
photons, 381
pigment, 372
plain texture, 370
radiosity, 380
rainbow, 380
scene, 349
sky sphere, 379
splines, 355
strings, 353
texture, 370
transformations, 358
user-defined functions, 351
uv mapping, 369
vectors, 350
version, 357

quilted, 225
keyword, 225
pattern, 225

radial, 227
keyword, 227
pattern, 227

radians, 42
Radiosity

adjusting, 109
how it works, 108
reference, 108
tips, 112

radiosity, 108
global settings, 101
quickref, 380

radius, 155
light source, 153, 155
photons, 265

rainbow, 100

402 INDEX

keyword, 100
quickref, 380

rampwave, 231
pattern modifier, 231, 234

rand, 42
RandArray Item, 273
RandBernoulli, 313
RandBeta, 312
RandBinomial, 313
RandCauchy, 311
RandChi Square, 312
RandErlang, 312
RandExp, 312
RandF Dist, 312
RandGamma, 311
RandGauss, 311
RandGeo, 313
RandLognormal, 312
RandNormal, 311
RandPareto, 312
RandPoisson, 313
RandSpline, 311
RandStudent, 311
RandTri, 312
RandWeibull, 313
range, 79
ratio, 258

media, 254
read, 74
reciprocal, 124

julia fractal, 121
recursionlimit, 112
red, 54
redirecting stream output, 23
refelection

metallic, 195
reflection, 194

exponent, 195
falloff, 195

reflectionexponent, 195
refraction, 263
RemoveBounds

ini-option, 27
render, 80
RenderConsole

ini-option, 23
RenderFile

ini-option, 24
ReorientTrans, 337

repeat, 238
warp, 235

ResizeArray, 273
Resolution, 6
ReverseArray, 273
rgb, 54
rgbf, 54
rgbft, 54
rgbt, 54
right, 90

camera, 87
ripples, 227

keyword, 227
pattern, 227

rotate, 358
RotateAround Trans, 337
roughness, 193

finish, 190
RoundBox Union, 317
RoundCone2Union, 318
RoundCone3Union, 318
RoundConeUnion, 317
RoundCylinder Union, 317
RRand, 310

samples, 258
media, 254

SamplingMethod
ini-option, 27

savefile, 112
photons, 265
radiosity, 112

scale, 358
scallopwave, 231

pattern modifier, 231, 234
scattering, 255

media, 254
scene

description language, 31
quickref, 349

Scene Description Language, 31
Search Path, 17
seed, 42
select, 43
SetGradientAccuracy, 306
Settings

global, 101
sgn, 304
shadowless, 162

INDEX 403

light source, 153, 162
ShearTrans, 336
sin, 43

julia, 124
julia fractal, 121

sind, 303
sinewave, 231

pattern modifier, 231, 234
sinh, 43

julia, 124
julia fractal, 121

size, 214
facets, 214

sky, 89
camera, 87

sky sphere
quickref, 379

sky sphere, 99
keyword, 99

slice, 122
slope, 227

keyword, 227
pattern, 227

slopemap, 184
normal, 183

smooth, 121
height field, 119

smoothtriangle, 141
keyword, 141
mesh, 136

solid, 211
crackle, 211

solid triangle mesh, 137
sor, 130

keyword, 130
Sort Array, 274
Sort Compare, 273
Sort PartialArray, 274
Sort SwapData, 274
spacing, 264
spacingmultiplier, 266
specular, 193

finish, 190
sphere, 128

blob, 114
blob component, 115
keyword, 128

spheresweep, 128
keyword, 128

spherical, 229
camera, 87
keyword, 229
pattern, 229
projection, 94
warp, 235, 242

Spheroid, 316
spiral, 229
spiral1, 229

keyword, 229
pattern, 229

spiral2, 229
keyword, 229
pattern, 229

spline, 66
quickref, 355

spline trans, 338
Splines

vs. macros, 68
splines

quickref, 355
split union

union, 150
Split Unions

ini-option, 27
spotlight

light source, 153, 155
spotted, 230

keyword, 230
pattern, 230

sqr, 123
julia fractal, 121

sqrt, 43
SRand, 310
StarPtrn, 336
StartColumn

ini-option, 7
StartRow

ini-option, 7
StatisticConsole

ini-option, 23
StatisticFile

ini-option, 24
statistics, 80
Std Dev, 303
Str

strings.inc, 330
str, 64
strcmp, 43

404 INDEX

streams, 22
redirecting, 23

strength, 115
black hole warp, 236
blob, 114, 115
warp, 235

String
functions, 63
identifiers, 63
literals, 62

string
quickref, 353

String Literals, 62
Strings, 62
strings

quickref, 353
strlen, 43
strlwr, 64
strupr, 64
sturm, 171

blob, 114
lathe, 124, 125
object modifier, 171
poly, 142
prism, 126, 128
sor, 130, 131
torus, 133

SubsetEnd Frame, 5
ini-option, 5

SubsetStartFrame, 5
ini-option, 5

substr, 64
sum, 58
sunpos, 343
Supercone, 316
superellipsoid, 129

keyword, 129
superquadric, 129
Supertorus, 316
switch, 79
sys, 106

global settings, 101
height field, 119
imagemap, 180

System-specific output, 12

t, 49
tan, 43

julia, 124

julia fractal, 121
tand, 303
tanh, 43

julia, 124
julia fractal, 121

Targa output
compressed, 12
uncompressed, 12

target, 266
TestAbort

ini-option, 7
TestAbort Count

ini-option, 7
text, 131

keyword, 131
text streams, 22
Text Space, 315
Text Width, 315
texture, 173

keyword, 173
layered, quickref, 371
patterned, quickref, 371
plain, quickref, 370
quickref, 370

texture-list, 137
texturelist, 205

keyword, 205
mesh, 136
mesh2, 137

texturemap, 198
texture, 173

Textures
default, 75

tga, 180
height field, 119

The scene
quickref, 349

thickness, 196
finish, 190

threshold, 115
blob, 114
isosurface, 145, 146

tiff, 180
height field, 119

tightness, 155
light source, 153

tile2, 199
tiles, 199
Tiles Ptrn, 336

INDEX 405

tolerance, 128
spheresweep, 128

toroidal, 242
warp, 235, 242

torus, 133
keyword, 133

trace, 50
transform, 358
transformations

quickref, 358
translate, 358
transmit, 52

bitmap modifier, 181
triangle, 140

keyword, 140
mesh, 136

TriangleStr, 331
trianglewave, 231

pattern modifier, 231
true, 44
ttf, 131

text, 131
turb depth, 98

fog, 97
turbulence, 231

finish, 190
fog, 97, 98
irid, 196
pattern modifier, 231
warp, 235, 239

type, 134
bicubic patch, 134

u, 49
u steps, 134

bicubic patch, 134
ultra wide angle, 93

camera, 87
undef, 73
union, 150

keyword, 150
up, 90

camera, 87
fog, 97
rainbow, 100

usealpha, 221
imagepattern, 221

usecolor, 189
usecolour, 189

useindex, 189
user-defined functions

quickref, 351
UserAbort Command

ini-option, 18
UserAbort Return, 20
utf8, 106

global settings, 101
uv indices, 137

mesh2, 137
uv mapping, 203

quickref, 369
uv vectors, 137

mesh, 136
mesh2, 137

v, 49
v steps, 134

bicubic patch, 134
val, 43
VAngle, 305
variable reflection, 195
variance, 95

camera, 87
focal blur, 95
media, 254, 258

vaxis rotate, 50
VCos Angle, 305
vcross, 51
vCurl, 307
VDist, 306
vdot, 43
VDot5D, 305
Vector, 47

built-in identifiers, 51
color, 54
expressions, 47
functions, 49
functions, user-defined, 61
identifiers, 48
literals, 48
operators, 49

Vectors
direction, 90
sky, 89

VEq, 305
VEq5D, 305
Verbose

ini-option, 11

406 INDEX

Version
ini-option, 17

version, 76
quickref, 357

version identfier
quickref, 357

vertexvectors, 137
mesh2, 137

vGradient, 307
Video Mode

ini-option, 9
Vista Buffer

ini-option, 26
vlength, 43
VLength5D, 305
VMin, 306
vnormalize, 51
VNormalize5D, 305
VPerpAdjust, 306
VPerpTo Plane, 306
VPerpTo Vector, 306
VPow, 305
VPow5D, 305
VProjectAxis, 306
VProjectPlane, 306
VRand, 310
VRand In Box, 310
VRand In Obj, 310
VRand In Sphere, 310
VRandOn Sphere, 310
vrotate, 51
VRotation, 305
VSqr, 304
Vstr

strings.inc, 330
vstr, 64
VStr2D

short form, 330
Vstr2D

long form, 330
vtransform, 338
vturbulence, 51
VWith Len, 306
VZero, 305
VZero5D, 305

warning, 80
debug.inc, 282

WarningConsole

ini-option, 23
WarningFile

ini-option, 24
WarningLevel

ini-option, 24
warp, 231

cylindrical, 242
falloff, 236
keyword, 235
pattern modifier, 231, 235
planar, 242
spherical, 242
toroidal, 242

water level, 121
height field, 119

waves, 230
keyword, 230
pattern, 230

Wedge, 316
while, 80
Width

ini-option, 6
width, 100

rainbow, 100
Wire Box Union, 317
wood, 231

keyword, 231
pattern, 231

wrinkles, 231
keyword, 231
pattern, 231

write, 75

x, 49

y, 49
yes, 44

z, 49

