POV-Ray Reference

POV-Team

for POV-Ray Version 3.6.1

Contents

1 Introduction 1
1.1 Notation and Basic ASSUMPLIONS e e 2
1.2 Command-line Options e e e 2
1.2.1 Animation Options L e e e 3
1.2.2 General Output Options e 6
1.2.3 Display Output Options e 9
1.2.4 FileOutput Options e e 12
1.25 SceneParsingOptions e 15
1.2.6 Shell-outto Operating System e 18
1.2.7 TextOutput o e e e e e e e 21
1.28 Tracing Options e e e 25
2 Scene Description Language 31
2.1 Language BasiCs e 31
2.1.1 Identifiersand Keywords 32
2.1.2 COMMENIS o e e e 37
2.1.3 Float EXPressions e 38
2.1.4 VeCtor EXpressions o v vt it i e 47
2.15 SpecifyingColors 52
2.1.6 User-Defined Functions 57
217 SHUINGS . . o o 62
2.1.8 Arrayldentifiers 65
2.1.9 Splineldentifiers 66
2.2 Language Directives 68
2.2.1 Include Files and the #include Directive 69
2.2.2 The #declare and #local Directives 70
2.2.3 Filel/lODirectives e 73
2.2.4 The#defaultDirective e 75
2.25 The#versionDirective e 76
2.2.6 Conditional Directives e 77
2.2.7 UserMessage Directives o 80
2.2.8 UserDefinedMacros e 82
3 Scene Settings 87
31 Camera e 87
3.1.1 PlacingtheCamera e 88
3.1.2 TypesofProjection 93

iv CONTENTS
3.1.3 FocalBlur. e e e 95
3.1.4 CameraRayPerturbation 95
3.1.5 Cameraldentifiers e 96

3.2 Atmospheric Effects 96
3.21 AtmosphericMedia. 96
3.2.2 Background 97
3.2.3 FOQ . . e 97
3.24 SKkySphere e 99
3.25 Rainbow e 100

3.3 Global Settings 101
3.3.1 ADCBailout e e e 102
3.3.2 AmbientLight 102
3.3.3 Assumedsamma. e 103
3.34 HEGrayl6. e e 105
3.3.5 IridWavelength L 105
3.3.6 Charset e 106
3.3.7 MaxTracelLevel 106
3.3.8 Maxintersections 107
3.3.9 NumberOf Waves e 107
3.3.10 Noisegenerator. 107
3.3.11 Radiosity BasiCs 107

3.4 Radiosity e 108
3.4.1 HowRadiosity Works 108
3.4.2 Adjusting Radiosity 109
3.4.3 TipsonRadiosity 112

4 Objects 113

4.1 Finite Solid Primitives 114
4.1.1 Blob. . . . e 114
412 BOX . v i e 117
4.1.3 CONe . . . 117
4.1.4 Cylinder 118
415 HeightField e 119
416 JuliaFractal 121
417 Lathe . . . o 124
4.1.8 Prism 126
4.1.9 Sphere 128
4.1.10 SPhere SWEEP o ot 128
4.1.11 Superquadric Ellipsoid e 129
4.1.12 Surface of Revolution e 130
4113 TeXt . . o 131
4.1.14 TOIUS . . . o o i e e e e e 133

4.2 Finite Patch Primitives e 134
4.2.1 BicubicPatch 134
422 DISC . . v v o 136
423 Mesh . . . 136
424 Mesh2. . . . e 137
425 Polygon 139

4.2.6 Triangleand Smooth Triangle e 140

CONTENTS Y

4.3 Infinite Solid Primitives e 141
4.3.1 Plane 141
4.3.2 Poly,CubicandQuartic 142
4.3.3 Quadric e e 145

4.4 Isosurface Object 145

45 ParametricObject e 147

4.6 Constructive Solid Geometry e 149
4.6.1 |InsideandOutside 149
4.6.2 UnioN L e 150
4.6.3 Intersection L 151
4.6.4 Difference e 152
465 Merge e e e 152

4.7 LightSources e e 153
4.7.1 PointLights e 154
4.7.2 Spotlights 155
4.7.3 Cylindrical Lights 157
4.7.4 ParallelLights e e 158
475 Arealights e 158
4.7.6 ShadowlessLights e 162
4.7.7 Lookslike e 162
4.7.8 Projectedhrough 163
479 LightFading e 163
4.7.10 Atmospheric Media Interaction 163
4.7.11 Atmospheric Attenuation L 164

4.8 Light Groups o e 164

4.9 ObjectModifiers 166
4.9.1 ClippedBy e e 166
4.9.2 BoundeBy e 167
4.9.3 Material e 168
4.94 INVEISE e e 169
495 Hollow e 169
4,96 NaShadow e 170
4.9.7 Nalmage, NaReflection 170
4.9.8 Doublellluminate 171
4.9.9 SWUIM . . . L L e 171

5 Textures 173

5.1 Pigment 175
5.1.1 SolidColorPigments e 176
5.1.2 ColorListPigments e 176
5.1.3 ColorMaps e 177
5.1.4 Pigment Maps and PigmentLists 179
515 ImageMaps. 180
5.1.6 Quick Color. e e 182

5.2 Normal e 183
5,21 SlopeMaps e 184
5.2.2 NormalMapsand NormalLists 187
523 BumpMaps e 188

5.2.4 Scalingnormals. e 189

Vi CONTENTS
5.3 Finish e 190
5.3.1 Ambient e e 191
5.3.2 Diffuse Reflectionltems 191
5.3.3 Highlights. e 192
5.3.4 Specular Reflection 194
5.3.5 Conserve Energy forReflection 195
5.3.6 Iridescence e 196
5.4 Halo 196
55 Patterned TeXtUreS e e e e 197
551 Texture Maps o i e e e e 198
552 Tiles. . . . 199
5,53 MaterialMaps 199
5.6 Layered Textures o i e e 202
57 UVMapping o o 203
5.7.1 Supported Objects e 203
5.7.2 UV VECIOrS e 204
5.8 Triangle Texture Interpolation 205
5.9 Interior Texture 205
5.10 Cutaway TexXtUres 206
5.11 Patterns L e e e e 206
511.1 Agate 207
5.11.2 AVErage o e 208
5.11.3 Boxed e e 209
511.4 B0OzZO e 209
5.11.5 Brick . . . o 209
5.11.6 BUMPS o e e e e e 210
5.11.7 Cells 210
5.11.8 Checker 210
5.11.9 Crackle Patterns e 211
5.11.10Cylindrical e e 213
5.11.11DensityFile e e 213
BALA2DENIS . . o o o e e e 214
BALASFACELS . . . o o e 214
5.11.14 Fractal Patterns e 215
5.11.15Functionas pattern e 217
5.11.16 Function Image e e 218
5.11.17Gradient 219
5.11.18Granite e 219
5 11.19HEXagon o e e 220
5.11.20Image Pattern L 221
B.11.21Leopard o 222
5.11.22Marble L e 222
5.11.230bject Pattern. 223
5.11.240N0I0N . . . o . e e e e e e e 223
5.11.25PigmentPattern 223
B.A1.26Planar e e e e e e 224
5.11.27Quilted e e 225
5.11.28Radial 227

B.11.29RIpplES e e e 227

CONTENTS Vi

5.11.30SI0pe e 227
5.11.31Spherical e 229
5.11.32Spirall 229
5.11.33Spiral2 229
5.11.34Spotted e 230
5.11.35Waves e e 230
5.11.36W00d e e e 231
5.11.37Wrinkles 231
5.12 Pattern Modifiers e 231
5.12.1 Transforming Patterns 233
5.12.2 FrequencyandPhase 233
5.12.3 Waveforms 234
5.12.4 Noise GENerators v v i i e e e 235
5.125 Turbulence 235
5.12.6 Warps e e e 235
5.12.7 Bitmap Modifiers 244
Interior & Media & Photons 247
6.1 INterior e 247
6.1.1 Why are Interior and Media Necessary? i e 248
6.1.2 EmptyandSolidObjects 248
6.1.3 Scaling objectswithaninterior. 249
6.1.4 Refraction. L 251
6.1.5 DISPersion 251
6.1.6 Attenuation e 252
6.1.7 Simulated CaustiCs e 252
6.1.8 Object-Media e 253
6.2 Media 253
6.2.1 MediaTypeS i e e e 255
6.2.2 Sampling Parameters & Methods L L. 258
6.2.3 Density e 258
6.3 Photons e 262
6.3.1 OVEIVIEBW o e e 262
6.3.2 Using Photon Mappingin YourScene 262
6.3.3 Photons FAQ e 267
6.3.4 PhotonTips 269
6.3.5 Advanced Techniques 269
Include Files 273
7.1 arrayS.anC . . . o o e e e e 273
7.2 charsiinC e 274
7.3 COIOrsiNC e 275
7.3.1 Predefinedcolors e 275
7.3.2 Colormacros e 275
7.4 CONSES.NC e 280
7.4.1 VectorconstantsS 280
7.4.2 Maptypeconstants e 280
7.4.3 Interpolationtype constants 280

7.4.4 FOQUlype constants 0 i e e e 280

viii CONTENTS
7.45 Focalblurhexgridconstants 281
746 10ORS e 281
7.4.7 DispersionamountS e e e e e e e e e e e 282
7.4.8 Scattering mediatypeconstants e 282

7.5 debug.inC e 282
7.6 finishiinC. e 283
7.7 functions.inC. e e e e 283
7.7.1 CommonParameters e e e e 284
7.7.2 Internal Functions e e 285
7.7.3 Predefinedfunctions e 298
7.8 glass.inc,glassld.inc 299
7.8.1 Glass colors (with transparency) 299
7.8.2 Glass colors (without transparency, for faddor) 299
7.8.3 Glassfinishes e 299
7.8.4 Glassinteriors e e e 301
7.8.5 Glassinteriormacros e e e e 301
7.8.6 glasld.inc 301
7.9 mathiinc e 302
7.9.1 Floatfunctionsand macros e 302
7.9.2 Vector functionsand macros e e e e e 304
7.9.3 Mector Analysis 306
7.10 metals.inc, golds.inC e e e e e 308
7.10.1 metals.nC e e e e 308
7.10.2 golds.inC 309
711 randinC e e e e 310
7.11.1 FlatDistributions e 310
7.11.2 OtherDistributions e 311
7.12 shapes.inc, shapekl.inc, shapes2.inc, shapesqg.inc 313
7.12.1 sShapes.inC e e e 314
7.12.2 shapesld.inC e e 320
7.12.3 sShapes2.iNC e e e 321
7.12.4 shapesq.inC e e e 321
7.13 skies.inc, Stars.nC e e e e e 323
7.13.1 SKIES.INC e e e e e e 324
T7.13.2 StarS.inC e e e e e 324
7.14 stones.inc, stonesl.inc, stones2.inc, stoneold.inc L L Lo 325
7.14.1 sStonesSlinC e e e 325
7.14.2 StONES2.NC o o e e e e e 329
7.15 StAINC.INC e e e 330
7.16 StriNgS.NC L 330
7.7 teXtUrES.NC o o e e e e e e e 331
T.17.1 StONES e e e 331
T.17.2 SKIES . . . o o e e 332
7.17.3 WOOAS e e 332
T.A7.4 Glass o e 333
7175 Metals. o e e e 334
7.17.6 Specialtextures e e e e e e 335
7.17.7 Textureand pattern macroS v v v i i e e 335

7.18 transforms.ne e e e e e 336

CONTENTS iX

7.19 woodmaps.inC, WoodsS.iNC e e 338
7.19.1 woodmaps.inC e e e 339
7.19.2 WOOAS.INC e 339

7.20 Otherfiles e e e 340
7.20.1 1000.NC . . . o 341
7.20.2 raddefinc e 341
7.20.3 SCrEEN.NC . . . v v v e e e 342
7.20.4 stdcam.nC e e 343
7.20.5 stageline e 343
7.20.6 SUNPOS.INC v vt e 343
7.20.7 fontfiles (*.ttf) 344
7.20.8 colormapfiles (*map) e 344
7.20.9 image files (*.png, *.pot, *.df3) 345

8 Quick Reference 347

8.1 Quick Reference Contents 348

8.2 TheSCENE e e 349

8.3 Language BasiCs e e 349
8.3.1 Floats e 349
8.3.2 VeCIOrS e e e 350
8.3.3 Colors e 351
8.3.4 Userdefined Functions e 351
8.3.5 SHNGS e 353
8.3.6 AImayS e e 354
8.3.7 Splines 355

8.4 Language Directives 355
8.4.1 Filelnclusion e 355
8.4.2 Identifier Declaration 356
8.4.3 Filelnput/Output e 356
8.4.4 Default Texture e 357
8.4.5 \Versionldentfier 357
8.4.6 Control Flow Directives e 357
8.4.7 Message Streams e e e e 358
8.4.8 MACIO e 358
8.4.9 Embedded Directives 358

8.5 Transformations e e e 358

8.6 Camera e e 359

8.7 Lights e 359
8.7.1 Lightgroup e e e 360

8.8 ObjecCts e 361
8.8.1 FiniteSolid Objects e 361
8.8.2 Finite Patch Objects 364
8.8.3 Infinite Solid Objects 366
8.8.4 Isosurface 367
8.8.5 Parametric 367
8.8.6 CSG i i i 368

8.9 ObjectModifiers 368
8.9.1 UVMapPING 369

8.9.2 Material e 369

CONTENTS

8.9.3 Interior e e 370
8.9.4 Interior TEXIUIe e e e e e 370
8.10 Texture e e e e e 370
8.10.1 PlainTexture e e e e e 370
8.10.2 Layered Texture i i e e e e 371
8.10.3 Patterned Texture i e e 371
8.10.4 Pigment 372
8.10.5 Normal e e e 373
8.10.6 Finish e 374
8.10.7 Pattern e e 375
8.10.8 Pattern Modifiers e 376
8.11 Media e e e 378
8.12 Atmospheric Effects 379
8.12.1 Background L 379
8.12.2 FOQ . . . o o e 379
8.12.3 Sky Sphere e e 379
8.12.4 RainbOwW e e 380
8.13 Global Settings 380
8.13.1 Radiosity e 380

8.13.2 PhOtONS 381

Figures

11
1.2

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

4.18
4.19
4.20
4.21
4.22
4.23
4.24

5.1
5.2
5.3
54
5.5
5.6
5.7

Display gammatestimage. 10
Example of how the recursive super-samplingworks. 29
The perspective camera. i i i e e e e 89
ThegeometryofaboX. 117
Thegeometryof acone. e 118
Thegeometry ofacylinder. 118
The size and orientation of an un-scaled heightfield. 119
Relationship of pixels and triangles in a heightfield. 120
The geometry of asphere. e 128
Points on a surface of revolution. 132
Major and minor radius of atorus. 134
Two overlapping objects. 149
The unionoftwo objects. 150
The intersection of two objects. 151
The difference betweentwoobjects. L 152
Merge removes innersurfaces. 153
The geometry of aspotlight. 155
Intensity multiplier curve with a fixed falloff angle of 45degrees. 156
Intensity multiplier curve with a fixed radius angle of 45 degrees. 156
Intensity multiplier curve with fixed angle and falloff angles of 30 and 60 degrees respectively

and differenttightnessvalues. 157
Intensity multiplier curve with a negative radius angle and different tightness values. 157
4x4 Area light, location and vectors. 159
Arealight adaptive samples. e 160
Arealightfacingobject e 161
Area light notfacingobject L 161
Light fading functions for different fadingpowers., 164
An object clipped by anotherobject. 167
UVBoxmap e 204
The hexagon pattern. e 220
Quilted pattern with c0O=0 and different valuesforcl. 225
Quilted pattern with c0=0.33 and differentvaluesforcl. 226
Quilted pattern with c0=0.67 and differentvaluesforcl. 226
Quilted pattern with cO=1 and differentvaluesforcl. 226
Turbulence randomwalk. 241

Xii FIGURES

6.1 The Mie haze scattering function 256
6.2 The Mie murky scattering function. 257
6.3 The Rayleigh scattering function. 257
6.4 The Henyey-Greenstein scattering function for different eccentricity values. 257
6.5 Reflectivecaustics. e 262
6.6 Photonsusedforlensesandcaustics 263
6.7 Example of the photon autostop option 270

Tables

2.1
2.2
2.3
2.4
2.5
2.6

4.1
4.2
4.3
4.4
4.5

7.1
7.2
7.3
7.4
7.5
7.6
7.7

8.1

Arithmetic eXpressions 40
Relational expressions e 40
Logical eXpressions L. e e 41
Conditional eXpressions e e 41
Alllanguage directives e e e 69
All character escape SEqQUENCES o o i i it e e e 81
Quaternion basis vector multiplicationrules o 123
Hypercomplex basis vector multiplicationrules 123
Function Keyword Maps 4-Dvalueofh, 124
Cubic and quartic polynomialterms 144
Some quartic shapes 145
Primary colors e 275
Shades of gray...from 5% to 95%, in 5% increments oL L. 276
Misc. colors-plate 1 277
Misc. colors-plate 2 e e 278
Misc. colors-plate 3 e e 279
glass.inc glass colors with transparency o oo 299
glass.inc glass colors without transparency forfealer 300

Quick Reference Overview e 348

Xiv TABLES

Chapter 1

Introduction

This book provides a reference for the Persistence of Vision Ray-Tracer (POV-Ray). The documentation applies
to all platforms to which this version of POV-Ray is ported. The platform-specific documentation is available
for each platform separately.

This book is divided into these main parts:

1. This introduction together with a complete reference on “POV-Ray Options” which explains options (set
either by command line switches or by INI file keywords) that tell POV-Ray how to render the scenes.

2. A complete reference on “Scene Description Language” in which you describe the scene.

3. A complete reference on the “Standard Include Files” that come with the POV-Ray package, to be used
in your scenes.

4. Finally, a consolidation of the POV-Ray Scene Description Language in the “Quick Reference”.

This book covers only the generic parts of the program which are common to each v&aobrversion has
platform-specific documentation not included here We recommend you finish reading the tuorial book then
read the platform-specific information before using this reference.

The platform-specific docs will show you how to render a sample scene and will give you detailed description
of the platform-specific features.

The Windows version documentation is available on the POV-Ray program’s Help menu or by pressing the F1
key while in the program.

The Mac platform documentation is available via the “Help” menu as well as for viewing using a regular web
browser. Details may be found in thedt-ray Macos read Me” which contains information specific to the Mac
version of POV-Ray. It is best to read this document first.

The Unix / Linux version documentation can be found at the same place as the platform independent part.
Usually that is/usr/local/share/povray-3.2/html

2 Introduction

1.1 Notation and Basic Assumptions

Throughout the tutorial and reference books, the consistent notation is used to mark keywords of the scene
description language, command line switches, INI file keywords and file names. All POV-Ray scene descrip-
tionlanguage keywords, punctuation and command-line switches are mono-spaced. For exasmple .0

* sin(45.0) Or +W640 +H480. Syntax descriptions are mono-spaced and all caps. For example required syntax
items are written likesyntax_1TEM, While optional syntax items are written in square braces(lik@Tax_1TEM].

If one or more syntax items are required, the ellipsis will be appendediyikex_1TEwM. . .. In case zero or more

syntax items are allowed, the syntax item will be written in square braces with appended ellipsisiileer_-

ITEM...]. A float value or expression is written mixed case likeue_1, while a vector value or expression

is written in mixed case in angle braces likealue_1>. Choices are represented by a vertical bar between
syntax items. For example a choice between three items would be writtemas | 1TEM2 | 1TEM3. Further,

a certain lists and arrays also require square braces as part of the language rather than the language description.
When square braces are required as part of the syntax, they will be separated from the contained syntax item
specification with a spaces like1tem .

Note: POV-Ray is a command-line program on Unix and other text-based operating systems and is menu-driven
on Windows and Macintosh platforms. Some of these operating systems use folders to store files while others
use directories. Some separate the folders and sub-folders with a slash chajabtakslash charactey)(

or others.

We have tried to make this documentation as generic as possible but sometimes we have to refer to folders, files,
options etc. and there is no way to escape it. Here are some assumptions we make...

1. You installed POV-Ray in thec* \povray36” directory. For MS-Dos this is probably true but for Unix it
might be “/usr/povray3”, or for Windows it might be t:\Program Files\POV-Ray for Windows v3.6",
for Mac it might be fyHp:apps:POvV-Ray 36:", or you may have used some other drive or directory.
So if we tell you that “Include files are stored in thgovray36\include directory,” we assume you
can translate that to something like:®ovray36: INCLUDE” OF “C:\Program Files\POV-Ray for Windows
v3.6\include” or whatever is appropriate for your platform, operating system and installation.

2. POV-Ray uses INI files and/or command-line switches (if available) to choose options in all versions,
but Windows and Mac also use dialog boxes or menu choices to set options. We will describe options
assuming you are using switches or INI files when describing what the options do. We have taken care
to use the same terminology in designing menus and dialogs as we use in describing switches or INI
keywords. See your version-specific documentation on menu and dialogs.

3. Some of you are reading this using a help-reader, built-in help, web-browser, formatted printout, or plain
text file. We assume you know how to get around in which ever medium you are using. We will say
“See the chapter on "Setting POV-Ray Options* we assume you can click, scroll, browse, flip pages or
whatever to get there.

1.2 Command-line Options

The reference section describes all command line switches and INI file keywords that are used to set the options
of POV-Ray. It is supposed to be used as a reference for looking up things. It does not contain detailed
explanations on how scenes are written or how POV-Ray is used. It just explains all features, their syntax,
applications, limits, drawbacks, etc.

1.2 Command-line Options 3

Options may be specified by switches or INI-style options. Almost all INI-style options have equivalent
switches and most switches have equivalent INI-style option. The following sections give a detailed description
of each POV-Ray option. It includes both the INI-style settings and the switches.

The notation and terminology used is described in the tables below.

Keyword=bool Turnkeyword on if bool equals rue, yes, on or1 and Turn it off if it is
any other value.

Keyword=true Do this option iftrue, yes, on or 1 is specified.

Keyword=false Do this option iffalse, no, off or 0 is specified.

Keyword=filename Seteyword to filename where filename is any valid file name.

Note: some options prohibit the use of any of the abowveie or false
values as a file name. They are noted in later sections.

n Any integer such as if320

n.n Any float such as inlock=3.45

0.n Any float< 1.0 even if it has no leading O

S Any string of text

Xory Any single character

path Any directory name, drive optional, no final path separatgrdf "/*,

depending on the operating system)

Unless otherwise specifically noted, you may assume that either a plus or minus sign before a switch will
produce the same results.

1.2.1 Animation Options

Internal animation loop, automatic output file name numbering and the ability to shell out to the operating
system to external utilities which can assemble individual frames into an animation, greatly improved the
animation capability. The internal animation loop is simple yet flexible. You may still use external programs or
batch files to create animations without the internal loop.

External Animation Loop

Clock=n.n Sets:1ock float identifier to n.n
+KN.N Same aslock=n.n

The clock=n.n option or the +kn.n switch may be used to pass a single float value to the program for basic
animation. The value is stored in the float identifiesck. If an object had aotate <0, clock, 0> attached
then you could rotate the object by different amounts over different frames by setting 0,+x20.0... etc. on
successive renderings. It is up to the user to repeatedly invoke POV-Ray with a differesit value and a
different output_File_Name for each frame.

Internal Animation Loop

The internal animation loop relieves the user of the task of generating complicated sets of batch files to invoke
POV-Ray multiple times with different settings. While the multitude of options may look intimidating, the

4 Introduction

Initial_Frame=n Sets initial frame number to n
Final_Frame=N Sets final frame number to n
Initial_Clock=n.n Sets initial clock value to n.n
Final_Clock=n.n Sets final clock value to n.n
+KFIN Same asnitial_Frame=N
+KFFN Same asinal_Frame=n

+KIN.N Same asnitial_Clock=Nn.n
+KFN.N Same asinal_Clock=n.n

clever set of default values means that you will probably only need to specify the Frame=n or the+krrn
option to specify the number of frames. All other values may remain at their defaults.

Any Final Frame Setting other than -1 will trigger POV-Ray’s internal animation loop. For examples1_-
Frame=10 Of +KFF10 causes POV-Ray to render your scene 10 times. If you specifig@lt File Name=file.

tga then each frame would be output@se01.tga, file02.tga, file03.tga etc. The number of zero-padded
digits in the file name depends upon the final frame number. For examgieoo would generatgile001.

tga throughfile100.tga. The frame number may encroach upon the file name. On MS-DOS with an eight
character limitmyscene . pov would render tenysce001.tga throughmysce100.tga.

The defaultinitial Frame=1 will probably never have to be changed. You would only change it if you were
assembling a long animation sequence in pieces. One scene might run from frame 1 to 50 and the next from 51
t0 100. Thernitial Frame=nor +krIn option is for this purpose.

Note: if you wish to render a subset of frames such as 30 through 40 out of a 1 to 100 animation, you should
not changenitial Frame Of Final Frame. Instead you should use the subset commands described in section
"Subsets of Animation Frames".

Unlike some animation packages, the action in POV-Ray animated scenes does not depend upon the integer
frame numbers. Rather you should design your scenes based upon the float identifieBy default, the

clock value is 0.0 for the initial frame and 1.0 for the final frame. All other frames are interpolated between
these values. For example if your object is supposed to rotate one full turn over the course of the animation, you
could specifyrotate 360*clock*y. Then as clock runs from 0.0 to 1.0, the object rotates about the y-axis from

0 to 360 degrees.

The major advantage of this system is that you can render a 10 frame animation or a 100 frame or 500 frame or
329 frame animation yet you still get one full 360 degree rotation. Test renders of a few frames work exactly
like final renders of many frames.

In effect you define the motion over a continuous float valued parameter (the clock) and you take discrete
samples at some fixed intervals (the frames). If you take a movie or video tape of a real scene it works the same
way. An object’s actual motion depends only on time. It does not depend on the frame rate of your camera.

Many users have already created scenes for POV-Ray 2 that expect clock values over a range other than the
default 0.0 to 1.0. For this reason we provide thetial_Clock=n.nor +k1n.nandrinal_Clock=N.NOr +KFN.N

options. For example to run the clock from 25.0 to 75.0 you would speeifyial_Clock=25.0 andrinal -
Clock=75.0. Then the clock would be set to 25.0 for the initial frame and 75.0 for the final frame. In-between
frames would have clock values interpolated from 25.0 through 75.0 proportionally.

Users who are accustomed to using frame numbers rather than clock values could spe€ifyl clock=1.0
andrinal_Clock=10.0 andrrame Final=10 for a 10 frame animation.

For new scenes, we recommend you do not changerthi@ ial_Clock Or Final_Clock from their default 0.0
to 1.0 values. If you want the clock to vary over a different range than the default 0.0 to 1.0, we recommend

1.2 Command-line Options 5

you handle this inside your scene file as follows...

#declare Start = 25.0;
#declare End = 75.0;
#declare My_Clock = Start+(End-Start)*clock;

Then usety_clock in the scene description. This keeps the critical values 25.0 and 75.0 in your .pov file.

Note: more details concerning the inner workings of the animation loop are in the section on shell-out operating
system commands in section “Shell-out to Operating System”.

Subsets of Animation Frames

Subset_Start_Frame=N Set subset starting frame to n
Subset_Start_Frame=0.n Set subset starting frame to n percent
Subset_End_Frame=n Set subset ending frame to n
Subset_End_Frame=0.n Set subset ending frame to n percent
+sr0.n Same aSubset_Start_Frame

+EF0.N Same asubset_End_Frame

When creating a long animation, it may be handy to render only a portion of the animation to see what it looks
like. Suppose you have 100 frames but only want to render frames 30 through 40. If yattset Frame=30
andrinal Frame=40 then the clock would vary from 0.0 to 1.0 from frames 30 through 40 rather than 0.30
through 0.40 as it should. Therefore you should leav@tial Frame=1 andrinal Frame=100 and us&ubset -
Start_Frame=30 andsubset_End Frame=40 t0 Selectively render part of the scene. POV-Ray will then properly
compute the clock values.

Usually you will specify the subset using the actual integer frame numbers however an alternate form of the
subset commands takes a float value in the r&h@e<=n.nnn <=1.0 which is interpreted as a fraction of

the whole animation. For examplesubset _Start_Frame=0.333 andSubset_End_Frame=0.667 would render the
middle 1/3rd of a sequence regardless of the number of frames.

Cyclic Animation

Cyclic_Animation=bool Turn cyclic animation on/off
+KC Turn cyclic animation on
-KC Turn cyclic animation off

Many computer animation sequences are designed to be run in a continuous loop. Suppose you have an object
that rotates exactly 360 degrees over the course of your animation and yeuwtelid 360*clock*y to do so.

Both the first and last frames would be identical. Upon playback there would be a brief one frame jerkiness. To
eliminate this problem you need to adjust the clock so that the last frame does not match the first. For example
a ten frame cyclic animation should not use clock 0.0 to 1.0. It should run from 0.0 to 0.9 in 0.1 increments.
However if you change to 20 frames it should run from 0.0 to 0.95 in 0.05 increments. This complicates things
because you would have to change the final clock value every time you cheinged rame. Settingcyclic -
Animation=on Or using+kc will cause POV-Ray to automatically adjust the final clock value for cyclic animation
regardless of how many total frames. The default value for this setting is off.

6 Introduction

Field Rendering

Field_Render=bool Turn field rendering on/off
0dd_Field=bool Set odd field flag

+UF Turn field rendering on
-UF Turn field rendering off
+U0 Set odd field flag on

-U0 Set odd field flag off

Field rendering is sometimes used for animations when the animation is being output for television. TVs only
display alternate scan lines on each vertical refresh. When each frame is being displayed the fields are interlaced
to give the impression of a higher resolution image. The even scan lines make up the even field, and are drawn
first (i.e. scan lines 0, 2, 4, etc.), followed by the odd field, made up of the odd numbered scan lines are drawn
afterwards. If objects in an animation are moving quickly, their position can change noticeably from one field

to the next. As a result, it may be desirable in these cases to have POV-Ray render alternate fields at the actual
field rate (which is twice the frame rate), rather than rendering full frames at the normal frame rate. This would
save a great deal of time compared to rendering the entire animation at twice the frame rate, and then only using
half of each frame.

By default, field rendering is not used. Settirgeld_Render=on Or using +ur will cause alternate frames in an
animation to be only the even or odd fields of an animation. By default, the first frame is the even field, followed
by the odd field. You can have POV-Ray render the odd field first by specifgingrield=on, or by using the

+U0 switch.

1.2.2 General Output Options

Height and Width of Output

Height=Nn Sets screen height to n pixels
Width=n Sets screen width to n pixels
+HN Same ageight=n

+Wh Same agidth=n

These switches set the height and width of the image in pixels. This specifies the image size for file output. The
preview display, if on, will generally attempt to pick a video mode to accommodate this size but the display
settings do not in any way affect the resulting file output.

Partial Output Options

When doing test rendering it is often convenient to define a small, rectangular sub-section of the whole screen
S0 you can quickly check out one area of the image. Jhet _Row, End_Row, Start_Column andEnd_Column

options allow you to define the subset area to be rendered. The default values are the full size of the image from
(1,1) which is the upper left to (w,h) on the lower right where w and h areithen=n and Height=n values

you have set.

Note: if the number specified is greater than 1 then it is interpreted as an absolute row or column number in
pixels. If it is a decimal value between 0.0 and 1.0 then it is interpreted as a percent of the total width or height
of the image.

1.2 Command-line Options

For example:

Start_Column=N
Start_Column=0.n
+5¢c0.n
Start_Row=N
Start_Row=0.n
+3N

+5r0.n or+s0.n
End_Column=n
End_Column=0.n
+£c0.Nn
End_Row=N
End_Row=0.n
+EN

+ERO.n or+£0.n

Set first column to n pixels

Set first column to n percent of width
Same astart_Column

Set first row to n pixels

Set first row to n percent of height
Same astart_Row=N

Same astart_Row=0.n

Set last column to n pixels

Set last column to n percent of width
Same asnd_Column

Set last row to n pixels

Set last row to n percent of height
Same asnd_Row=n

Same asnd_Row=0.n

Start_Row=0.75 and Start_Column=0.75 starts on a row 75% down from the top at a column

75% from the left. Thus it renders only the lower-right 25% of the image regardless of the specified width and
height.

The +sR, +ER, +SC and +Ec switches work in the same way as the corresponding INI-style settings for both
absolute settings or percentages. Early versions of POV-Ray allowed only start and end rows to be specified
with +snand +en so they are still supported in addition tesr and+Eer.

When rendering a subset of *columns#s¢/+ec) POV-Ray generates a full width image and fills the not
rendered columns with black pixels. This should not be a problem for any image reading program no matter
what file format is used.

when rendering a subset of *rowsts-/+er) POV-Ray writes the full height into the image file header and only
writed those lines into the image that are rendered. This can cause problems with image reading programs that
are not checking the file while reading and just read over the end.

if POV-Ray wrote the actual height of the partial image into the image header there would be no way to continue
the trace in a later run.

Interrupting Options

Test_Abort=bool Turn test for user abort on/off

+X Turn test abort on

-X Turn test abort off

Test_Abort_Count=N Set to test for abort every n pixels

+XN Set to test for abort every n pixels on

-xn Set to test for abort off (in future test every n pixels)

On some operating systems once you start a rendering you must let it finisttesth&ort=on option or+x

switch causes POV-Ray to test the keyboard for keypress. If you have pressed a key, it will generate a controlled
user abort. Files will be flushed and closed but only data through the last full row of pixels is saved. POV-Ray
exits with an error code 2 (normally POV-Ray returns 0 for a successful run or 1 for a fatal error).

When this option is on, the keyboard is polled on every line while parsing the scene file and on every pixel

8 Introduction

while rendering. Because polling the keyboard can slow down a renderingrd¥teabort _Count=n option or
+xn switch causes the test to be performed only evepixels rendered or scene lines parsed.

Resuming Options

Continue_Trace=bool Sets continued trace on/off

+C Sets continued trace on

-C Sets continued trace off

Create_Ini=file Generate an INI file to file

Create_Ini=true Generate file.ini where file is scene name.
Create_Ini=false Turn off generation of previously set file.ini
+cIfile Same asreate_Ini=file

If you abort a render while it is in progress or if you usedithe row option to end the render prematurely, you

can useontinue_Trace=on Of +C Option to continue the render later at the point where you left off. This option
reads in the previously generated output file, displays the partial image rendered so far, then proceeds with the
ray-tracing. This option cannot be used if file output is disabled withut _to_file=off Or -F.

Thecontinue_Trace option may not work if thestart _Row option has been set to anything but the top of the file,
depending on the output format being used. Also POV-Ray cannot continue the file once it has been opened and
saved again by any program

POV-Ray tries to figure out where to resume an interrupted trace by reading any previously generated data in
the specified output file. All file formats contain the image size, so this will override any image size settings
specified. Some file formats (namely TGA and PNG) also store information about where the file started (i. e.
+scnand +srnoptions), alpha outputya, and bit-depth-rrn, which will override these settings. It is up to the

user to make sure that all other options are set the same as the original render.

Thecreate_Ini Option or+GT switch provides an easy way to create an INI file with all of the rendering options,

so you can re-run files with the same options, or ensure you have all the same options when resuming. This
option creates an INI file with every option set at the value used for that rendering. This includes default values
which you have not specified. For example if you run POV-Ray with...

POVRAY +Isimple.pov MYOPTS +GIrerun.ini MOREOPTS

POV-Ray will create a file callederun.ini with all of the options used to generate this scene. The file is not
written until all options have been processed. This means that in the above example, the file will include options
from bothnyopts.ini and moreopts.ini despite the fact that thest switch is specified between them. You

may now re-run the scene with...

POVRAY RERUN
or resume an interrupted trace with
POVRAY RERUN +C

If you add other switches with the:run. ini reference, they will be included in future re-runs because the file
is re-written every time you use it.

Thecreate_1ni option is also useful for documenting how a scene was rendered. If you rengetol.pov
with create_Ini=on then it will create a fileraycool.ini that you could distribute along with your scene file
so other users can exactly re-create your image.

1.2 Command-line Options 9

1.2.3 Display Output Options

Display Hardware Settings

Display=bool Turns graphic display on/off

+D Turns graphic display on

-D Turns graphic display off

Video_Mode=X Set video mode to x; does not affect on/off
+DX Set display on; Set mode to x

-DX Set display off; but for future use mode x
Palette=y Set display palette to y; does not affect on/off
+DXY Set display on; Set mode x; Set palette y
-DXY Set display off; use mode x, palette y in future
Display-Gamma=N.Nn Sets the display gamma to n.n

Thebpisplay=on or +b switch will turn on the graphics display of the image while it is being rendered. Even on
some non-graphics systems, POV-Ray may display an 80 by 24 chafa&e&xi|-Art” version of your image.
Where available, the display may be full, 24-bit true color. Setting1ay=off or using the-p switch will turn

off the graphics display which is the default.

On the Windows platform, the defaultissp1ay=on. Turning display off does not, of course, turn off the actual
video display. Instead, POV-Ray will not open the output window that it normally shows a render in.

Thevideo Mode=x option sets the display mode or hardware type chosen whisra single digit or letter that

is machine dependent. Generaflyico Mode=0 means the default or an auto-detected setting should be used.
When using switches, this character immediately follows the switch. For exampledlsgvitch will turn on

the graphics display in the default mode.

The pralette=y option selects the palette to be used. Typically the single character pargrisededigit which
selects one of several fixed palettes or a letter sufchn gray scale, 1 for 15-bit or 16-bit high color or T for
24-bit true color. When using switches, this character is the 2nd character after the switch. For exarpte the
switch will turn on the graphics display in the default mode with a true color palette. fike1lay_Gamma=n.n
setting is not available as a command-line switch.

The pisplay_Gamma Setting overcomes the problem of images (whether ray-traced or not) having different
brightness when being displayed on different monitors, different video cards, and under different operating
systems.

Note: thepisplay Gamma iS @ setting based on your computer’s display hardware, and should be set correctly
once and not changed.

The pisplay_Gamma INI setting works in conjunction with the newsssumed_gamma global setting to ensure that
POV scenes and the images they create look the same on all systems. See section “Azsommed which
describes theassumed_gamma global setting and describes gamma more thoroughly.

While the pisplay_Gamma can be different for each system, there are a few general rules that can be used for
setting Display_Gamma if you do not know it exactly. If thepisplay_Gamma keyword does not appear in the INI

file, POV-Ray assumes that the display gamma is 2.2. This is because most PC monitors have a gamma value
in the range 1.6 to 2.6 (newer models seem to have a lower gamma value). Mac has the ability to do gamma
correction inside the system software (based on a user setting in the gamma control panel). If the gamma control
panel is turned off, or is not available, the default Macintosh system gamma is 1.8. Many newer PC graphics
cards can do hardware gamma correction and should use the current BEsptaya setting, usually 1.0.

10 Introduction

Setting your Display Gamma

The following gamma test image can be used to help you setnyeuray_Gamma accurately.

Before viewing the gamma image darken the room and set the monitor brightness and contrast to maximum.
While viewing a black screen, lower the brightness gradually until the “background” is no longer noticeable (ie
when it just fades from view). This may be difficult on monitors that use overscanning, unless you change the
viewable area settings.

Figure 1.1: Display gamma test image.

Now, lower the contrast until the alternating white and black bars on the left edge of each column are equal
in width. This is trying to get a 50% gray by using half white and half black. If this is not possible, choose a
contrast setting which is about in the middle. While viewing the image from a distance, or with squinted eyes,
one of the numbered “swatches” will best match the gray value approximated by the white and black bars. The
number in this “swatch” is your display’s actual gamma value.

Normal display gamma values are in the range 2.0 to 2.6. If your monitor is usually used in a dim environment,
we often use a gamma value that is 15% - 25% lower than the actual display gamma to give the images more
contrast. Some systems, such as Macs and SGls, already do gamma correction, so they may have display
gammas of 1.0 or 1.8.

For scene files that do not contain @&sumed_gamma global setting the INI file optiomisplay_Gamma will not

have any affect on the preview output of POV-Ray or for most output file formats. However; dhiey_-

camma Value is used when creating PNG format output files, and also when rendering the POV-Ray example files
(because they have aBsumed_gamma), SO it should still be correctly set for your system to ensure proper results.

Display Related Settings

On some systems, when the image is complete, the graphics display is cleared and POV-Ray switches back into
text mode to print the final statistics and to exit. Normally when the graphics display is on, you want to look

at the image awhile before continuing. Usingise_Wwhen_Done=on Or +pP causes POV-Ray to pause in graphics
mode until you press a key to continue. The default is not to paa$e (

When the graphics display is not used, it is often desirable to monitor progress of the rendering. Using
Verbose=on OF +V turns on verbose reporting of your rendering progress. This reports the number of the line
currently being rendered, the elapsed time for the current frame and other information. On some systems, this

1.2 Command-line Options 11

Pause_When_Done=b0o0l Sets pause when done on/off
+P Sets pause when done on

-p Sets pause when done off
Verbose=b0ool Set verbose messages on/off
+V Set verbose messages on

-v Set verbose messages off
Draw_Vistas=bool Turn draw vistas on/off

+UD Turn draw vistas on

-UD Turn draw vistas off

textual information can conflict with the graphics display. You may need to turn this off when the display is on.
The default setting is off-{).

The optiornpraw_vistas=on Or +UD was originally a debugging help for POV-Ray'’s vista buffer feature but it was
such fun we decided to keep it. Vista buffering is a spatial sub-division method that projects the 2-D extents of
bounding boxes onto the viewing window. POV-Ray tests the 2-D X, y pixel location against these rectangular
areas to determine quickly which objects, if any, the viewing ray will hit. This option shows you the 2-D
rectangles used. The default setting is offo) because the drawing of the rectangles can take considerable
time on complex scenes and it serves no critical purpose. See section “Automatic Bounding Control” for more
details.

Mosaic Preview

Preview_ Start_Size=N Set mosaic preview start size ton
+SPN Same as PrevieBtart Size=n
Preview End_Size=N Set mosaic preview end size to n
+EPN Same as Previelgnd Size=n

Typically, while you are developing a scene, you will do many low resolution test renders to see if objects are
placed properly. Often this low resolution version does not give you sufficient detail and you have to render the
scene again at a higher resolution. A feature caltetbsaic preview” solves this problem by automatically
rendering your image in several passes.

The early passes paint a rough overview of the entire image using large blocks of pixels that look like mosaic
tiles. The image is then refined using higher resolutions on subsequent passes. This display method very
quickly displays the entire image at a low resolution, letting you look for any major problems with the scene.
As it refines the image, you can concentrate on more details, like shadows and textures. You do not have to wait
for a full resolution render to find problems, since you can interrupt the rendering early and fix the scene, or if
things look good, you can let it continue and render the scene at high quality and resolution.

To use this feature you should first selectiadth and Height value that is the highest resolution you will need.
Mosaic preview is enabled by specifying how big the mosaic blocks will be on the first pass pisingew_-
start_Size=nor +spn. The value n should be a number greater than zero that is a power of two (1, 2, 4, 8, 16,
32, etc.) Ifitis not a power of two, the nearest power of two less than n is substituted. This sets the size of the
squares, measured in pixels. A value of 16 will draw every 16th pixel as a 16*16 pixel square on the first pass.
Subsequent passes will use half the previous value (such as 8*8, 4*4 and so on.)

The process continues until it reaches 1*1 pixels or until it reaches the size you sebwithew End_size=n
or +Epn. Again the value n should be a number greater than zero that is a power of two and less than or equal

12 Introduction

to preview Start_size. If it is not a power of two, the nearest power of two less than n is substituted. The
default ending value is 1. If you seteview End_Size t0 @ value greater than 1 the mosaic passes will end before

reaching 1*1, but POV-Ray will always finish with a 1*1. For example, if you want a single 8*8 mosaic pass
before rendering the final image, seteview_Start_Size=8 and Preview End_Size=8.

No file output is performed until the final 1*1 pass is reached. Although the preliminary passes render only as
many pixels as needed, the 1*1 pass re-renders every pixel so that anti-aliasing and file output streams work
properly. This makes the scene take up to 25% longer than the regular 1*1 pass to render, so it is suggested
that mosaic preview not be used for final rendering. Also, the lack of file output until the final pass means
that renderings which are interrupted before the 1*1 pass can not be resumed without starting over from the
beginning.

1.2.4 File Output Options

Output_to_File=bool Sets file output on/off
+F Sets file output on (use default type)
-F Sets file output off

By default, POV-Ray writes an image file to disk. When you are developing a scene and doing test renders, the
graphic preview may be sufficient. To save time and disk activity you may turn file output off withut _-
toFile=off Of -F.

Output File Type

Output_File_Type=X Sets file output format to x

+FXN Sets file output on; sets format x, depth n

-FXN Sets file output off; but in future use format x, depth n
Output _Alpha=bool Sets alpha output on/off

+UA Sets alpha output on

-UA Sets alpha output off

Bits_Per_Color=Nn Sets file output bits/color to n

The default type of image file depends on which platform you are using. MS-DOS and most others default
to 24-bit uncompressed Targa. Windows defaults to 'sys’, which is 24-bit BMP. See your platform-specific
documentation to see what your default file type is. You may select one of several different file types using
Output _File_Type=X Or +FX Wherex is one of the following...

C Compressed Targa-24 format (RLE, run length encoded)
PNG (portable network graphics) format
P Unix PPM format

sSystem-specific such as Mac Pict or Windows BMP

T Uncompressed arga-24 format

Note: the obsoleterrp dump format andrr raw format have been dropped because they were rarely used
and no longer necessary. PPM, PNG, and system specific formats have been added. PPM format images
are uncompressed, and have a simple text header, which makes it a widely portable image format. PNG is

1.2 Command-line Options 13

an image format designed not only to replace GIF, but to improve on its shortcomings. PNG offers the highest
compression available without loss for high quality applications, such as ray-tracing. The system specific format
depends on the platform used and is covered in the appropriate system specific documentation.

Most of these formats output 24 bits per pixel with 8 bits for each of red, green and blue data. PNG and PPM
allow you to optionally specify the output bit depth from 5 to 16 bits for each of the red, green, and blue colors,
giving from 15 to 48 bits of color information per pixel. The default output depth for all formats is 8 bits/color
(16 million possible colors), but this may be changed for PNG and PPM format files by settinger_color=n

or by specifying+rnn or +rpn, where n is the desired bit depth.

Specifying a smaller color depth like 5 bits/color (32768 colors) may be enough for people with 8- or 16-bit
(256 or 65536 color) displays, and will improve compression of the PNG file. Higher bit depths like 10 or 12
may be useful for video or publishing applications, and 16 bits/color is good for grayscale height field output
(See section “Height Field” for details on height fields).

Targa format also allows 8 bits of alpha transparency data to be output, while PNG format allows 5 to 16 bits of
alpha transparency data, depending on the color bit depth as specified above. You may turn this option on with
Output_Alpha=on Of +UA. The default is off or -ua.

The alpha channel stores a transparency value for each pixel, just like there is also stored a value for red green
and blue light for each pixel. In POV-Ray, when the alpha channel is turned on, all areas of the image where the
background is partly or fully visible will be partly or fully transparent. Refractions of the background will also

be transparent, but not reflections. Also anti-aliasing is taken into account

The philosophy of the alpha channel feature in POV-Ray is that the background color should not be present in
the color of the image when the alpha channel is used. Instead, the amount of visible background is kept in
the alpha and *only* in the alpha channel. That ensures that images look correct when viewed with the alpha
channel.

See section “Using the Alpha Channel” for further details on using transparency in imagemaps in your scene.

In addition to support for variable bit-depths, alpha channel, and grayscale formats, PNG files also store the
Display_Gamma Value so the image displays properly on all systems (see section “Display Hardware Settings”).
Thenf_gray_16 global setting, as described in section “i#fay 16" will also affect the type of data written to

the output file.

Output File Name

Output_File Name=file Sets output file to file
+ofile Same asutput_File_Name=file

The default output filename is created from the scene name and need not be specified. The scene name is
the input name with all drive, path, and extension information stripped. For example if the input file name is
c:\povray3\mystuff\myfile.pov the scene name isiyfile. The proper extension is appended to the scene
name based on the file type. For exampleile.tga Or myfile.png Might be used.

You may override the default output name usingtput File Name=file or +ofile. For example:

Input_File_Name=myinput.pov
Output_File_Name=myoutput.tga

If an output file name of “-” is specified (a single minus sign), then the image will be written to standard output,
usually the screen. The output can then be piped into another program or to a GUI if desired.

14 Introduction

If the file specified is actually a path or directory or folder name and not a file name, then the default output
name is used but it is written to the specified directory. For example:

Input_File_Name=myscene.pov
Output_File_Name=c:\povray3\myimages\

This will createc: \povray3\myimages\myscene.tga as the output file.

Output File Buffer

The output-file buffer optionsutfer_output andsuffer_size are removed per POV-Ray 3.6

Note: the options are still accepted, but ignored, in order to be backward compatible with old INI files.

CPU Utilization Histogram

The CPU utilization histogram is a way of finding out where POV-Ray is spending its rendering time, as well
as an interesting way of generating heightfields. The histogram splits up the screen into a rectangular grid of
blocks. As POV-Ray renders the image, it calculates the amount of time it spends rendering each pixel and then
adds this time to the total rendering time for each grid block. When the rendering is complete, the histogram is
a file which represents how much time was spent computing the pixels in each grid block.

Not all versions of POV-Ray allow the creation of histograms. The histogram output is dependent on the file
type and the system that POV-Ray is being run on.

File Type
Histogram_Type=Yy Set histogram type to y (Turn off if type ig)
+HTY Same asistogram_Type=Yy

The histogram output file type is nearly the same as that used for the image output file types in “Output File
Type”. The available histogram file types are as follows.

+HTC Comma separated values (CSV) often used in spreadsheets
+HTN PNG (portable network graphics) format grayscale

+HTP Unix PPM format

+HTS System-specific such as Mac Pict or Windows BMP

+HTT Uncompressed Targa-24 format (TGA)

+HTX No histogram file output is generated

Note: +uTC does not generate a compressed Targa-24 format output file but rather a text file with a comma-
separated list of the time spent in each grid block, in left-to-right and top-to bottom order. The units of time
output to the CSV file are system dependent. See the system specific documentation for further details on the
time units in CSV files.

The Targa and PPM format files are in the POV heightfield format (see “Height Field”), so the histogram
information is stored in both the red and green parts of the image, which makes it unsuitable for viewing. When
used as a height field, lower values indicate less time spent calculating the pixels in that block, while higher
indicate more time spent in that block.

1.2 Command-line Options 15

PNG format images are stored as grayscale images and are useful for both viewing the histogram data as well as
for use as a heightfield. In PNG files, the darker (lower) areas indicate less time spent in that grid block, while
the brighter (higher) areas indicate more time spent in that grid block.

File Name
Histogram Name=file Set histogram name to file
+aNfile Same asistogram_Name=file

The histogram file name is the name of the file in which to write the histogram data. If the file name is not
specified it will default to histogram.ext, whereext is based on the file type specified previously.

Note: that if the histogram name is specified the file name extension should match the file type.

Grid Size

Histogram Grid_Size= nn.mm Set histogram grid to nn by mm
+HSNN.mm Same asistogram_Grid_Size=nN.mm

The histogram grid size gives the number of times the image is split up in both the horizontal and vertical
directions. For example

povray +Isample +W640 +H480 +HTN +HS160.120 +HNhistogram.png

will split the image into 160*120 grid blocks, each of size 4*4 pixels, and output a PNG file, suitable for viewing

or for use as a heightfield. Smaller numbers for the grid size mean more pixels are put into the same grid block.
With CSV output, the number of values output is the same as the number of grid blocks specified. For the
other formats the image size is identical to the rendered image rather than the specified grid size, to allow easy
comparison between the histogram and the rendered image. If the histogram grid size is not specified, it will
default to the same size as the image, so there will be one grid block per pixel.

Note: on systems that do task-switching or multi-tasking the histogram may not exactly represent the amount
of time POV-Ray spent in a given grid block since the histogram is based on real time rather than CPU time. As

a result, time may be spent for operating system overhead or on other tasks running at the same time. This will
cause the histogram to have speckling, noise or large spikes. This can be reduced by decreasing the grid size so
that more pixels are averaged into a given grid block.

1.2.5 Scene Parsing Options

POV-Ray reads in your scene file and processes it to create an internal model of your scene. The process s called
parsing. As your file is parsed other files may be read along the way. This section covers options concerning
what to parse, where to find it and what version specific assumptions it should make while parsing it.

Constant

Declare=IDENTIFIER=FLOAT Declares an identifier with a float value

16 Introduction

You can now declare a constant in an INI file, and that constant will be available to the scene. Since INI file
statements may also be laced on the command-line, you can therefore also declare on the command-line (though
there is no switch for it).

Declare=MyValue=24

This would be the same asta@eclare Myvalue=24; in a scene file. The value on the right-hand side must be a
constant float value.

A possible use could be switching off radiosity or photons from commandline:
--in INI-file / on command-line
Declare=RAD=0
--in scenefile
global_settings {
#if (RAD)

radiosity {

}
#end

Input File Name

Input_File_Name=file Sets input file name to file
+1file Same aSnput_File Name=file

Note: there may be no space betwearandfile.

You will probably always set this option but if you do not the default input filenam® jsct .pov. If you do
not have an extension thepov is assumed. On case-sensitive operating systems.pethand .pov are tried.
A full path specification may be used (on MS-DOS systemis: \povray3\mystuff\myfile.pov iS allowed for
example). In addition to specifying the input file name this also establishasé¢me name

The scene name is the input name with drive, path and extension stripped. In the above example the scene hame
ismyfile. This name is used to create a default output file name and it is referenced other places.

Note: as per version 3.5 you can now specify a POV file on the command-line without the use of the +i switch
(i.e. it works the same way as specifying an INI file without a switch), the POV file then should be the last on
the commandline.

If you use "-" as the input file name the input will be read from standard input. Thus you can pipe a scene
created by a program to POV-Ray and render it without having a scene file.

Under MS-DOS you can try this feature by typing.

type ANYSCENE.POV | povray +I-

1.2 Command-line Options 17

Include_Header=file Sets primary include file name to file
+u1file Same asnclude_Header=file

Include File Name

This option allows you to include a file as the first include file of a scene file. You can for example use this
option to always include a specific set of default include files used by all your scenes.

Library Paths
Library_Path=path Add path to list of library paths
+Lpath Same asibrary_Path=path

POV-Ray looks for files in the current directory. If it does not find a file it needs it looks in various other library
directories which you specify. POV-Ray does not search your operating system path. It only searches the current
directory and directories which you specify with this option. For example the standard include files are usually
kept in one special directory. You tell POV-Ray to look there with...

Library_Path=c:\povray3\include
You must not specify any final path separators’ @r /") at the end.

Multiple uses of this option switch do not override previous settings. Up to twenty unique paths may be
specified. If you specify the exact same path twice it is only counted once. The current directory will be
searched first followed by the indicated library directories in the order in which you specified them.

Language Version

Version=Nn.n Set initial language compatibility to version n.n
+MVN.N Same asgersion=Nn.N

As POV-Ray has evolved from version 1.0 through to today we have made every effort to maintain some amount
of backwards compatibility with earlier versions. Some old or obsolete features can be handled directly without
any special consideration by the user. Some old or obsolete features can no longer be handled at all. However
someold features can still be used if you warn POV-Ray that this is an older scene. In the POV-Ray scene
language you can use theersion directive to switch version compatibility to different settings. See section
"The #version Directive” for more details about the language version directive. Additionally you may use the
version=n.noption or thetmvn.n switch to establish thimitial setting. For example one feature introduced in

2.0 that was incompatible with any 1.0 scene files is the parsing of float expressions. Sefti#ign=1.0 or
using+mv1. 0 turns off expression parsing as well as many warning messages so that nearly all 1.0 files will still
work. Naturally the default setting for this option is the current version number.

Note: some obsolete or re-designed featwarestotally unavailable in the current version of POV-Ray REGAR-
DLES OF THE VERSION SETTINGetails on these features are noted throughout this documentation.

18 Introduction

Pre_Scene_Command=S Set command before entire scene
Pre_Frame_Command=S Set command before each frame
Post_Scene_Command=S Set command after entire scene
Post_Frame_Command=S Set command after each frame
User_Abort_Command=S Set command when user aborts POV-Ray
Fatal_Error_Command=S Set command when POV-Ray has fatal error

1.2.6 Shell-out to Operating System

Note: no + or - switches are available for these options. They cannot be used from the command line. They
may only be used from INI files.

POV-Ray offers you the opportunity to shell-out to the operating system at several key points to execute another
program or batch file. Usually this is used to manage files created by the internal animation loop however the
shell commands are available for any scene. The strig@ single line of text which is passed to the operating
system to execute a program. For example

Post_Scene_Command=tga2gif -d -m myfile

would use the utilityrga2gif with the -p and - parameters to convefiyfile.tga t0 myfile.gif after the
scene had finished rendering.

Note: individual platforms may provide means of preventing shell-outs from occurring. For example, the
Windows version provides a menu command to turn shell-outs off (which is the default setting for that platform).
The reason for this (along with file I/O restrictions) is to attempt to prevent untrusted INI files from doing harm
to your system.

String Substitution in Shell Commands
It could get cumbersome to change thet_scene_Command every time you changed scene names. POV-Ray
can substitute various values into a command string for you. For example:

Post_Scene_Command=tga2gif -d -m \%s

POV-Ray will substitute thes with the scene name in the command. Heene names the Input_File Name
or +1 setting with any drive, directory and extension removed. For example:

Input_File_Name=c:\povray3\scenes\waycool.pov
is stripped down to the scene nam&cool which results in...
Post_Scene_Command=tga2gif -d -m waycool

In an animation it may be necessary to have the exact output file name with the frame number included. The
string so will substitute the output file name. Suppose you want to save your output files in a zip archive using
the utility programpkzip. You could do...

Post_Frame_Command=pkzip -m \%s \%o
After rendering frame 12 afyscene.pov POV-Ray would shell to the operating system with

pkzip -m myscene mysce0l2.tga

1.2 Command-line Options 19

The -m switch inpkzip MOVES mysce012.tga t0 myscene.zip and removes it from the directory. Note that
includes frame numbers only when in an animation loop. Duringpthescene_Command and Post_Scene_-
command there is no frame number so the original, unnumberegdut File Name iS used. Any User_Abort -
Command Of Fatal Error_Command NOt inside the loop will similarly give an unnumberegisubstitution.

Here is the complete list of substitutions available for a command string.

Output file name with extension and embedded frame number if any
Scene name derived by stripping path and ext from input name
Frame number of this frame

Clock value of this frame

Height of image in pixels

Width of image in pixels

A single % sign.

S5 » O

= o

o® o° o° o° o° o° o°
~

o\

Shell Command Sequencing
Here is the sequence of events in an animation loop. Non-animated scenes work the exact same way except
there is no loop.

1. Process all INI file keywords and command line switches just once.

2. Open any text output streams and do Créief any.

3. Execute Pré&SceneCommand if any.

4. Loop through frames (or just do once on non-animation).

(a) Execute Pré&-rameCommand if any.

(b) Parse entire scene file, open output file and read settings, turn on display, render the frame, destroy
all objects, textures etc., close output file, close display.

(c) Execute PosFrameCommand if any.

(d) Repeat above steps until all frames are done.
5. Execute PosBceneCommand if any.
6. Finish

If the user interrupts processing the:r_abort _Command, if any, is executed. User aborts can only occur during

the parsing and rendering parts of step (4b) above. If a fatal error occurs that POV-Ray notices the
Error_Command, if any, is executed. Sometimes an unforeseen bug or memory error could cause a total crash of
the program in which case there is no chance to shell out. Fatal errors can occur just about anywhere including
during the processing of switches or INI files. If a fatal error occurs before POV-Ray has read the -
Error_Command String then obviously no shell can occur.

Note: the entire scene is re-parsed for every frame. Future versions of POV-Ray may allow you to hold over
parts of a scene from one frame to the next but for now it starts from scratch every time.

Note: that thepre Frame_Command occurs before the scene is parsed. You might use this to call some custom
scene generation utility before each frame. This utility could rewrite yoptrv or . inc files if needed. Perhaps
you will want to generate newyif or .tga files for image maps or height fields on each frame.

20 Introduction

Shell Command Return Actions

Pre_Scene_Return=S Set pre scene return actions
Pre_Frame_Return=$ Set pre frame return actions
Post_Scene_Return=S Set post scene return actions
Post_Frame_Return=S Set post frame return actions
User_Abort _Return=$ Set user abort return actions
Fatal_Error_Return=S Set fatal return actions

Note: that no+ or - switches are available for these options. They cannot be used from the command line. They
may only be used from INI files.

Most operating systems allow application programs to return an error code if something goes wrong. When
POV-Ray executes a shell command it can make use of this error code returned from the shell process and take
some appropriate action if the code is zero or non-zero. POV-Ray itself returns such codes. It returns O for
success, 1 for fatal error and 2 for user abort.

The actions are designated by a single letter in the differentreturn=s options. The possible actions are:

ignore the code

skip one step

all steps skipped

quit POV-Ray immediately
generate a user abort in POV-Ray
generate a fatal error in POV-Ray

L a O B o H

For example if yourre_Frame_command calls a program which generates your height field data and that utility
fails then it will return a non-zero code. We would probably want POV-Ray to abort as well. The option
Pre Frame Return=F Will cause POV-Ray to do a fatal abort if thee Frame_command returns a non-zero code.

Sometimes a hon-zero code from the external process is a good thing. Suppose you want to test if a frame has
already been rendered. You could usedletion to skip this frame if the file is already rendered. Most utilities
report an error if the file is not found. For example the command...

pkzip -V myscene mysce0l2.tga

tells pkzip you want to view the catalog ©fscene. zip for the filenysce012.tga. If the file is not in the archive
pkzip returns a non-zero code.

However we want to skip if the file is found. Therefore we need to reverse the action so it skips on zero and
does not skip on non-zero. To reverse the zero vs. non-zero triggering of an action precede it-wikga ”
(note a " will also work since it is used in many programming languages as a negate operator).

Pre_Frame_Return=$ Will skip if the code shows error (non-zero) and will proceed normally on no error (zero).
Pre_Frame_Return=-S Will skip if there is no error (zero) and will proceed normally if there is an error (non-zero).

The default for all shells is which means that the return action is ignored no matter what. POV-Ray simply
proceeds with whatever it was doing before the shell command. The other actions depend upon the context.
You may want to refer back to the animation loop sequence chart in the previous section "Shell Command
Sequencing”. The action for each shell is as follows.

On return from any UseAbort. Command if there is an action triggered...

1.2 Command-line Options 21

...and you have specified... ...then POV-Ray will..

F Then turn this user abort into a fatal error. Do tletal _Error_Command,
if any. Exit POV-Ray with error code 1.

S,A,Q,0r U Then proceed with the user abort. Exit POV-Ray with error code 2.

On return from anyatal Error_Command then POV-Ray will proceed with the fatal error no matter what. It will
exit POV-Ray with error code 1.

On return from anyre_Scene_Command, Pre_Frame_Command, Post_Frame_Command OI' Post_Scene_Commands if
there is an action triggered...

...and you have specified... ...then POV-Ray will...

F ...turn this user abort into a fatal error. Do thetal Error_Command, if
any. Exit POV-Ray with error code 1.

U ...generate a user abort. Do ther Abort_Command, if any. Exit POV-
Ray with an error code 2.

o ..quit POV-Ray immediately. Acts as though POV-Ray never really ran.

Do no further shells, (not everpast_scene_command) and exit POV-Ray
with an error code 0.

On return from @re_scene_Command if there is an action triggered...

...and you have specified... ...then POV-Ray will...

S ...Skip rendering all frames. Acts as though the scene completed all
frames normally. Do not do amgfre Frame_Command OF Post_Frame_-
Commands. DO the Post_Scene_Command, if any. Exit POV-Ray with error
code 0. On the earlier chart this means skip step #4.

A ...skip all scene activity. Works exactly likequit. On the earlier chart
this means skip to step #6. Acts as though POV-Ray never really ran.
Do no further shells, (not even @&ost_Scene_Command) and exit POV-
Ray with an error code O.

On return from &re_Frame Command if there is an action triggered...
On return from @ost _Frame_Command if there is an action triggered...

On return from anyost_Scene_Command if there is an action triggered and you have specified A then no
special action occurs. This is the same &ar this shell command.

1.2.7 Text Output

Text output is an important way that POV-Ray keeps you informed about what it is going to do, what it is doing
and what it did. The program splits its text messages into 7 separate streams. Some versions of POV-Ray color-
codes the various types of text. Some versions allow you to scroll back several pages of messages. All versions
allow you to turn some of these text streams off/on or to direct a copy of the text output to one or several files.
This section details the options which give you control over text output.

22 Introduction

...and you have specified... ...then POV-Ray will...

S ...Skip only this frame. Acts as though this frame never existed. Do not
do therost _Frame_command. Proceed with the next frame. On the earlier
chart this means skip steps (4b) and (4c) but loop back as needed in (4d).

A ...skip rendering this frame and all remaining frames. Acts as though
the scene completed all frames normally. Do not do any further: -
Frame_Commands. DO thepost_Scene_Command, if any. Exit POV-Ray with
error code 0. On the earlier chart this means skip the rest of step (4) and
proceed at step (5).

...and you have specified... ...then POV-Ray will...

SOora ...Skip all remaining frames. Acts as though the scene completed all
frames normally. Do not do any furthepost _Frame Commands. Do the
Post_Scene_Command, if any. Exit POV-Ray with error code 0. On the
earlier chart this means skip the rest of step (4) and proceed at step (5).

Text Streams

There are seven distinct text streams that POV-Ray uses for output. On some versions each stream is designated
by a particular color. Text from these streams are displayed whenever it is appropriate so there is often an
intermixing of the text. The distinction is only important if you choose to turn some of the streams off or to
direct some of the streams to text files. On some systems you may be able to review the streams separately in
their own scroll-back buffer.

Here is a description of each stream.

Banner: This stream displays the program’s sign-on banner, copyright, contributor’s list, and some help
screens. It cannot be turned off or directed to a file because most of this text is displayed before any options or
switches are read. Therefore you cannot use an option or switch to control it. There are switches which display
the help screens. They are covered in section "Help Screen Switches”.

Debug: This stream displays debugging messages. It was primarily designed for developers but this and other
streams may also be used by the user to display messages from within their scene files. See section "Text
Message Streams” for details on this feature. This stream may be turned off and/or directed to a text file.

Fatal: This stream displays fatal error messages. After displaying this text, POV-Ray will terminate. When
the error is a scene parsing error, you may be shown several lines of scene text that leads up to the error. This
stream may be turned off and/or directed to a text file.

Render: This stream displays information about what options you have specified to render the scene. Itincludes
feedback on all of the major options such as scene name, resolution, animation settings, anti-aliasing and others.
This stream may be turned off and/or directed to a text file.

Statistics: This stream displays statistics after a frame is rendered. It includes information about the number
of rays traced, the length of time of the processing and other information. This stream may be turned off and/or
directed to a text file.

Status: This stream displays one-line status messages that explain what POV-Ray is doing at the moment. On
some systems this stream is displayed on a status line at the bottom of the screen. This stream cannot be directed
to a file because there is generally no need to. The text displayed byehese option or+v switch is output

1.2 Command-line Options 23

to this stream so that part of the status stream may be turned off.

Warning: This stream displays warning messages during the parsing of scene files and other warnings. Despite
the warning, POV-Ray can continue to render the scene. You will be informed if POV-Ray has made any
assumptions about your scene so that it can proceed. In general any time you see a warning, you should also
assume that this means that future versions of POV-Ray will not allow the warned action. Therefore you should
attempt to eliminate warning messages so your scene will be able to run in future versions of POV-Ray. This
stream may be turned off and/or directed to a text file.

Console Text Output

Debug_Console=bool
+GD

-GD
Fatal_Console=bool
+GF

-GF
Render_Console=bool
+GR

-GR
Statistic_Console=bool
+GS

-GS
Warning,Console=bOO|
+GW

-GW

All_Console=bool

+GA
-GA

Turn console display of debug info text on/off
Same a®ebug_Console=0n

Same asebug_Console=0ff

Turn console display of fatal error text on/off
Same asatal_Console=0n

Same agatal_Console=0ff

Turn console display of render info text on/off
Same asender_Console=0n

Same agender_Console=0ff

Turn console display of statistic text on/off
Same aStatistic_Console=0n

Same aStatistic_Console=0ff

Turn console display of warning text on/off
Same a%arning_Console=0n

Same a%arning_Console=0ff

Turn on/off all debug, fatal, render, statistic and warning text to console.

Same a$1l_Console=0n
Same asll_Console=0ff

You may suppress the output to the console of the debug, fatal, render, statistic or warning text streams. For
example the statistic_Console=off option or the-cs switch can turn off the statistic stream. Usistgor +Gs

you may turn it on again. You may also turn all five of these streams on or off at once using thesole

option or+ca switch.

Note: that these options take effect immediately when specified. Obviously any error or warning messages that
might occur before the option is read are not be affected.

Directing Text Streams to Files

You may direct a copy of the text streams to a text file for the debug, fatal, render, statistic, or warning text
streams. For example thetatistic File=soption or thercssswitch. If the stringsis true or any of the other

valid true strings then that stream is redirected to a file with a default name. Malidvalues are rue, vyes,

on or 1. If the value is false the direction to a text file is turned off. Validtalse values ar&alse, no, off or

0. Any other string specified turns on file output and the string is interpreted as the output file name.

24

Introduction

Debug_File=true
Debug_File=false
Debug_File=file
+GDfile

-GDfile

Fatal File=true
Fatal File=false
Fatal File=file
+GFfile

-GFfile
Render_File=true
Render_File=false
Render_File=file
+Grfile

-GRfile
Statistic_File=true
Statistic File=false
Statistic File=file
+csfile

-csfile
Warning_File=true
Warning File=false
Warning File=file
tGWfile

-GWfile

All File=true

All File=false
All File=file

+GAfile
-GAfile

Echo debug info text to DEBUG.OUT

Turn off file output of debug info

Echo debug info text to file
Bothpebug_Console=0On, Debug_File=file
BOthDebug,Console=Off, Debug_File=file

Echo fatal text to FATAL.OUT

Turn off file output of fatal

Echo fatal info text to file

BothFatal_Console=On, Fatal File=file
BothFatal _Console=0ff, Fatal File=file

Echo render info text to RENDER.OUT

Turn off file output of render info

Echo render info text to file
BothRender_Console=0On, Render_File=file
BothRrender_Console=0ff, Render_File=file

Echo statistic text to STATS.OUT

Turn off file output of statistics

Echo statistic text to file
Bothstatistic_Console=0On, Statistic._File=file
Bothstatistic_Console=0ff, Statistic_File=file
Echo warning info text to WARNING.OUT

Turn off file output of warning info

Echo warning info text to file
Bothwarning_Console=0On, Warning_File=file
BOthWarninq,Console:Off, Warning File=file
Echo all debug, fatal, render, statistic, and warning text to ALLTEXT.
ouT

Turn off file output of all debug, fatal, render, statistic, and warning text.

Echo all debug, fatal, render, statistic, and warning text to file
Bothall_Console=0On, All File=file
Bothall Console=0ff, All File=file

Similarly you may specify such a true, false or file name string after a switch suctegfde. You may also
direct all five streams to the same file using the_rile option or +ca switch. You may not specify the same
file for two or more streams because POV-Ray will fail when it tries to open or close the same file twice.

Note: that these options take effect immediately when specified. Obviously any error or warning messages that
might occur before the option is read will not be affected.

Warning Level

Warning_Level=n Allows you to turn off classes of warnings.
+WLn Same a%arning_Level=n

Level 0 turns off all warnings. Level 5 turns off all language version related warnings. The default is level 10
and it enables all warnings. All other levels are reserved and should not be specified.

1.2 Command-line Options 25

Help Screen Switches

-2 Show help screen 0 if this is the only switch

Note: there are no INI style equivalents to these options.

After displaying the help screens, POV-Ray terminates. Because some operating systems do not permit a
question mark as a command line switch you may also usestbeitch.

Note: this switch is also used to specify the height of the image in pixels. Therefore-thgwitch is only
interpreted as a help switch if it is the only switch on the command line.

Graphical interface versions of POV-Ray such as Mac or Windows have extensive online help.

1.2.8 Tracing Options

There is more than one way to trace a ray. Sometimes there is a trade-off between quality and speed. Sometimes
options designed to make tracing faster can slow things down. This section covers options that tell POV-Ray
how to trace rays with the appropriate speed and quality settings.

Quality Settings

Quality=n Set quality value to n (&=n <= 11)
+on Same asuality=n

Theguality=noption or+on switch allows you to specify the image rendering quality. You may choose to lower
the quality for test rendering and raise it for final renders. The quality adjustments are made by eliminating
some of the calculations that are normally performed. For example settings below 4 do not render shadows.
Settings below 8 do not use reflection or refraction. The duplicate values allow for future expansion. The values
correspond to the following quality levels:

0, 1 Just show quick colors. Use full ambient lighting only. Quick colors are
used only at 5 or below.

2, 3 Show specified diffuse and ambient light.

4 Render shadows, but no extended lights.

5 Render shadows, including extended lights.

6, 7 Compute texture patterns, compute photons

8 Compute reflected, refracted, and transmitted rays.

9, 10, 11 Compute media and radiosity

The default is 9 if not specified.

Automatic Bounding Control

POV-Ray uses a variety of spatial sub-division systems to speed up ray-object intersection tests. The primary
system uses a hierarchy of nested bounding boxes. This system compartmentalizes all finite objects in a scene
into invisible rectangular boxes that are arranged in a tree-like hierarchy. Before testing the objects within the

26

Introduction

Bounding=bool

+MB

-MB
Bounding_Threshold=N
+MBN

-MBN
Light_Buffer=bool
+UL

-UL
Vista_Buffer=bool
+UV

-Uv

Turn bounding on/off

Turn bounding on; Set threshold to 25 or previous amount
Turn bounding off

Set bound threshold to n

Turn bounding on; bound threshold to n
Turn bounding off; set future threshold to n
Turn light buffer on/off

Turn light buffer on

Turn light buffer off

Turn vista buffer on/off

Turn vista buffer on

Turn vista buffer off

bounding boxes the tree is descended and only those objects are tested whose bounds are hit by a ray. This can
greatly improve rendering speed. However for scenes with only a few objects the overhead of using a bounding
system is not worth the effort. Th@ounding=off option or-uB switch allows you to force bounding off. The

default value is on.

The Bounding Threshold=nor +Msnswitch allows you to set the minimum number of objects necessary before
bounding is used. The default4gs25 which means that if your scene has fewer than 25 objects POV-Ray will
automatically turn bounding off because the overhead is not worth it. Generally it is a good idea to use a much
lower threshold like-vgs.

Additionally POV-Ray uses systems knownwasta buffersand light buffersto further speed things up. These
systems only work when bounding is on and when there are a sufficient number of objects to meet the bounding
threshold. The vista buffer is created by projecting the bounding box hierarchy onto the screen and determining
the rectangular areas that are covered by each of the elements in the hierarchy. Only those objects whose
rectangles enclose a given pixel are tested by the primary viewing ray. The vista buffer can only be used with
perspective and orthographic cameras because they rely on a fixed viewpoint and a reasonable projection (i. e.
straight lines have to stay straight lines after the projection).

The light buffer is created by enclosing each light source in an imaginary box and projecting the bounding box
hierarchy onto each of its six sides. Since this relies on a fixed light source, light buffers will not be used for
area lights.

Reflected and transmitted rays do not take advantage of the light and vista buffer.

The default settings are’ista_Buffer=on Or +uv and Light_Buffer=on Of +UL. The option to turn these features
off is available to demonstrate their usefulness and as protection against unforeseen bugs which might exist in

any of these bounding systems.

In general, any finite object and many types of CSG of finite objects will properly respond to this bounding
system. In addition blobs and meshes use an additional internal bounding system. These systems are not
affected by the above switch. They can be switched off using the appropriate syntax in the scene file (see

"Blob” and "Mesh” for details).

Text objects are split into individual letters that are bounded using the bounding box hierarchy. Some CSG
combinations of finite and infinite objects are also automatically bound. The end result is that you will rarely
need to add manual bounding objects as was necessary in earlier versions of POV-Ray unless you use many
infinite objects.

1.2 Command-line Options

27

Removing User Bounding

Remove_Bounds=bool

Turn unnecessary bounds removal on/off

+UR Turn unnecessary bounds removal on
-UR Turn unnecessary bounds removal off
Split_Unions=bool Turn split bounded unions on/off

+SU Turn split bounded unions on

-SU Turn split bounded unions off

Early versions of POV-Ray had no system of automatic bounding or spatial sub-division to speed up ray-object
intersection tests. Users had to manually create bounding boxes to speed up the rendering. Since version 3.0,
POV-Ray has had more sophisticated automatic bounding than any previous version. In many cases the manual
bounding on older scenes is slower than the new automatic systems. Therefore POV-Ray removes manual
bounding when it knows it will help. In rare instances you may want to keep manual bounding. Some older
scenes incorrectly used bounding when they should have used clipping. If POV-Ray removes the bounds in
these scenes the image will not look right. To turn off the automatic removal of manual bounds you should
specify Remove Bounds=off Or use -Ur. The default is Remove_Bounds=on.

One area where the jury is still out is the splitting of manually bounded unions. Unbounded unions are always
split into their component parts so that automatic bounding works better. Most users do not bound unions
because they know that doing so is usually slower. If you do manually bound a union we presume you really
want it bound. For safety sake we do not presume to remove such bounds. If you want to remove manual bounds
from unions you should specifyplit _Unions=on Or use +su. The default isplit_Unions=off.

Anti-Aliasing Options

Antialias=bool Turns anti-aliasing on/off

+A Turns aa on with threshold 0.3 or previous amount
-A Turns anti-aliasing off

Sampling Method=N Sets aa-sampling method (onlpr 2 are valid)

+AMN Same asampling Method=n

Antialias_Threshold=N.n
+AN.N

Sets anti-aliasing threshold
Sets aa on with aa-threshold at n.n

-aNn.n Sets aa off (aa-threshold n.n in future)

Jitter=bool Sets aa-jitter on/off

+J Sets aa-jitter on with 1.0 or previous amount

-J Sets aa-jitter off

Jitter_Amount=N.n Sets aa-jitter amount to n.n. If ko= 0 aa-jitter is set off

+Jn.n Sets aa-jitter on; jitter amount to n.n. If na¥ 0 aa-jitter is set off
-Jn.n Sets aa-jitter off (jitter amount n.n in future)

Antialias_Depth=n Sets aa-depth (&= n<=9)

+RN Same agntialias_Depth=n

The ray-tracing process is in effect a discrete, digital sampling of the image with typically one sample per
pixel. Such sampling can introduce a variety of errors. This includes a jagged, stair-step appearance in sloping
or curved lines, a broken look for thin lines, mdipatterns of interference and lost detail or missing objects,
which are so small they reside between adjacent pixels. The effect that is responsible for those errors is called
aliasing

28 Introduction

Anti-aliasing is any technique used to help eliminate such errors or to reduce the negative impact they have on
the image. In general, anti-aliasing makes the ray-traced imagedoasother The antialias=on option or
+a switch turns on POV-Ray’s anti-aliasing system.

When anti-aliasing is turned on, POV-Ray attempts to reduce the errors by shooting more than one viewing
ray into each pixel and averaging the results to determine the pixel's apparent color. This technique is called
super-sampling and can improve the appearance of the final image but it drastically increases the time required
to render a scene since many more calculations have to be done.

POV-Ray gives you the option to use one of two alternate super-sampling methodssaf$ig ng_Met hod=n
option or +amn switch selects either typeor type 2. Selecting one of those methods does not turn anti-aliasing
on. This has to be done by using ttrecommand line switch orantialias=on option.

Type 1 is an adaptive, non-recursive, super-sampling method. dté&ptivebecause not every pixel is super-
sampled. Type 2 is an adaptive and recursive super-sampling methodretiuisivebecause the pixel is
sub-divided and sub-sub-divided recursively. Huaptivenature of type 2 is the variable depth of recursion.

In the default, non-recursive methoehii1), POV-Ray initially traces one ray per pixel. If the color of a pixel
differs from its neighbors (to the left or above) by at least the set threshold value then the pixel is super-sampled
by shooting a given, fixed number of additional rays. The default threshold is 0.3 but it may be changed using
the antialias_Threshold=n.noption. When the switches are used, the threshold may optionally followathe

For example +20.1 turns anti-aliasing on and sets the threshold to 0.1.

The threshold comparison is computed as follows. If r1, g1, b1 and r2, g2, b2 are the rgb components of two
pixels then the difference between pixels is computed by

diff = abs(rl-r2) + abs(gl-g2) + abs(bl-b2)

If this difference is greater than the threshold then both pixels are super-sampled. The rgb values are in the range
from 0.0 to 1.0 thus the most two pixels can differ is 3.0. If the anti-aliasing threshold is 0.0 then every pixel is
super-sampled. If the threshold is 3.0 then no anti-aliasing is done. Lower threshold means more anti-aliasing
and less speed. Use anti-aliasing for your final version of a picture, not the rough draft. The lower the contrast,
the lower the threshold should be. Higher contrast pictures can get away with higher tolerance values. Good
values seem to be around 0.2 to 0.4.

When using the non-recursive method, the default number of super-samples is nine per pixel, located on a 3*3
grid. The antialias_Depth=noption or +rRnswitch controls the number of rows and columns of samples taken
for a super-sampled pixel. For exampta would give 4*4=16 samples per pixel.

The second, adaptive, recursive super-sampling method starts by tracing four rays at the corners of each pixel. If
the resulting colors differ more than the threshold amount additional samples will be taken. This is done recur-
sively, i.e. the pixel is divided into four sub-pixels that are separately traced and tested for further subdivision.
The advantage of this method is the reduced number of rays that have to be traced. Samples that are common
among adjacent pixels and sub-pixels are stored and reused to avoid re-tracing of rays. The recursive character
of this method makes the super-sampling concentrate on those parts of the pixel that are more likely to need
super-sampling (see figure below).

The maximum number of subdivisions is specified by thecialias Depth=n option or+rn switch. This is
different from the adaptive, non-recursive method where the total number of super-samples is specified. A
maximum number of subdivisions results in a maximum number of samples per pixel that is given by the
following table.

Note: the maximum number of samples in the recursive case is hardly ever reached for a given pixel. If the
recursive method is used with no anti-aliasing each pixel will be the average of the rays traced at its corners. In

1.2 Command-line Options 29

4+ + & . <4 @ new samples

o reused samples
++ .

+ 4one pixel

. . .
pixel cormners
+ + b &
initial samples level 1
#ooed & gace
o0 0 g 080

©C e cCc ®O0
e o0 0 0 oo
4 e 0 @ 4 H 080 O G

level 2 level 3

Figure 1.2: Example of how the recursive super-sampling works.

+RN Number of additional samples per supdaximum number of samples per super-
sampled pixel for the non-recurss@mpled pixel for the recursive method
method+am1 +AM2

1 1 9

2 4 25

3 9 81

4 16 289

5 25 1089

6 36 4225

7 49 16641

8 64 66049

9 81 263169

most cases a recursion level of three is sufficient.

Another way to reduce aliasing artefacts is to introduce noise into the sampling process. This itieaiteyl

and works because the human visual system is much more forgiving to noise than it is to regular patterns. The
location of the super-samples is jittered or wiggled a tiny amount when anti-aliasing is used. Jittering is used
by default but it may be turned off with thetter=off option or-Jg switch. The amount of jittering can be

set with the Jitter_amount=n.noption. When using switches the jitter scale may be specified afterstha

switch. For exampleJo.5 uses half the normal jitter. The default amount of 1.0 is the maximum jitter which

will insure that all super-samples remain inside the original pixel.

Note: the jittering noise is random and non-repeatable so you should avoid using jitter in animation sequences
as the anti-aliased pixels will vary and flicker annoyingly from frame to frame.

If anti-aliasing is not used one sample per pixel is taken regardless of the super-sampling method specified.

30

Introduction

Chapter 2

Scene Description Language

The reference section describes the POV-B@gne description languagé is supposed to be used as a refer-
ence for looking up things. It does not contain detailed explanations on how scenes are written or how POV-Ray
is used. It just explains all features, their syntax, applications, limits, drawbacks, etc.

The scene description language allows you to describe the world in a readable and convenient way. Files are
created in plain ASCII text using an editor of your choice. The input file name is specified usinohthe -

rile Name=file option or+1file switch. By default the files have the extensigrv. POV-Ray reads the file,
processes it by creating an internal model of the scene and then renders the scene.

The overall syntax of a scene is shown below. See "Notation and Basic Assumptions” for more information on
syntax notation.

SCENE:
SCENE_ITEM. ..

SCENE_ITEM:
LANGUAGE_DIRECTIVES |
camera { CAMERA_ITEMS... } |
OBJECTS |
ATMOSPHERIC_EFFECTS |
global_settings { GLOBAL_ITEMS }

In plain English, this means that a scene contains one or more scene items and that a scene item may be any of
the five items listed below it. The items may appear in any order. None is a required item. In addition to the
syntax depicted above,llANGUAGEDIRECTIVEmay also appear anywhere embedded in other statements
between any two tokens. There are some restrictions on nesting directives also.

For details on those five items see section "Language Directives”, section "Objects”, section "Camera”, section
"Atmospheric Effects” and section "Global Settings” for details.

2.1 Language Basics

The POV-Ray language consists of identifiers, reserved keywords, floating point expressions, strings, special
symbols and comments. The text of a POV-Ray scene file is free format. You may put statements on separate

32

Scene Description Language

lines or on the same line as you desire. You may add blank lines, spaces or indentations as long as you do not

split any keywords or identifiers.

2.1.1 Identifiers and Keywords

POV-Ray allows you to define identifiers for later use in the scene file. An identifier may be 1 to 40 characters
long. It may consist of upper and lower case letters, the digits 0 through 9 or an underscore charactiee ("
first character must be an alphabetic character. The declaration of identifiers is covered later.

POV-Ray has a number of reserved keywords which are listed below.

a

aa-level
aa-threshold
abs
absorption
accuracy
acos

acosh
adaptive
adc_bailout
agate
agate_turb
all

b

b_spline
background
bezier_spline
bicubic_patch
black_hole
blob

blue

camera
case
caustics
ceil

cells
charset
checker
chr
circular
clipped-by

all_intersections
alpha
altitude
always_sample
ambient
ambient_light
angle
aperture
append
arc-angle
area_-light
array

blur_samples
bounded-by
box

boxed

bozo

break

brick

clock
clock_delta
clock_on
collect
color
color_map
colour
colour_map
component
composite

asc
ascii

asin

asinh
assumed_gamma
atan

atan?2

atanh
autostop
average

brick_size
brightness
brilliance
bump_map
bump_size
bumps

concat

cone
confidence
conic_sweep
conserve_energy
contained_by
control0
controll

coords

cos

2.1 Language Basics

33

cosh
count
crackle
crand

d

debug
declare
default
defined
degrees
density
density_file
density_map

e

eccentricity
else
emission

end

error

face_indices
facets
fade_color
fade_colour
fade_distance
fade_power
falloff
falloff_angle
false

fclose

file exists

g

gather

gif
global_lights
global_settings

h

cube

cubic
cubic_spline
cubic_wave

dents

df3
difference
diffuse
dimension_size
dimensions
direction
disc

error_bound
evaluate

exp
expand_thresholds
exponent

filter
final _clock
final_frame
finish
fisheye
flatness
flip

floor
focal_point
fog

fog_alt

gradient
granite

gray
gray-threshold

cutaway-textures
cylinder
cylindrical

dispersion
dispersion_samples
dist_exp

distance

div
double_illuminate

exterior
extinction

fog_offset
fog_type
fopen

form
frame_number
frequency
fresnel
function

green

34

Scene Description Language

height_field
hexagon
hf_gray-16

if

ifdef

iff

ifndef
image_height
image_map
image_pattern
image_width
include

jitter
Jjpeg

lambda

lathe
leopard
light_group
light_source
linear_spline

m

macro
magnet
major_radius
mandel
map-type
marble
material
material_map
matrix

max
max-_extent

n

natural_spline
nearest_count
no

hierarchy
hypercomplex
hollow

initial_clock
initial_frame
inside
inside_vector
int

interior
interior_texture
internal
interpolate

julia
julia_fractal

linear_sweep
In

load_file
local
location
log

max-gradient
max_intersections
max_iteration
max_sample
max_trace
max_trace_level
media
media_attenuation
media_interaction
merge

mesh

no_bump_scale
no_image
no_reflection

intersection
intervals
inverse

ior

irid
irid_wavelength
isosurface

look.at
looks_like
low_error_factor

mesh?2
metallic
method
metric

min
min_extent
minimum_reuse
mod

mortar

no_shadow
noise_generator
normal

2.1 Language Basics

35

normal_indices

(o]

object
octaves
off
offset
omega

p

panoramic
parallel
parametric
pass-_through
pattern
perspective
pgnm

phase

phong
phong_size
photons

pi

q

quadratic_spline
quadric
quartic

radial
radians
radiosity
radius
rainbow
ramp-wave
rand
range
ratio

samples
save_file
scale

normal_map
normal_vectors

omnimax
on

once
onion
open

pigment
pigment_map
pigment_pattern
planar
plane

png
point_at
poly
poly_wave
polygon
pot

pow

quaternion
quick_color
quick_colour

read

reciprocal
recursion_limit

red

reflection
reflection_exponent
refraction

render

repeat

scallop-wave
scattering
seed

number_of_waves

orient
orientation
orthographic

ppm

precision
precompute
pretrace_end
pretrace_start
prism

prod

projected_through

pwr

quilted

rgb

rgbf
rgbft
rgbt
right
ripples
rotate
roughness

select
shadowless
sin

36 Scene Description Language
sine_wave specular str

sinh sphere strcmp
size sphere_sweep strength
sky spherical strlen
sky_sphere spirall strlwr
slice spiral? strupr
slope spline sturm
slope_map split_union substr
smooth spotlight sum
smooth_triangle spotted superellipsoid
solid sqr switch

sor sqrt SYS
spacing statistics

t

t threshold translate
tan tiff transmit
tanh tightness triangle
target tile2 triangle_wave
text tiles true
texture tolerance ttf
texture_list toroidal turb_depth
texture_map torus turbulence
tga trace type
thickness transform

u

u up utf8
u_steps use_alpha uv_indices
ultra_wide_angle use_color uv_mapping
undef use_colour uv_vectors
union use_index

\'

v VCross vnormalize
v_steps vdot vrotate
val version vstr
variance vertex_vectors vturbulence
vaxis_rotate vlength

w

warning while write

warp width

water_level wood

waves wrinkles

2.1 Language Basics 37

y yes

All reserved words are fully lower case. Therefore it is recommended that your identifiers contain at least one
upper case character so it is sure to avoid conflict with reserved words.

2.1.2 Comments

Comments are text in the scene file included to make the scene file easier to read or understand. They are
ignored by the ray-tracer and are there for your information. There are two types of comments in POV-Ray.

Two slashes are used for single line comments. Anything on a line after a double/slpshignored by the
ray-tracer. For example:

// This line is ignored
You can have scene file information on the line in front of the comment as in:
object { FooBar } // this is an object

The other type of comment is used for multiple lines. It starts witH' 'and ends with %*/”. Everything
in-between is ignored. For example:

/* These lines
are ignored
by the
ray-tracer */

This can be useful if you want to temporarily remove elements from a scene/file. */ comments can
comment oulines containing other/ comments and thus can be used to temporarily or permanently comment
out parts of a scene. /* ... */ comments can be nested, the following is legal:

/* This is a comment
// This too

/* This also */

*/

Use comments liberally and generously. Well used, they really improve the readability of scene files.

38 Scene Description Language

2.1.3 Float Expressions

Many parts of the POV-Ray language require you to specify one or more floating point numbers. A floating
point number is a number with a decimal point. Floats may be specified using literals, identifiers or functions
which return float values. You may also create very complex float expressions from combinations of any of
these using various familiar operators.

Where POV-Ray needs an integer value it allows you to specify a float value and it truncates it to an integer.
When POV-Ray needs a logical or boolean value it interprets any non-zero float as true and zero as false.
Because float comparisons are subject to rounding errors POV-Ray accepts values extremely close to zero as
being false when doing boolean functions. Typically values whose absolute values are less than a preset value
epsilonare considered false for logical expressions. The valuepsilonis system dependent but is generally

about 1.0e-10. Two floaandb are considered to be equakibs(a-b)< epsilon.

The full syntax for float expressions is given below. Detailed explanations are given in the following sub-
sections.

FLOAT:

NUMERIC_TERM [SIGN NUMERIC_TERM]...
SIGN:

+] -
NUMERIC_TERM:

NUMERIC_FACTOR [MULT NUMERIC_FACTOR]...
MULT:

|/
NUMERIC_FACTOR:

FLOAT_LITERAL \

FLOAT_IDENTIFIER |

SIGN NUMERIC_FACTOR |

FLOAT_FUNCTION

FLOAT_BUILT-IN_IDENT |

(FULL_EXPRESSION) |

! NUMERIC_FACTOR
VECTOR DECIMAL_POINT DOT_ITEM FLOAT_LITERAL:

[DIGIT...] [DECIMAL_POINT] DIGIT... [EXP [SIGN] DIGIT...]
DIGIT:

o111 21314151611 718129
DECIMAL_POINT:

EXP:
e | E

DOT_ITEM:
x| ylz]lt]ulv| red]| blue | green | filter |
transmit | gray

FLOAT_FUNCTION:

abs(FLOAT) | acos(FLOAT) | acosh(FLOAT) | asc(STRING)
asin(FLOAT) | asinh(FLOAT) | atan(FLOAT) | atanh(FLOAT) |
atan2 (FLOAT , FLOAT) | ceil(FLOAT) | cos(FLOAT)

cosh(FLOAT) | defined(IDENTIFIER) | degrees(FLOAT) |

dimensions (ARRAY IDENTIFIER) |

dimension_size(ARRAY_IDENTIFIER , FLOAT) |

div(FLOAT , FLOAT) | exp(FLOAT) | file_exists(STRING)
floor(FLOAT) | int(FLOAT) | In(Float | log(FLOAT) |

2.1 Language Basics 39

max (FLOAT , FLOAT, ...) | min(FLOAT , FLOAT, ...) |

mod(FLOAT , FLOAT) | pow(FLOAT , FLOAT) |

radians(FLOAT) | rand(FLOAT) | seed(FLOAT)

select (FLOAT, FLOAT, FLOAT [,FLOAT]) | sin(FLOAT)

sinh(FLOAT) | sqrt(FLOAT) | strcmp(STRING , STRING)
strlen(STRING) | tan(FLOAT) | tanh(FLOAT) |

val(STRING) | vdot(VECTOR , VECTOR) | vlength(VECTOR) |

FLOAT_BUILT-IN_IDENT:
clock | clock_delta | clock_on | false | final clock |
final_frame | frame_number | initial_clock | initial_frame |
image_width | image_height | no | off | on | pi | true |
version | yes |
FULL_EXPRESSION:
LOGICAL_EXPRESSION [? FULL_EXPRESSION : FULL_EXPRESSION]
LOGICAL_EXPRESSION:
REL_TERM [LOGICAL_OPERATOR REL_TERM]...
LOGICAL_OPERATOR:
\& | | (note: this means an ampersand or a
vertical bar is a logical operator)
REL_TERM:
FLOAT [REL_OPERATOR FLOAT]...
REL_OPERATOR:
<<= l=1>= > !=
INT:
FLOAT (note: any syntax which requires a
integer INT will accept a FLOAT
and it will be truncated to an
integer internally by POV-Ray).

Note: FLOAT.IDENTIFIERSare identifiers previously declared to have float values.D@&_ITEM syntax is
actually a vector or color operator but it returns a float value. See "Vector Operators” or "Color Operators” for
details. An ARRAYIDENTIFIERIs just the identifier name of a previously declared array, it does not include
the 1] braces nor the index. The syntax ®8FRINGs in the section "Strings”.

Literals

Float literals are represented by an optional sign ("+” or ”-") digits, an optional decimal point and more digits.
If the number is an integer you may omit the decimal point and trailing zero. If it is all fractional you may omit
the leading zero. POV-Ray supports scientific notation for very large or very small numbers. The following are
all valid float literals:

-2.0 -4 34 3.4e6 2e-5 .3 0.6

Identifiers

Float identifiers may be declared to make scene files more readable and to parameterize scenes so that changing
a single declaration changes many values. An identifier is declared as follows.

FLOAT_DECLARATION:
#declare IDENTIFIER = EXPRESSION;
#local IDENTIFIER = EXPRESSION;

40 Scene Description Language

Where IDENTIFIER is the name of the identifier up to 40 characters long BX6PRESSIONs any valid
expression which evaluates to a float value.

Note: there should be a semi-colon after the expression in a float declaration. If omitted, it generates a warning
and some macros may not work properly. See " #declare vs. #local” for information on identifier scope.

Here are some examples.

#declare Count = 0;

#declare Rows = 5.3;
#declare Cols = 6.15;
#declare Number = Rows*Cols;

#declare Count = Count+l;

As the last example shows, you can re-declare a float identifier and may use previously declared values in that
re-declaration. There are several built-in identifiers which POV-Ray declares for you. See "Float Expressions:
Built-in Variables” for details.

Operators

Arithmetic expressions: Basic math expressions can be created from float literals, identifiers or functions using
the following operators in this order of precedence...

() expressions in parentheses first

+A -A A unary minus, unary plus and logical "not”
A*B A/B multiplication and division
A+B A-B addition and subtraction

Table 2.1: Arithmetic expressions

Relational, logical and conditional expressions may also be created. However there is a restriction that these
types of expressions must be enclosed in parentheses first. This restriction, which is not imposed by most
computer languages, is necessary because POV-Ray allows mixing of float and vector expressions. Without the
parentheses there is an ambiguity problem. Parentheses are not required for the unary logical not operator "”
as shown above. The operators and their precedence are shown here.

Relational expressions:The operands are arithmetic expressions and the result is always boolean with 1 for
true and O for false. All relational operators have the same precedence.

(A < B) Aisless than B

(A <= B) Ais less than or equal to B

(A = B) A is equal to B (actually abs(A-B)EPSILON)

(A !=B) A is not equal to B (actually abs(A-B=EPSILON)
(A >= B) Ais greater than or equal to B

(A > B) A'is greater than B

Table 2.2: Relational expressions

Logical expressions:The operands are converted to boolean values of 0 for false and 1 for true. The result is
always boolean. All logical operators have the same precedence.

Note: these are not bit-wise operations, they are logical.

2.1 Language Basics 41

(A & B) true only if both A and B are true, false otherwise
(A | B) true if either A or B or both are true

Table 2.3: Logical expressions

Conditional expressions:The operand C is boolean while operands A and B are any expressions. The result is
of the same type as A and B.

(C? A : B) if Cthen Aelse B

Table 2.4: Conditional expressions

Assuming the various identifiers have been declared, the following are examples of valid expressions...

1+243 2*5 1/3 Row*3 Col*5
(Offset-5)/2 This/That+Other*Thing
((This<That) \& (Other>=Thing)?Foo:Bar)

Expressions are evaluated left to right with innermost parentheses evaluated first, then unary +, - or !, then
multiply or divide, then add or subtract, then relational, then logical, then conditional.

Functions

POV-Ray defines a variety of built-in functions for manipulating floats, vectors and strings. Function calls con-
sist of a keyword which specifies the name of the function followed by a parameter list enclosed in parentheses.
Parameters are separated by commas. For example:

keyword (paraml, param2)

The following are the functions which return float values. They take one or more float, integer, vector, or
string parameters. Assume thatands are any valid expression that evaluates to a flod;a float which is
truncated to integer internally, s1, s2 etc. are strings, andv, v1, v2 etc. are any vector expressiang an

object identifier to a pre-declared object.

abs (2) Absolute value of. If a is negative, returnsa otherwise returns.
acos (A) Arc-cosine ofa. Returns the angle, measured in radians, whose cosine is
acosh (2) inverse hyperbolic cosine af

asc (s) Returns an integer value in the range 0 to 255 that is the ASCII value of the first character of the string
s. For example asc ("aBc") is 65 because that is the value of the character "A”.

asin (a) Arc-sine of a. Returns the angle, measured in radians, whose sing is
asinh (&) invers hyperbolic sine aof

atan2 (A, B) Arc-tangent of(a/B). Returns the angle, measured in radians, whose tangert/is). Returns
appropriate value evenifis zero. Usetan2 (a,1) to compute usual atan(A) function.

atanh () invers hyperbolic tangent af
ceil(n) Ceiling of a. Returns the smallest integer greater thaRounds up to the next higher integer.

cos () Cosine ofa. Returns the cosine of the anglewherea is measured in radians.

42 Scene Description Language

cosh (a) The hyperbolic cosine af.

defined (IDENTIFIER) Returns true if the identifier is currently definedfalse otherwise. This is especially
useful for detecting end-of-file after aread directive because the file identifier is automatically undefined when
end-of-file is reached. See "The #read Directive” for details.

degrees (A) Convert radians to degrees. Returns the angle measured in degrees whose value in radians is
Formula is degrees=A/pi*180.0

dimensions (ARRAYIDENTIFIER) Returns the number of dimensions of a previously declared array iden-
tifier. For example if you da@declare MyArray=array[6][10] then dimensions(MyArray) returns the value
2.

dimension_size (ARRAYIDENTIFIER, FLOAT) Returns the size of a given dimension of a previously de-
clared array identifier. Dimensions are numbered left-to-right starting with 1. For example if ygd«doare
MyArray=array[6] [10] then dimension_size (MyArray,2) returns the valueo.

div (a,B) Integer division. The integer part ofa/s).

exp (A) Exponential ofa. Returns the value ofe raised to the powera wheree is the base of the natural
logarithm, i.e. the non-repeating value approximately equal to 2.71828182846.

file_exists(s) Attempts to open the file specified by the strm@he current directory and all library directo-
ries specified by theibrary Path or +L options are also searched. See "Library Paths” for details. Returns
if successful and if unsuccessful.

floor (A) Floor of a. Returns the largest integer less thaRounds down to the next lower integer.

inside (0,V) It returns either 0.0, when the vectors outside the object, specified by the object-identifiesr
1.0ifitis inside.

Note: inside does not accept object-identifiers to non-solid objects.

int (3) Integer part of. Returns the truncated integer partoRounds towards zero.

log (A) Logarithm ofa. Returns the logarithm badé® of the valuea.

1n(a) Natural logarithm of. Returns the natural logarithm basef the valuea.

max (&, B, ...) Maximum of two or more float values. Return# a larger thars. Otherwise returns.
min (3,B, ...) Minimum of two or more float values. Returnsf a smaller than B. Otherwise returns.

mod (2, B) Value ofa modulo B. Returns the remainder after the integer divisionzdf. Formula ismod=((A/B)-
int(A/B))*B.

pow (&, B) Exponentiation. Returns the valuermfaised to the power.

Note:For a negative A and a non-integer B the function has no defined return value. The result then may depend
on the platform POV-Ray is compiled on.

radians (2) Convert degrees to radians. Returns the angle measured in radians whose value in degrees is
Formula is radians=A*pi/180.0

rand (I) Returns the next pseudo-random number from the stream specified by the positivein¥gemust

call seed() to initialize a random stream before callingand (). The numbers are uniformly distributed, and
have values between o and1.o, inclusively. The numbers generated by separate streams are independent
random variables.

2.1 Language Basics 43

seed (1) Initializes a new pseudo-random stream with the initial seed valdd&e number corresponding to
this random stream is returned. Any number of pseudo-random streams may be used as shown in the example
below:

#declare R1 = seed(0);
#declare R2 = seed(12345);
sphere { <rand(Rl), rand(Rl), rand(Rl)>, rand(R2) }

Multiple random generators are very useful in situations where youwaigg) to place a group of objects,
and then decide to usend () in another location earlier in the file to set some colors or place another group
of objects. Without separateand () streams, all of your objects would move when you added more calls to
rand (). This is very annoying.

select (3, B, C [,D]). It can be used with three or four parametersi.ect compares the first argument with
zero, depending on the outcome it will retuc orp. &, 8, ¢, b can be floats or funtions.

When used with three parametersy ik o it will return B, elsec (a >= 0).

When used with four parametersaif< o itwill return B. If a = o it will return c. Else it will returnp (a2 > 0).

Example:
If 2 has the consecutive values -2, -1, 0, 1, and 2 :

// A= -2-1012
select (A, -1, 0, 1) //returns -1 -1 011
select (A, -1, 1) //returns -1 -1111

sin(a) Sine ofa. Returns the sine of the anglewhere = is measured in radians.
sinh (2) The hyperbolic sine of.

stremp (S1,52) Compare stringi to s2. Returns a float value zero if the strings are equal, a positive number if
s1 comes aftes2 in the ASCII collating sequence, else a negative number.

strlen(s) Length ofs. Returns an integer value that is the number of characters in the string
sqrt (&) Square root of.. Returns the value whose squaress

tan(a) Tangent of. Returns the tangent of the anglewvherer is measured in radians.

tanh (3) The hyperbolic tangent of

val(s) Convert strings to float. Returns a float value that is represented by the text in strifgr example
val("123.45") is 123.45 as a float.

vdot (v1,v2) Dot product ofvi andv2. Returns a float value that is the dot product (sometimes called scalar
product) ofvi with v2. It is directly proportional to the length of the two vectors and the cosine of the angle
between them. Formulaiglot=V1.x*V2.x + V1.y*V2.y + V1.z*V2.5ee the animated demo scemeT2.pov

for an illustration.

vlength (v) Length ofv. Returns a float value that is the length of vectar-ormula isviength=sqrt(vdot(A,A))
Can be used to compute the distance between two pointsst=vlength (v2-v1).

See section "Vector Functions” and section "String Functions” for other functions which are somewhat float-
related but which return vectors and strings. In addition to the above built-in functions, you may also define
your own functions using thimacro directive. See the section "User Defined Macros” for more details.

44 Scene Description Language

Built-in Constants

Constants are:

FLOAT_BUILT-IN_IDENT:
false | no | off | on | pi | true | yes

The built-in constants never change value. They are defined as though the following lines were at the start of
every scene.

#declare pi = 3.1415926535897932384626;
#declare true = 1;

#declare yes = 1;

#declare on = 1
#declare false
#declare no = 0;
#declare off = 0;

0;

The built-in float identifierpi is obviously useful in math expressions involving circles. The built-in float
identifiers on, off, yes, no, true, andfalse are designed for use as boolean constants.

The built-in float constatsn, off, yes, no, true, andfalse are most often used as boolean values with object
modifiers or parameters suchsasrm, hollow, hierarchy, smooth, media_attenuation, @NOmedia_interaction.
Whenever you see syntax of the fokayword [Bool] , if you simply specify the keyword without the optional
boolean then it assumesyword on. You need not use the boolean but for readability it is a good idea. You
must use one of the false booleans or an expression which evaluates to zero to turn it off.

Note: some of these keywords ase by default, if no keyword is specified.

For example:
object { MyBlob } // sturm defaults off, but
// hierarchy defaults on
object { MyBlob sturm } // turn sturm on
object { MyBlob sturm on } // turn sturm on
object { MyBlob sturm off } // turn sturm off
object { MyBlob hierarchy } // does nothing, hierarchy was

// already on
object { MyBlob hierarchy off } // turn hierarchy off

Built-in Variables

There are several built-in float variables. You can use them to specify values or to create expressions but you
cannot re-declare them to change their values.

Clock-related are:

FLOAT_BUILT-IN_IDENT:
clock | clock_delta | clock_on | final_clock | final_frame
frame_number | initial_clock | initial frame

These keywords allow to use the values of the clock which have been set in the command line switch options (or
INI-file). They represent float or integer values, read from the animation options. You cannot re-declare these
identifiers.

2.1 Language Basics 45

clock

The built-in float identifierc1ock is used to control animations in POV-Ray. Unlike some animation packages,

the action in POV-Ray animated scenes does not depend upon the integer frame numbers. Rather you should
design your scenes based upon the float identifiesck. For non-animated scenes its default value is 0 but

you can set it to any float value using the INI file optidrck=n.n or the command-line switckkn.nto pass a

single float value your scene file.

Other INI options and switches may be used to animate scenes by automatically looping through the rendering
of frames using various values fotlock. By default, the clock value is O for the initial frame and 1 for the

final frame. All other frames are interpolated between these values.

For example if your object is supposed to rotate one full turn over the course of the animation you could specify
rotate 360*clock*y. Then as clock runs from 0 to 1, the object rotates about the y-axis from 0 to 360 degrees.

Although the value of c1ock will change from frame-to-frame, it will never change throughout the parsing of
a scene.

clock _delta

The built-in float identifier1ock_delta returns the amount of time between clock values in animations in POV-

Ray. While most animations only need the clock value itself, some animation calculations are easier if you
know how long since the last frame. Caution must be used when designing such scenes. If you render a scene
with too few frames, the results may be different than if you render with more frames in a given time period.
On non-animated scenesock_delta defaults to 1.0. See section "Animation Options” for more details.

clock _on
With this identifier the status of the clock can be checked: 1 is on, 0 is off.

#if (clock_on=0)

//stuff for still image
felse

//some animation
#end

frame _number

If you rather want to define the action in POV-Ray animated scenes depending upon the integer frame numbers,
this identifier can be used.

It reads the number of the frame currently being rendered.

#if (frame_number=1)

//stuff for first image or frame
#end
#if (frame_number=2)

//stuff for second image or frame
#end
#if (frame_number=n)

//stuff for n th image or frame
#end

initial _clock
This identifier reads the value set through the INI file optiantial_clock=n.n or the command-line switch
+KIN.N

final _clock
This identifier reads the value set through the INI file optianal_clock=n.n or the command-line switch
+KFN.N.

46 Scene Description Language

initial _frame
This identifier reads the value set through the INI file optiential Frame=n or the command-line switch
+KFIN.

final _frame
This identifier reads the value set through the INI file optofe1_Frame=n or the command-line switckkrrn.

Note: that these values are the ones actually used. When the option 'cyclic animation’ is set, they could be
different from the ones originally set in the options.

Image-size are:

FLOAT_BUILT-IN_IDENT:
image_width | image_height

image _width
This identifier reads the value set through the INI file optiom:h=n or the command-line switchin.

image _height
This identifier reads the value set through the INI file optienyht=n or the command-line switckun.

You could use these keywords to set the camera ratio (up and right vectors) correctly. The viewing angle of the
camera covers the full width of the rendered image. The camera ratio will always follow the ratio of the image
width to height, regardless of the set image size. Use it like this:

up y*image_height
right x*image_width

You could also make some items of the scene dependent on the image size:

#if (image_width < 300) crand 0.1 #else crand 0.5 #end
or:

image_map {

pattern image_width, image_width { //make pattern resolution
gradient x //dependent of render width
colormap { [0.0 ... 7 [1.0 ... 1}
}
}
Version is:

FLOAT_BUILT-IN_IDENT:
version

The built-in float variable version contains the current setting of the version compatibility option. Although
this value defaults to the current POV-Ray version number, the initial value=6fion may be set by the INI

file option version=n.nor by the +vvn.ncommand-line switch. This tells POV-Ray to parse the scene file
using syntax from an earlier version of POV-Ray.

The INI option or switch only affects the initial setting. Unlike other built-in identifiers, you may change the
value ofversion throughout a scene file. You do not useclare to change it though. Thetversion language
directive is used to change modes. Such changes may occur several times within scene files.

Together with the built-inversion identifier the #version directive allows you to save and restore the previous
values of this compatibility setting. The newocal identifier option is especially useful here. For example
supposewystuff.inc is in version 1 format. At the top of the file you could put:

2.1 Language Basics 47

#local Temp_Vers = version; // Save previous value

#version 1.0; // Change to 1.0 mode
ce // Version 1.0 stuff goes here...
#version Temp_Vers; // Restore previous version

Note: there should be a semi-colon after the float expressiontirssion directive. If omitted, it generates a
warning and some macros may not work properly.

2.1.4 Vector Expressions

POV-Ray often requires you to specifyvactor A vector is a set of related float values. Vectors may be
specified using literals, identifiers or functions which return vector values. You may also create very complex
vector expressions from combinations of any of these using various familiar operators.

POV-Ray vectors may have from two to five components but the vast majority of vectors have three components.
Unless specified otherwise, you should assume that the word "vector” means a three component vector. POV-
Ray operates in a 3D x, y, z coordinate system and you will use three component vectors to specify x, y and z
values. In some places POV-Ray needs only two coordinates. These are often specified by a 2D vector called
an UV vector Fractal objects use 4D vectors. Color expressions use 5D vectors but allow you to specify 3, 4
or 5 components and use default values for the unspecified components. Unless otherwise noted, all 2, 4 or 5
component vectors work just like 3D vectors but they have a different number of components.

The syntax for combining vector literals into vector expressions is almost identical to the rules for float expres-
sions. In the syntax for vector expressions below, some of the syntax items are defined in the section for float
expressions. See "Float Expressions” for those definitions. Detailed explanations of vector-specific issues are
given in the following sub-sections.

VECTOR:
NUMERIC_TERM [SIGN NUMERIC_TERM]
NUMERIC_TERM:
NUMERIC_FACTOR [MULT NUMERIC_FACTOR]
NUMERIC_FACTOR:
VECTOR_LITERAL \
VECTOR_IDENTIFIER |
SIGN NUMERIC_FACTOR |
VECTOR_FUNCTION \
VECTOR_BUILT-IN_IDENT |
(FULL_EXPRESSION) \
| NUMERIC_FACTOR \
FLOAT
VECTOR_LITERAL:
< FLOAT , FLOAT , FLOAT >
VECTOR_FUNCTION:
min_extent (OBJECT_IDENTIFIER) \
max_extent (OBJECT_IDENTIFIER)
trace (OBJECT_IDENTIFIER, VECTOR, VECTOR, [VECTOR_IDENTIFIER])|
vaxis_rotate(VECTOR , VECTOR , FLOAT) |
vcross (VECTOR , VECTOR) |
vrotate(VECTOR , VECTOR) |
vnormalize (VECTOR) |
vturbulence (FLOAT, FLOAT, FLOAT, VECTOR)
VECTOR_BUILT-IN_IDENT:

48 Scene Description Language

xlylzltlulyv

Note: VECTORIDENTIFIERSare identifiers previously declared to have vector values.

Literals

Vector literals consist of two to five float expressions that are bracketed by angle brackeds-. The terms
are separated by commas. For example here is a typical three component vector:

< 1.0, 3.2, -5.4578 >

The commas between components are necessary to keep the program from thinking that the 2nd term is the
single float expressions.2-5.4578 and that there is no 3rd term. If you see an error message such as "Float
expected but*’ found instead” then you probably have missed a comma.

Sometimes POV-Ray requires you to specify floats and vectors side-by-side. The rules for vector expressions
allow for mixing of vectors with vectors or vectors with floats so commas are required separators whenever an
ambiguity might arise. For example<1, 2,3>-4 evaluates as a mixed float and vector expression where 4 is
subtracted from each component resulting 43, -2, -1>. However the comma in<1, 2, 3>, -4 means this

is a vector followed by a float.

Each component may be a full float expression. For example
<This+3, That/3,5*Other_Thing>

is a valid vector.

Identifiers

Vector identifiers may be declared to make scene files more readable and to parameterize scenes so that changing
a single declaration changes many values. An identifier is declared as follows.

VECTOR_DECLARATION:
#declare IDENTIFIER = EXPRESSION; |
#local IDENTIFIER = EXPRESSION;

Where IDENTIFIER is the name of the identifier up to 40 characters long BX(PRESSIONs any valid
expression which evaluates to a vector value.

Note: there should be a semi-colon after the expression in a vector declaration. If omitted, it generates a warning
and some macros may not work properly. See " #declare vs. #local” for information on identifier scope.

Here are some examples....

#declare Here = <1,2,3>;

#declare There = <3,4,5>;

#declare Jump = <Foo*2,Bar-1,Bob/3>;
#declare Route = There-Here;
#declare Jump = Jump+<1l,2,3>;

Note: you invoke a vector identifier by using its name without any angle brackets. As the last example shows,
you can re-declare a vector identifier and may use previously declared values in that re-declaration. There are
several built-in identifiers which POV-Ray declares for you. See section "Built-in Vector Identifiers” for details.

2.1 Language Basics 49

Operators

Vector literals, identifiers and functions may also be combined in expressions the same as float values. Oper-
ations are performed on a component-by-component basis. For examples> + <4, 5, 6> evaluates the

same asc1+4,2+5,3+6> Or <5, 7, 9>. Other operations are done on a similar component-by-component basis.
For example(<1,2,3> = <3,2,1>) evaluates te<0, 1, 0> because the middle components are equal but the
others are not. Admittedly this is not very useful but it is consistent with other vector operations.

Conditional expressions such &s 2 a : B) require that c is a float expression but ands may be vector
expressions. The result is that the entire conditional evaluates as a valid vector. For exampbni Bar
are floats thenroo < Bar 2 <1,2,3> : <5,6,7>) evaluates as the vectan, 2, 3> if Foo is less thanar
and evaluates as<5, 6, 7> otherwise.

You may use the dot operator to extract a single float component from a vector. Suppose the idesptifier

was previously defined as a vector. Thent . x is a float value that is the first component of this x, y, z vector.
Similarly spot .y andspot .z reference the 2nd and 3rd componentssplt was a two component UV vector

you could usespot .u andspot . v to extract the first and second component. For a 4D vector use .y, .z,

and .t to extract each float component. The dot operator is also used in color expressions which are covered
later.

Operator Promotion

You may use a lone float expression to define a vector whose components are all the same. POV-Ray knows
when it needs a vector of a particular type and will promote a float into a vector if need be. For example the
POV-Rayscale statement requires a three component vector. If you speeifye 5 then POV-Ray interprets

this asscale <5,5,5> which means you want to scale by 5 in every direction.

Versions of POV-Ray prior to 3.0 only allowed such use of a float as a vector in various limited places such as
scale and turbulence. However you may now use this trick anywhere. For example...

box{0,1} // Same as box{<0,0,0>,<1,1,1>}
sphere{0,1} // Same as sphere{<0,0,0>,1}

When promoting a float into a vector of 2, 3, 4 or 5 components, all components are set to the float value,
however when promoting a vector of a lower number of components into a higher order vector, all remaining
components are set to zero. For example if POV-Ray expects a 4D vector and you spkeifesult is<9,

9,9, 9> but if you specify<7, 6> the resultis <7,6,0,0>.

Functions

POV-Ray defines a variety of built-in functions for manipulating floats, vectors and strings. Function calls con-
sist of a keyword which specifies the name of the function followed by a parameter list enclosed in parentheses.
Parameters are separated by commas. For example:

keyword (paraml, param2)

The following are the functions which return vector values. They take one or more float, integer, vector, or
string parameters. Assume thatandg are any valid expression that evaluates to a vector;randany float
expression.

50 Scene Description Language

min_extent (OBJECT_IDENTIFIER), max_extent (OBJECT_IDENTIFIER). Themin_extent andmax_extent return the
minimum and maximum coordinates of a #declared object’'s bounding box (Cornerl and Corner2), in effect
allowing you to find the dimensions and location of the object.

Note: this is not perfect, in some cases (such as CSG intersections and differences or isosurfaces) the bounding
box does not represent the actual dimensions of the object.

Example:
#declare Sphere =
sphere {

<0,0,0>, 1

pigment { rgb <1,0,0> }
}
#declare Min = min_extent (Sphere);
#declare Max = max_extent (Sphere);
object { Sphere }
box {
Min, Max
pigment { rgbf <1,1,1,0.5> }
}

trace (OBJECT_IDENTIFIER, A, B, [VECTOR_IDENTIFIER]). trace helps you finding the exact location of a ray
intersecting with an object’s surface. It traces a ray beginning at the painthe direction specified by the
vectors. If the ray hits the specified object, this function returns the coordinate where the ray intersected the
object. If not, it returns<o, 0, 0>. If a fourth parameter in the form of a vector identifier is provided, the normal

of the object at the intersection point (not including any normal perturbations due to textures) is stored into that
vector. If no intersection was found, the normal vector is resetto, 0>.

Note: Checking the normal vector fato, 0, 0> is the only reliable way to determine whether an intersection
has actually occurred, intersections can and do occur anywhere, includingoab >.

Example:

#declare MySphere = sphere { <0, 0, 0>, 1 }
#declare Norm = <0, 0, 0>;
#declare Start = <1, 1, 1>;
#declare Inter=
trace (MySphere, Start, <0, 0, 0>-Start, Norm);
object {
MySphere
texture {
pigment { rgb 1}
}
}
#if (vlength (Norm) !=0)
cylinder {
Inter, Inter+Norm, .1
texture {
pigment {color red 1}
}
}
#end

vaxis_rotate (A,B,F) Rotatea about B by r. Given the X,y,z coordinates of a point in space designated by the

2.1 Language Basics o1

vectora, rotate that point about an arbitrary axis defined by the vectBotate it through an angle specified in
degrees by the float value The result is a vector containing the new x,y,z coordinates of the point.

vcross (A,B) Cross product of ands. Returns a vector that is the vector cross product of the two vectors.
The resulting vector is perpendicular to the two original vectors and its length is equal to the area of the
parallelogram defined by them. Or to put in an other way, the cross product can also be formulatéxBas:

|[A] * |B|] * sin(angle(A,B)) * perpendicular _unit _vector(A,B) So the length of the resulting
vector is proportional to the sine of the angle betweamdz. See the animated demo scemert2.pov for an
illustration.

vnormalize (2) Normalize vector a. Returns a unit length vector that is the same directionragormula is
vhormalize(A)=Alvlength(A)

Note:vnormalize (<0, 0,0>) will result in an error.

vrotate (A,B) Rotate a about origin by . Given the x,y,z coordinates of a point in space designated by the
vectora, rotate that point about the origin by an amount specified by the vecRwtate it about the x-axis by
an angle specified in degrees by the float valeie:. Similarly B.y ands.z specify the amount to rotate in
degrees about the y-axis and z-axis. The result is a vector containing the new x,y,z coordinates of the point.

vturbulence (Lambda, Omega, Octaves, A) Turbulence vector at A. Given the x,y,z coordinates of a point in
space designated by the vector A, return the turbulence vector for that point based on the numbers given for
Lambda, Omega and Octaves. For the meaning of the parameters, check out the Lambda, Omega and Octaves
sections.

The amount of turbulence can be controlled by multiplying the turbulence vector by a multiple. The frequency

at which the turbulence vector changes can be controlled by multiplying A with a multiple. The turbulence
vector returned by the function can be added to the original point A to obtain a turbulated version of the point

A. Example :

#declare MyVector = MyVector + Amount * vturbulence(2, 0.5, 6, MyVector * Frequency);

See section "Float Functions” for other functions which are somewhat vector-related but which return floats. In
addition to the above built-in functions, you may also define your own functions usirgdte directive. See
the section "User Defined Macros” for more details.

Built-in Constants

There are several built-in vector identifiers. You can use them to specify values or to create expressions but you
cannot re-declare them to change their values. They are:

VECTOR_BUILT-IN_IDENT:
xlylzltlulyv

All built-in vector identifiers never change value. They are defined as though the following lines were at the
start of every scene.

#declare x = <1, 0, 0>;
#declare y = <0, 1, 0>;
#declare z = <0, 0, 1>;
#declare t = <0, 0, 0, 1>;
#declare u = <1, 0>;
#declare v = <0, 1>;

The built-in vector identifiers, y, and z provide much greater readability for your scene files when used in
vector expressions. For example....

52 Scene Description Language

plane { y, 1} // The normal vector is obviously "y".
plane { <0,1,0>, 1} // This is harder to read.
translate 5*x // Move 5 units in the "x" direction.

translate <5,0,0> // This is less obvious.
An expression like+x evaluates to5+<1,0,0> or <5,0,0>.

Similarly v andv may be used in 2D vectors. When using 4D vectors you should,uge z, and t and
POV-Ray will promotex:, v, and zto 4D when used where 4D is required.

2.1.5 Specifying Colors

COLOR:
COLOR_BODY |
color COLOR_BODY | (this means the keyword color or
colour COLOR_BODY colour may optionally precede
any color specification)
COLOR_BODY:

COLOR_VECTOR |

COLOR_KEYWORD_GROUP |

COLOR_IDENTIFIER
COLOR_VECTOR:

rgb <3_Term_Vector> |

rgbf <4_Term_Vector> |

rgbt <4_Term_Vector>

[rgbft] <5_Term_Vector>
COLOR_KEYWORD_GROUP :

[COLOR_KEYWORD_ITEM]...
COLOR_KEYWORD_ITEM:

COLOR_IDENTIFIER |

red Red_Amount

blue Blue_Amount

green Green_Amount |

filter Filter_ Amount |

transmit Transmit_Amount

Note: COLORIDENTIFIERSare identifiers previously declared to have color values. The 3, 4, and 5 term
vectors are usually vector literals but may be vector expressions or floats promoted to vectors. See "Operator
Promotion” and the sections below.

POV-Ray often requires you to specify a color. Colors consist of five values or color components. The first
three are calleded, green, andblue. They specify the intensity of the primary colors red, green and blue using
an additive color system like the one used by the red, green and blue color phosphors on a color monitor.

The 4th component, calletl1ter, specifies the amount of filtered transparency of a substance. Some real-
world examples of filtered transparency are stained glass windows or tinted cellophane. The light passing
through such objects is tinted by the appropriate color as the material selectively absorbs some frequencies of
light while allowing others to pass through. The color of the object is subtracted from the light passing through
so this is called subtractive transparency.

The 5th component, callegkansmit, specifies the amount of non-filtered light that is transmitted through a
surface. Some real-world examples of non-filtered transparency are thin see-through cloth, fine mesh netting
and dust on a surface. In these examples, all frequencies of light are allowed to pass through tiny holes in the

2.1 Language Basics 53

surface. Although the amount of light passing through is diminished, the color of the light passing through is
unchanged.

The color of the object and the color transmitted through the object together contribute 100% of the final color.
So if transmit is set to 0.9, the transmitted color contributes 90% and the color of the object contributes only
10%. This is also true outside of the 0-1 range, so for exampleaifsnit is set to 1.7, the transmitted color
contributes with 170% and the color of the object contributes with minus 70%. Wsiagnit values outside

of the 0-1 range can be used to create interesting special effects, but does not correspond to any phenomena
seen in the real world. An example:

#version 3.5;
global_settings {assumed_gamma 1.0}
camera {location -2.5*z look_at 0 orthographic}
box {
0,1
texture {
pigment {
gradient y
colour_map {
[0, red 1]
[1, blue 1]
}
}
finish{ambient 1}
}
texture {
pigment {
gradient x
colour_map {
[0, rgb 0.5 transmit -3]
[1, rgb 0.5 transmit 3]
}
}
finish{ambient 1}
}
translate <-0.5,-0.5,0>
scale <3,2,1>

}

When using the ransmit value for special effects, you can visualize it this way: Ehensmit value means
"contrast”. 1.0 is no change in contrast, 0.5 is half contrast, 2.0 is double contrast and so on. You could say
thattransmit "scales” the colors. The color of the object is the "center value”. All colors will get closer to

the "center value” ifcransmit is between 0 and 1, and all colors will spread away from the "center value” if
transmit is greater than 1. Kransnit is negative the colors will be inverted around the "center value”. Rgb 0.5

is common to use as "center value”, but other values can be used for other effects. The "center value” really is a
color, and non-gray colors can be used for interesting effects. The red, green and blue components are handled
separately.

Note: early versions of POV-Ray used the keywangha to specify filtered transparency. However that word
is often used to describe non-filtered transparency. For this reassnis no longer used.

Each of the five components of a color are float values which are normally in the range between 0.0 and 1.0.
However any values, even negatives may be used.

54 Scene Description Language

Under most circumstances the keywerdor is optional and may be omitted. We also support the British or
Canadian spellingcolour. Colors may be specified using vectors, keywords with floats or identifiers. You may
also create very complex color expressions from combinations of any of these using various familiar operators.
The syntax for specifying a color has evolved since POV-Ray was first released. We have maintained the original
keyword-based syntax and added a short-cut vector notation. Either the old or new syntax is acceptable however
the vector syntax is easier to use when creating color expressions.

The syntax for combining color literals into color expressions is almost identical to the rules for vector and float
expressions. In the syntax for vector expressions, some of the syntax items are defined in the section for float
expressions. See "Float Expressions” for those definitions. Detailed explanations of color-specific issues are
given in the following sub-sections.

Color Vectors

The syntax for a color vector is...

COLOR_VECTOR:
rgb <3_Term_Vector> |
rgbf <4_Term_Vector> |
rgbt <4_Term_Vector>
[rgbft] <5_Term_Vector>

...where the vectors are any valid vector expressions of 3, 4 or 5 components. For example
color rgb <1.0, 0.5, 0.2>

This specifies a color whose red component is 1.0 or 100% of full intensity. The green component is 0.5 or
50% of full intensity and the blue component is 0.2 or 20% of full intensity. Although the filter and transmit
components are not explicitly specified, they exist and are set to their default values of 0 or no transparency.

Thergbf keyword requires a four component vector. The 4th component is the filter component and the transmit
component defaults to zero. Similarly theybt keyword requires four components where the 4th value is moved
to the 5th component which is transmit and then the filter component is set to zero.

Thergbft keyword allows you to specify all five components. Internally in expressions all five are always used.

Under some circumstances, if the vector expression is a 5 component expression or there is a color identifier in
the expression then thegbt £ keyword is optional.

Color Keywords

The older keyword method of specifying a color is still useful and many users prefer it.

COLOR_KEYWORD_GROUP:
[COLOR_KEYWORD_ITEM]...
COLOR_KEYWORD_ITEM:
COLOR_IDENTIFIER |
red Red_Amount | blue Blue_Amount | green Green_Amount |
filter Filter_ Amount | transmit Transmit_Amount

Although thecolor keyword at the beginning is optional, it is more common to see it in this usage. This is
followed by any of five additional keywords:d, green, blue, filter, Or transmit. Each of these component
keywords is followed by a float expression. For example

2.1 Language Basics 55

color red 1.0 green 0.5

This specifies a color whose red component is 1.0 or 100% of full intensity and the green component is 0.5
or 50% of full intensity. Although the blue, filter and transmit components are not explicitly specified, they
exist and are set to their default values of 0. The component keywords may be given in any order and if any
component is unspecified its value defaults to zer& @LORIDENTIFIER can also be specified but it should
always be first in the group. See "Common Color Pitfalls” for details.

Color Identifiers

Color identifiers may be declared to make scene files more readable and to parameterize scenes so that changing
a single declaration changes many values. An identifier is declared as follows.

COLOR_DECLARATION:
#declare IDENTIFIER = COLOR; |
#local IDENTIFIER = COLOR;

WherelDENTIFIERIs the name of the identifier up to 40 characters long@B@d ORis any valid specification.

Note: there should be a semi-colon at the end of the declaration. If omitted, it generates a warning and some
macros may not work properly. See " #declare vs. #local” for information on identifier scope.

Here are some examples....

#declare White = rgb <1,1,1>;

#declare Cyan = color blue 1.0 green 1.0;
#declare Weird = rgb <Foo*2,Bar-1,Bob/3>;
#declare LightGray = White*0.8;

#declare LightCyan = Cyan red 0.6;

As thevrightGray example shows you do not need any color keywords when creating color expressions based
on previously declared colors. The last example shows you may use a color identifier with the keyword style
syntax. Make sure that the identifier comes first before any other component keywords.

Like floats and vectors, you may re-define colors throughout a scene but the need to do so is rare.

Color Operators

Color vectors may be combined in expressions the same as float or vector values. Operations are performed
on a component by component basis. For examgle<1.0,0.5,0.2>%0.9 evaluates the same aggb<1.0,
0.5,0.2>%<0.9,0.9,0.9> OF rgb<0.9,0.45,0.18>. Other operations are done on a similar component by
component basis.

You may use the dot operator to extract a single component from a color. Suppose the identifievas
previously defined as a color. Thenade.red is the float value of the red component aghade. Similarly
Shade.green, Shade.blue, Shade.filter andshade.transmit extract the float value of the other color compo-
nents.shade.gray returns the gray value of the color vector.

Common Color Pitfalls

The variety and complexity of color specification methods can lead to some common mistakes. Here are some
things to consider when specifying a color.

56 Scene Description Language

When using filter transparency, the colors which come through are multiplied by the primary color components.
For example if gray light such asgb<0.9,0.9,0.9> passes through a filter such agbf<1.0,0.5,0.0,1.0>

the result is rgb<0.9,0.45,0.0> with the red let through 100%, the green cut in half from 0.9 to 0.45 and the
blue totally blocked. Often users mistakenly specify a clear object by

color filter 1.0

but this has implied red, green and blue values of zero. You have just specified a totally black filter so no light
passes through. The correct way is either

color red 1.0 green 1.0 blue 1.0 filter 1.0
or
color transmit 1.0

In the 2nd example it does not matter what the rgb values are. All of the light passes through untouched. Another
pitfall is the use of color identifiers and expressions with color keywords. For example...

color My_Color red 0.5

this substitutes whatever was the red component ab1or with a red component of 0.5 however...
color My_Color + red 0.5

adds 0.5 to the red componentfcolor and even less obvious...
color My_Color * red 0.5

that cuts the red component in half as you would expect but it also multiplies the green, blue, filter and transmit
components by zero! The part of the expression after the multiply operator evaluatesfto<0.5,0,0,0,0>
as a full 5 component color.

The following example results in no changetacolor.
color red 0.5 My_Color

This is because the identifier fully overwrites the previous value. When using identifiers with color keywords,
the identifier should be first. Another issue to consider: some POV-Ray syntax allows full color specifications
but only uses the rgb part. In these cases it is legal to use a float where a color is needed. For example:

finish { ambient 1 }
The ambient keyword expects a color so the valisspromoted to<1, 1, 1, 1, 1> which is no problem. However
pigment { color 0.4 }

is legal but it may or may not be what you intended. The: is promoted t6<0.4,0.4,0.4,0.4,0.4> with the
filter and transmit set to 0.4 as well. It is more likely you wanted...

pigment { color rgb 0.4 }

in which case a 3 component vector is expected. Thereforeotheis promoted to<0.4,0.4,0.4,0.0,0.0>
with default zero for filter and transmit. Finally there is another problem which arises when using color dot
operators intdeclare Of #local directives. Consider the directive:

#declare MyColor = rgb <0.75, 0.5, 0.75>;
#declare RedAmt = MyColor.red;

Now redamt should be a float but unfortunately it is a color. POV-Ray looks at the first keyword after the equals
to try to guess what type of identifier you want. It sees the color identifigrolor and assumes you want

2.1 Language Basics o7

to declare a color. It then computes the float value as 0.75 then promotes thatqisto<o.75,0.75,0.75,
0.75,0.75>. It would take a major rewrite to fix this problem so we are just warning you about it. Any of the
following work-arounds will work properly.

#declare RedAmt = 0.0+MyColor.red;
#declare RedAmt = 1.0*MyColor.red;
#declare RedAmt = (MyColor.red);

2.1.6 User-Defined Functions

Some objects allow you to specify functions that will be evaluated while rendering to determine the surface of
these objects. In this respect functions are quite different to macros, which are evaluated at parse time but do
not otherwise affect rendering. Additionally you may call these functions anywhere a Float Function is allowed,
even during parsing. The syntax is identical to Float Expressions, however, only float functions that apply to
float values may be used. Excluded are for exampieen or viength. You find a full list of supported float
functions in the syntax definition below.

FLOAT:

LOGIC_AND [OR LOGIC_AND]
OR:

|
LOGIC_AND:

REL_TERM [AND REL_TERM]
AND:

\&
REL_TERM:

TERM [REL_OPERATOR TERM]
REL_OPERATOR:

<<= >= 0> ==
TERM:
FACTOR [SIGN FACTOR]
SIGN:
-
FACTOR:
MOD_EXPRESSION [MULT MOD_EXPRESSION]
MULT:
.
EXPRESSION:

FLOAT LITERAL |
FLOAT_IDENTIFIER |
FLOAT_FUNCTION

FLOAT BUILT-IN_IDENT |
FUNCTION_IDENTIFIER |
(FLOAT) |
IDENTIFIER |

SIGN EXPRESSION

FLOAT_FUNCTION:

abs(FLOAT) | acos(FLOAT) | acosh(FLOAT) | asin(FLOAT)
asinh(FLOAT) | atan(FLOAT) | atanh(FLOAT) |

atan2 (FLOAT , FLOAT) | ceil(FLOAT) | cos(FLOAT)

cosh(FLOAT) | degrees(FLOAT) | exp(FLOAT) |

floor(FLOAT) | int(FLOAT) | ln (Float) | log(FLOAT) |

58 Scene Description Language

max (FLOAT , FLOAT, ...) | min(FLOAT , FLOAT, ...) |
mod(FLOAT , FLOAT) | pow(FLOAT , FLOAT) |

radians(FLOAT) | sin(FLOAT) | sinh(FLOAT)

sqrt (FLOAT) | tan(FLOAT) | tanh(FLOAT) |

select (FLOAT , FLOAT , FLOAT [, FLOAT])
FUNCTION_IDENTIFIER:
#local FUNCTION_IDENTIFIER = function { FLOAT }
#declare FUNCTION_IDENTIFIER = function { FLOAT } \
#local FUNCTION_IDENTIFIER = function (IDENT_LIST) { FLOAT } |
#declare FUNCTION_IDENTIFIER = function (IDENT_LIST) { FLOAT } |
#local FUNCTION_IDENTIFIER = function{SPECIAL_FLOAT_FUNCTION} |
#local VECTOR_IDENTIFIER = function{SPECIAL_VECTOR_FUNCTION} |
#local COLOR_IDENTIFIER = function { SPECIAL_COLOR_FUNCTION } |
IDENT_LIST:
IDENT_ITEM [, IDENT_LIST]
IDENT_ITEM:
x|y | z | ul v | IDENTIFIER
(Note: x = u and y = V)
SPECIAL_FLOAT_FUNCTION:
pattern { PATTERN_BLOCK }
SPECIAL_VECTOR_FUNCTION:
TRANSFORMATION_BLOCK | SPLINE
SPECIAL_COLOR_FUNCTION:
PIGMENT
PATTERN_BLOCK:
PATTERN

Note: Only the above mentioned items can be used in user-defined functions. For example the rand() function
is not available.

All of the above mentioned float functions are described in the section Float Functions.

Sum and Product functions

prod(i, b, n, a) The product function.

rLa
i=
Table 2.1: product function

sum(i, b, n, a) The sum function.

n

5"

Table 2.2: sum function

2.1 Language Basics 59

For bothprod andsun: i is any variable name andis any expression, usually dependingiom andn are also
any expression.
Example:

#declare factorial = function(C) { prod(i, 1, C, i) }
#declare A = factorial(5);

The first parameter is the name of the iteration variable. The second is the initial value expression and the third is
the final value expression. Those may not depend on the iteration variable but the iteration variable may still be
used inside those two expressions (because it happens to already have been defined) but its value is undefined.
The last expression is the actual expression which will be iterated through. It may use any variable in scope.

The scope of an iteration variable is the sequence operation function. That is, a iteration variable is only
defined when used inside then/prod function. Of courseun/prod functions may be nested. However, there

is one limit of a maximum of 56 local variable defined simultaneously, which essentially means that in any
combinationsum/prod functions cannot be nested deeper than 56 levels.

The iteration variable is incremented by one for each step, but its initial and final value may be any value. The
iteration will be continued as long as the iteration value is less or equal to the final value.

Note: because the iteration value is a floating-point variable, adding one will add a certain bias in a long
iterations and thus the floating-point precision will be an issue in such a case and needs to be considered by
allowing a reasonable error for the final value!

If the expression to be added has a negative sign it will of course in effect be substracted. Thus changing the
sign will allow to generate negative values in the sum function. Equally multiplying &pression effectively
creates a division when used in the prod function.

Obviously to work in the first place the initial value of the result is the neutral element of the operation. That
is, a sum calculation starts withand a product calculation starts withust like it is assumed in the sum and
product functions in regular’ math.

It should be noted that mathematically either sum or product are redundant because:
loglQ(prod(i, b, n, a)) = sum(i, b, n, loglO(a))

which implies a sum can be represented as a product and vice versa, observing the usual mathematical con-
straints of logarithms, of course. However, as logarithms and their inverse (powers) are slow to compute both
are provided...

Functions and Macros

You can use macros in functions, but the macros will be called only once when the function is defined, not every
time the function is called. You cannot pass function variables to the macros.

You can pass functions to macros, how to do this is best explained by an example:

#macro Foo(Bar, X)
#declare Y = Bar (X);
#declare Z = Bar(Y);

#end

#declare FUNC=function(n) {n+2}

Foo (FUNC, 1)

60 Scene Description Language

#debug str(Y,5,5)
#debug "n"
#debug str(z,5,5)
#debug "n"

Declaring User-Defined Float Functions

You declare a user defined function using theclare or #local directives. By default a function takes three
parameters and you do not have to explicitly specify the parameter names. The default three parameters are
andz. For example:

#declare foo = function { x +y * z }
If you need fewer or more parameters you have to explicitly specify the parameter list.

Note: x andu as well asy andv are equivalent so you may not specify both parameter names. You may not
specify two or more parameters with the same name either. Doing so may result in a parse error or undefined
function results.

The following are valid functions with parameters:

#declare foo2 = function(x, y, z) { x +y * z }

#declare foo3 = function(kl, k2, z, y) { x + vy * z + k1l *y + k2 }
#declare food4 = function(h) { h * h + h }

#declare foo4 = function(u, v) { x +y * v } //=u + v*v

#declare food4 = function(x, v, z) {u+y *v+z 1} //=x+v*v + z

Limits:
» The minimum number of parameters per function is 1.
» The maximum number of allowed parameters per function is 56.
» The maximum number afunct ion blocks per scene is 1048575.

» The maximum number of operators per function is about 200000. Individual limits will be different
depending on the types of operators used in the function.

» The maximum depth for nesting functions is 1024.

* The maximum number of constants in all functions 1048575.
Note: Redeclaring functions, directly, is not allowed. The way to do this isitef it first.
There is one special float function type. You may declasecaern function.

Note: the syntax is identical to that of patterns, however, you may not specify colors. Its result is always a float
and not a color vector, as returned by a function containing a pigment.

#declare foo = function {
pattern {
checker
}
}

Note: the number of parameters of special function types is determined automatically, so you do not need to
specify parameter names.

2.1 Language Basics 61

Declaring User-Defined Vector Functions

Right now you may only declare vector functions using one of the special function types. Supported types are
transform andspline functions. For example:

#declare foo = function {
transform {
rotate <90, 0, 0>
scale 4

#declare myvector = foo(4, 3, 7);

#declare foo2 = function {
spline {
linear_spline
0.0, <0,0,0>
0.5, <1,0,0>
1.0, <0,0,0>

#declare myvector2 = f002(0.7);

Function splines take the vector size into account. That is, a function containing a spline with five components
will also return a five component vector (aka a color), a function containing a spline with two components will
only return a two component vector and so on.

Note: the number of parameters of special function types is determined automatically, so you do not need to
specify parameter names.

Declaring User-Defined Color Functions

Right now you may only declare color functions using one of the special function types. The only supported
type is thepigment function. You may use every valigl gment. This is a very simple example:

#declare foo = function {
pigment {
color red 1

#declare Vec = foo(l,2,3)
An example using a pattern:

#declare foo = function {
pigment {
crackle
color_map {
[0.3, color Red]
[1.0, color Blue]

62 Scene Description Language

}

#declare Val = foo(2,3,4).gray

Note: the number of parameters of special function types is determined automatically, so you do not need to
specify parameter names.

Internal Pre-Defined Functions

Several functions are pre-defined. These internal functions can be accessed through the "functions.inc”, so it
should be included in your scene.

The number of required parameters and what they control are also given in the include file, but the "functions.
inc” chapter in the "Standard Include File” section gives more information.

2.1.7 Strings

The POV-Ray language requires you to specify a string of characters to be used as a file name, text for messages
or text for a text object. Strings may be specified using literals, identifiers or functions which return string values.
See "String Functions” for details on string functions. Although you cannot build string expressions from
symbolic operators such as are used with floats, vectors or colors, you may perform various string operations
using string functions. Some applications of strings in POV-Ray allow for non-printing formatting characters
such as newline or form-feed.

STRING:
STRING_FUNCTION |
STRING_IDENTIFIER |
STRING_LITERAL STRING_LITERAL:
"up to 256 ASCII characters"
STRING_FUNCTION:
str(FLOAT , INT , INT) |

concat (STRING , STRING , [STRING ,...]) | chr(INT)
substr(STRING , INT , INT) | strupr(STRING)
strlwr (STRING) | vstr(INT, VECTOR, STRING, INT, INT)

String Literals

String literals begin with a double quote mark ™ which is followed by up to 256 characters and are terminated
by another double quote mark. You can change the character set of strings usjngpothesettings charset
option. The following are all valid string literals:

"Here” "There” "myfile.gif” "textures.inc”
Note: if you need to specify a quote mark in a string literal you must precede it with a backslash.
Example
"Joe said \"Hello\" as he walked in."
is converted to

Joe said "Hello" as he walked in.

2.1 Language Basics 63

If you need to specify a backslash, you will have to specify two. For example:
"This is a backslash \\ and this is two \\\\"

Is converted to:

This is a backslash \ and this is two \\

Windows users need to be especially wary about this as the backslash is also the windows path separator. For
example, the following code does not produce the intended result:

#declare DisplayFont = "c:\windows\fonts\lucon.ttf"
text { ttf DisplayFont "Hello", 2,0 translate y*1.50 }

New users might expect this to create a text object using the fonwiiedows\fonts\lucon.ttf". Instead, it will
give an error message saying that it cannot find the font file "c:windowsontslucon.ttf”.

The correct form of the above code is as follows:

#declare DisplayFont = "c:\\windows\\fonts\\lucon.ttf"
text { ttf DisplayFont "Hello", 2,0 translate y*1.50 }

The escaping of backslashes occurs in all POV-Ray string literals. There are also other formatting codes such
as\n for new line. See "Text Formatting” for detalils.

String Identifiers

String identifiers may be declared to make scene files more readable and to parameterize scenes so that changing
a single declaration changes many values. An identifier is declared as follows.

STRING_DECLARATION:
#declare IDENTIFIER = STRING |
#local IDENTIFIER = STRING

Where IDENTIFIER is the name of the identifier up to 40 characters long &M&RINGis any valid string
specification.

Note: unlike floats, vectors, or colors, there need not be a semi-colon at the end of the declaration. See "#declare
vs. #local” for information on identifier scope.

Here are some examples...

#declare Font_Name = "ariel.ttf"
#declare Inc_File = "myfile.inc"
#declare Name = "John"

#declare Name = concat (Name," Doe")

As the last example shows, you can re-declare a string identifier and may use previously declared values in that
re-declaration.

String Functions

POV-Ray defines a variety of built-in functions for manipulating floats, vectors and strings. Function calls con-
sist of a keyword which specifies the name of the function followed by a parameter list enclosed in parentheses.
Parameters are separated by commas. For example:

64 Scene Description Language

keyword (paraml, param2)

The following are the functions which return string values. They take one or more float, integer, vector, or string
parameters. Assume that is any valid expression that evaluates to a float;r, andr are floats which are
truncated to integers internally, s1, s2 etc are strings.

chr (B) Character whose character valuesisReturns a single character string. The character value of the
character is specified by an integavhich must be in the range 0 to 65535 if you specifiegrset utfsinthe
global_settings and O to 127 if you specifiecharset ascii. Refer to your platform specific documentation if
you specifiedtharset sys. For exampleshr (70) is the string "F”. When rendering text objects you should be
aware that the characters rendered are dependent on the (TTF) font being used.

concat (S1,52,...) Concatenate strings and s2. Returns a string that is the concatenation of all parameter
strings. Must have at least 2 parameters but may have more. For example:

concat ("Value is ", str(A,3,1), " inches")
If the float valuea was12.34321 the resultis'value is 12.3 inches" which is a string.

str(a,L,P): Convert float A to a formatted string. Returns a formatted string representation of float value
A. The integer parameterspecifies the minimum length of the string and the type of left padding used if the
string’s representation is shorter than the minimumt i§ positive then the padding is with blanks. ilfis
negative then the padding is with zeros. The overall minimum length of the formatted stebg(ls) If the
string needs to be longer, it will be made as long as necessary to represent the value.

The integer parameterspecifies the number of digits after the decimal point. i negative then a compiler-
specific default precision is use. Here are some examples:

str(123.456, 0, 3) "123.456"
str(123.456, 4, 3) "123.456"
str(123.456, 9, 3) " 123.456"
str(123.456,-9, 3) "00123.456"
str(123.456, 0, 2) "123.46"
str(123.456, 0, 0) "123"
str(123.456, 5, 0) " 123"
str(123.000, 7, 2) " 123.00"

str(123.456, 0,-1) "123.456000" (platform specific)

strlwr (S) Lower case of. Returns a new string in which all upper case letters in the string S1 are converted to
lower case. The original string is not affected. For exampte1wr ("Hello There!") results in "hello there!”.

substr (S,P,L) Sub-string froms. Returns a string that is a subset of the characters in paranses¢arting
at the position specified by the integer valuefor a length specified by the integer valueFor example
substr ("ABCDEFGHI", 4, 2) evaluates to the string "DE”. P+L-1>strlen(S)an error occurs.

strupr (S) Upper case of. Returns a new string in which all lower case letters in the stsiage converted
to upper case. The original string is not affected. For examgleupr ("Hello There!") results in "HELLO
THERE!".

vstr(N,A,S,L,P) Convert vector A to a formatted string. Returns a formatted string representation of ¥ector
where the elements of the vector are separated by the string paramEeberinteger parametarspecifies the
amount of dimensions in vectar v is autoclipped to the range of 2 to 5, without warning. Specifying a vector
a with more dimensions than given lywill result in an error.

The integer parameter specifies the minimum length of the string and the type of left padding used if the

2.1 Language Basics 65

string’s representation is shorter than the minimum. The integer pararsgiecifies the number of digits after
the decimal point. 1P is negative then a compiler-specific default precision is use. The functiomiodr is
the same as istr. Here are some examples:

vstr(2, <1,2>, ", ", 0,1) "1.0, 2.0"

vstr(5, <1,2,3,4,5>, ", ", 0,1) "1.0, 2.0, 3.0, 4.0, 5.0"
vstr(1, 1, ", ", 0,1) "1.0, 1.0"

vstr(2, 1, ", ", 0,1) "1.0, 1.0"

vstr(5, 1, ", ", 0,1) "1.0, 1.0, 1.0, 1.0, 1.0"
vstr(7, 1, ", ", 0,1) "1.0, 1.0, 1.0, 1.0, 1.0"
vstr(3, <1,2>, ", ", 0,1) "1.0, 2.0, 0.0"

vstr(5, <1,2,3>, ", ", 0,1) "1.0, 2.0, 3.0, 0.0, 0.0"
vstr(3, <1,2,3,4>, ", ", 0,1) error

See section "Float Functions” for other functions which are somewhat string-related but which return floats. In
addition to the above built-in functions, you may also define your own functions usinrgdte directive. See
the section "User Defined Macros” for more details.

2.1.8 Array ldentifiers

You may declare arrays of identifiers of up to five dimensions. Any item that can be declared as an identifier
can be declared in an array.

Declaring Arrays

The syntax for declaring an array is as follows:

ARRAY DECLARATION:
#declare IDENTIFIER = array[INT][[INT]]..[ARRAY INITIALIZER] |
#local IDENTIFIER = array[INT][[INT]]..[ARRAY_INITIALIZER]

ARRAY INITIALIZER:

{ARRAY_ITEM, [ARRAY ITEM,]... }

ARRAY_ITEM:

RVALUE | ARRAY INITIALIZER

Where IDENTIFIER is the name of the identifier up to 40 characters long and INT is a valid float expres-
sion which is internally truncated to an integer which specifies the size of the array. The opliBfAY-
INITIALIZER is discussed in the next section "Array Initializers”. Here is an example of a one-dimensional,
uninitialized array.

#declare MyArray = array[10]

This declares an uninitialized array of ten elements. The elements are referenegdrasg 0] through
MyArray[9]. As yet, the type of the elements are undetermined. Once you have initialized any element of
the array, all other elements can only be defined as that type. An attempt to reference an uninitialized element
results in an error. For example:

#declare MyArray = array[l10]

#declare MyArray[5] = pigment{White} //all other elements must
//be pigments too.
#declare MyArray[2] = normal{bumps 0.2} //generates an error

#declare Thing = MyArray[4] //error: uninitialized array element

66 Scene Description Language

Multi-dimensional arrays up to five dimensions may be declared. For example:
#declare MyGrid = array([4][5]

declares a 20 element array of 4 rows and 5 columns. Elements are referencedyftamao] (0] to
MyGrid[3][4]. Although it is permissible to reference an entire array as a whole, you may not reference just
one dimension of a multi-dimensional array. For example:

#declare MyArray = array[10]

#declare MyGrid = array([4][5]

#declare YourArray = MyArray //this is ok
fdeclare YourGrid = MyGrid //so is this
#declare OneRow = MyGrid[2] //this is illegal

Thet#ifdef and#ifndef directives can be used to check whether a specific element of an array has been declared.
For methods to determine the size of an array look in the float sectiendefisions anddimension_size

Large uninitialized arrays do not take much memory. Internally they are arrays of pointers so they probably use
just 4 bytes per element. Once initialized with values, they consume memory depending on what you put in
them.

The rules for local vs. global arrays are the same as any other identifier.

Note: this applies to the entire array. You cannot mix local and global elements in the same array. See "#declare
vs. #local” for information on identifier scope.

Array Initializers

Because it is cumbersome to individually initialize the elements of an array, you may initialize it as it is created
using array initializer syntax. For example:

#include "colors.inc"
#declare FlagColors = array([3] {Red,White,Blue}

Multi-dimensional arrays may also be initialized this way. For example:

#declare Digits =
array[4][10]

The commas are required between elements and between dimensions as shown in the example.

2.1.9 Spline Identifiers

Splines give you a way to define 'pathways’ through your scenes. You specify a series of points, and POV-Ray
interpolates to make a curve connecting them. Every point along the spline has a numerical value. A good
example of a spline is the path of a moving object: the spline itself would be the path traced out by the object
and the 'parameter’ would be time; as time changes the object’s position moves along the spline.

2.1 Language Basics 67

Therefore, given a time reference you could use this spline to find the position of the object. In fact, splines are
very well suited to animation.

The syntax is:

SPLINE_DECLARATION:
#declare IDENTIFIER =
spline {
[SPLINE_IDENTIFIER] |
[SPLINE_TYPE] |
[Val_1, <Point_1>[,]
Val_2, <Point_2>[,]

Val_n, <Point_n>]

SPLINE_TYPE:
linear_spline | quadratic_spline | cubic_spline | natural_spline

SPLINE_USAGE:
MySpline (Val) | MySpline(Val, SPLINE_TYPE)

The first item gives the type of interpolation.

In alinear_spline, straight lines connect each point.

In aquadratic_spline, @ sSmooth curve defined by a second-order polynomial connects each point.

In cubic_spline andnatural_spline, @ Smooth curve defined by a third-order polynomial connects each point.
The default islinear_spline.

Following this are a number of float values each followed by a position vector, all separated by comimas.

val_2, etc, are the value of the spline parameter at each specific point. The points need not be in order of their
parameter values. If two points have the same parameter value, the second point will replace the first. Beyond
the range of the lowest and highest parameter values, the spline position is fixed at the endpoints.

Note: Because of the way cuhgiplines are defined: the first and last points are tangents rather than points
on the spline, cubispline interpolation is only valid between the second and next-to-last points. For all other
spline types, interpolation is valid from the first point to the last point. For t-values outside the valid range,
POV-Ray returns the value of the nearest valid point.

To use a spline, you place the spline identifier followed by the parameter (in parentheses) wherever you would
normally put a vector, similar to a macro. Splines behave mostly like three-dimensional vectors.
Here is an example:

camera { location <0,2,-2> look_at 0 }
light_source { <-5,30,-10> 1 }
#declare MySpline =
spline {

cubic_spline

-.25, <0,0,-1>
.00, <1,0,0>
.25, <0,0,1>
.50, <-1,0,0>
.75, <0,0,-1>
.00, <1,0,0>
.25, <0,0,1>

R PO O O O

68 Scene Description Language

#declare ctr = 0;
#while (ctr < 1)
sphere {
MySpline (ctr), .25
pigment { rgb <l-ctr,ctr,0> }
}
#declare ctr = ctr + 0.01;
#end

You can also have POV-Ray evaluate a spline as if it were a different type of spline by specifying the type of
spline after the value to interpolate at, for example:

sphere{ <2,0,2>, .25 pigment{rgb MySpline(clock, linear_spline)}}

Splines are 'intelligent’ when it comes to returning vectors. The vector with the most components in the spline
determines the size of the returned vector. This allows vectors from two to five components to be returned by
splines.

Also, function splines take the vector size into account. That is, a function containing a spline with five
components will also return a five component vector (aka a color), a function containing a spline with two
components will only return a two component vector and so on.

Splines and Macros

You can pass functions to macros, how to do this is best explained by an example

#macro Foo(Bar, Val)
#declare Y = Bar(Val).y;
#end

#declare myspline = spline {
1, <4,5>
3, <5,5>
5, <6,5>

}

Foo (myspline, 2)

#debug str(Y,5,5)
#debug "\n"

2.2 Language Directives

The POV Scene Language contains several statements lzalbpaage directivesvhich tell the file parser how

to doits job. These directives can appear in almost any place in the scene file - even in the middle of some other
statements. They are used to include other text files in the stream of commands, to declare identifiers, to define
macros, conditional, or looped parsing and to control other important aspects of scene file processing.

2.2 Language Directives 69

Each directive begins with the hash charagtéoften called a number sign or pound sign). It is followed by a
keyword and optionally other parameters.

In versions of POV-Ray prior to 3.0, the use of thisharacter was optional. Language directives could only
be used between objects, camera or lightirce statements and could not appear within those statements. The
exception was thetinclude which could appear anywhere. Now that all language directives can be used almost
anywhere, the character is mandatory. The following keywords introduce language directives.

#break #fopen #render
#case #if #statistics
#debug #ifdef #switch
fdeclare #ifndef #undef
#default #include #version
#else #local #warning
#end #macro #while
#error #range #write
#fclose #read

Table 2.5: All language directives

Earlier versions of POV-Ray considered the keywgtgk_intersections and the keywor@max_trace_level to

be language directives but they have been moved tgithe1_settings statement and should be placed there
without the# sign. Their use as a directive still works but it generates a warning and may be discontinued in the
future.

2.2.1 Include Files and the #include Directive

The language allows include files to be specified by placing the line
#include "filename.inc"

at any point in the input file. The filename may be specified by any valid string expression but it usually is a
literal string enclosed in double quotes. It may be up to 40 characters long (or your computer’s limit), including
the two double-quote characters.

The include file is read in as if it were inserted at that point in the file. Using include is almost the same as
cutting and pasting the entire contents of this file into your scene.

Include files may be nested. You may have at most 10 nested include files. There is no limit on un-nested
include files.

Generally, include files have data for scenes but are not scenes in themselves. By convention scene files end in
.pov and include files end withinc.

Itis legal to specify drive and directory information in the file specification however it is discouraged because it
makes scene files less portable between various platforms. Use of full lower case is also recommended but not
required.

Note: if you ever intend to distribute any source files you make for POV-Ray, remember that some operating
systems have case-sensitive file names).

70 Scene Description Language

It is typical to put standard include files in a special sub-directory. POV-Ray can only read files in the current
directory or one referenced by theorary Path option or+1 switch. See section "Library Paths”.

You may use thelocal directive to declare identifiers which are temporary in duration and local to the include
file in scope. For details see "#declare vs. #local”.

2.2.2 The #declare and #local Directives

Identifiers may be declared and later referenced to make scene files more readable and to parameterize scenes
so that changing a single declaration changes many values. There are several built-in identifiers which POV-
Ray declares for you. See section "Float Expressions: Built-in Variables” and "Built-in Vector Identifiers” for
detalils.

Declaring identifiers

An identifier is declared as follows.

DECLARATION:
#declare IDENTIFIER = RVALUE |
#local IDENTIFIER = RVALUE

RVALUE:
FLOAT; | VECTOR; | COLOR; | STRING | OBJECT | TEXTURE |
PIGMENT | NORMAL | FINISH | INTERIOR | MEDIA | DENSITY |
COLOR_MAP | PIGMENT_MAP | SLOPE_MAP | NORMAL_MAP |
DENSITY_MAP | CAMERA | LIGHT_SOURCE | FOG | RAINBOW |
SKY_SPHERE | TRANSFORM

WhereIDENTIFIER is the name of the identifier up to 40 characters long BWALUE s any of the listed
items. They are called that because they are values that can appearigthtiod the equals sign. The syntax
for each is in the corresponding section of this language reference. Here are some examples.

#declare Rows = 5;

#declare Count = Count+l;

#local Here = <1,2,3>;

#declare White = rgb <1,1,1>;

#declare Cyan = color blue 1.0 green 1.0;
#declare Font_Name = "ariel.ttf"

#declare Rod = cylinder {-5*x,5%x,1}

#declare Ring = torus {5,1}

#local Checks = pigment { checker White, Cyan }
object{ Rod scale y*5 } // not "cylinder { Rod }"
object {

Ring

pigment { Checks scale 0.5 }

transform Skew

}

Note: that there should be a semi-colon after the expression in all float, vector and color identifier declarations.
This semi-colon is introduced in POV-Ray version 3.1. If omitted, it generates a warning and some macros may
not work properly. Semicolons after other declarations are optional.

2.2 Language Directives 71

Declarations, like most language directives, can appear almost anywhere in the file - even within other state-
ments. For example:

#declare Here=<1,2,3>;

#declare Count=0; // initialize Count
union {

object { Rod translate Here*Count }

#declare Count=Count+1; // re-declare inside union
object { Rod translate Here*Count }
#declare Count=Count+1; // re-declare inside union

object { Rod translate Here*Count }

}

As this example shows, you can re-declare an identifier and may use previously declared values in that re-
declaration.

Note: object identifiers use the generic wrapper statemestect{ ... }. You do not need to know what kind
of objectitis.

Declarations may be nested inside each other within limits. In the example in the previous section you could
declare the entire union as a object. However for technical reasons there are instances where you may not use
any language directive inside the declaration of floats, vectors or color expressions. Although these limits have
been loosened somewhat since POV-Ray 3.1, they still exist.

Identifiers declared withifimacro ... #end blocks are not created at the time the macro is defined. They are only
created at the time the macro is actually invoked. Like all other items inside such a #macro definition, they are
ignored when the macro is defined.

#declare vs. #local

Identifiers may be declared either global uskagciare or local using thetlocal directive.

Those created by thieleclare directive are permanent in duration and global in scope. Once created, they are
available throughout the scene and they are not released until all parsing is complete or until they are specifically
released usingundef. See "Destroying Identifiers”.

Those created by thigocal directive are temporary in duration and local in scope. They temporarily override
any identifiers with the same name. See "Identifier Name Collisions”.

If #1ocal is used inside a#macro then the identifier is local to that macro. When the macro is invoked and the
#local directive is parsed, the identifier is created. It persists untikéhe directive of the macro is reached. At
thetend directive, the identifier is destroyed. Subsequent invocations of the macro create totally new identifiers.

Use of#1ocal within an include file but not in a macro, also creates a temporary identifier that is local to that
include file. When the include file is included and thecal directive is parsed, the identifier is created. It
persists until the end of the include file is reached. At the end of file the identifier is destroyed. Subsequent
inclusions of the file create totally new identifiers.

Use of#local in the main scene file (not in an include file and not in a macro) is identicadd@iare. For
clarity sake you should not ugeocal in a main file except in a macro.

There is currently no way to create permanent, yet local identifiers in POV-Ray.

Local identifiers may be specifically released early usiingiet but in general there is no need to do so. See
"Destroying Identifiers”.

72 Scene Description Language

Identifier Name Collisions

Local identifiers may have the same names as previously declared identifiers. In this instance, the most recent,
most local identifier takes precedence. Upon entering an include file or invoking a macro, a new symbol table

is created. When referencing identifiers, the most recently created symbol table is searched first, then the next
most recent and so on back to the global table of the main scene file. As each macro or include file is exited, its
table and identifiers are destroyed. Parameters passed by value reside in the same symbol table as the one used
for identifiers local to the macro.

The rules for duplicate identifiers may seem complicated when multiple-nested includes and macros are in-
volved, but in actual practice the results are generally what you intended.

Consider this example: You have a main scene file caljedene.pov and it contains

fdeclare A = 123;
#declare B = rgb<l,2,3>;
#declare C = 0;

#include "myinc.inc"

Inside the include file you invoke a macro calleghacro (7, , 1) . It is not important wheremyMacro is defined
as long as itis defined before it is invoked. In this example, it is important that the macro is invoked from within

myinc.inc.

The identifiers,, B, and c are generally available at all levels. If eithefyinc.inc Or MyMacro contain a line
such as #declare c=c+1; then the value is changed everywhere as you might expect.

Now suppose insideyinc.inc you do...
#local A = 546;

The main version of. is hidden and a new is created. This new is also available insidevyMacro because
MyMacro IS nested insidemyinc.inc. Once you eXityinc.inc, the local a is destroyed and the original
with its value of123 is now in effect. Once you have created the logainsidenyinc. inc, there is no way to
reference the original globalunless yowundef a or exit the include file. Usingundef always undefines the
most local version of an identifier.

Similarly if MyMacro contained...
#local B = box{0,1}

then a new identifies is created local to the macro only. The original value ofmains hidden but is restored
when the macro is finished. The logaheed not have the same type as the original.

The complication comes when trying to assign a new value to an identifier at one level that was declared local
at an earlier level. Suppose insidg/inc.inc you do...

#local D = 789;
If you are insidenyinc.inc and you want to incremenb by one, you might try to do...
#local D =D + 1;

but if you try to do that insideyMacro you will create a neve which is local tovyMacro and not the o which
is external tauyMacro but local to myinc.inc. Therefore you've said "create ayvacro D from the value of
myinc.inc’s D plus one”. That's probably not what you wanted. Instead you should do...

#declare D =D + 1;

2.2 Language Directives 73

You might think this creates a newthat is global but it actually increments the myinc.inc version.@onfus-
ing isn't it? Here are the rules:

1. When referencing an identifier, you always get the most recent, most local version. By "referencing” we
mean using the value of the identifier in a POV-Ray statement or using it on the right of an equals sign in
either a¢declare Or #local.

2. When declaring an identifier using thecal keyword, the identifier which is created or has a new value
assigned, is ALWAYS created at the current nesting level of macros or include files.

3. When declaring a NEW, NON-EXISTANT identifier usingeclare, it is created as fully global. It is put
in the symbol table of the main scene file.

4. When ASSIGNING A VALUE TO AN EXISTING identifier usingdeclare, it assigns it to the most
recent, most local version at the time.

In summary,#local always means "the current level”’, ardeciare means "global” for new identifiers and
"most recent” for existing identifiers.

Destroying Identifiers with #undef

Identifiers created withdec1are will generally persist until parsing is complete. Identifiers created witha1
will persist until the end of the macro or include file in which they were created. You may however un-define
an identifier using the#undef directive. For example:

#undef MyValue

If multiple local nested versions of the identifier exist, the most local most recent version is deleted and any
identically named identifiers which were created at higher levels will still exist.

See also "The #ifdef and #ifndef Directives”.

2.2.3 File I/O Directives

You may open, read, write, append, and close plain ASCII text files while parsing POV-Ray scenes. This
feature is primarily intended to help pass information between frames of an animation. Values such as an
object’s position can be written while parsing the current frame and read back during the next frame. Clever use
of this feature could allow a POV-Ray scene to generate its own include files or write self-modifying scripts.
We trust that users will come up with other interesting uses for this feature.

Note: some platform versions of POV-Ray (e.g. Windows) provide means to restrict the ability of scene files to
read & write files.

The #fopen Directive

Users may open a text file using thepen directive. The syntax is as follows:

FOPEN_DIRECTIVE:

#fopen IDENTIFIER "filename" OPEN_TYPE
OPEN_TYPE:

read | write | append

74 Scene Description Language

WhereIDENTIFIER is an undefined identifier used to reference this file as a file haffdeame” is any
string literal or string expression which specifies the file name. Files opened withdti@are open for read
only. Those opened withirite create a new file with the specified name and it overwrites any existing file with
that name. Those opened withpend opens a file for writing but appends the text to the end of any existing file.

The file handle identifier created lyopen is always global and remains in effect (and the file remains open)
until the scene parsing is complete or until ygtriose the file. You may use #ifdef FILE_HANDLE -
IDENTIFIERTto see if a file is open.

The #fclose Directive

Files opened with thefopen directive are automatically closed when scene parsing completes however you
may close a file using therc1ose directive. The syntax is as follows:

FCLOSE_DIRECTIVE:
#fclose FILE_HANDLE_IDENTIFIER

Where FILE_HANDLEIDENTIFIER is previously opened file opened with theopen directive. See "The
#fopen Directive”.

The #read Directive

You may read string, float or vector values from a plain ASCII text file directly into POV-Ray variables using
the #read directive. The file must first be opened in "read” mode using the #fopen directive. The syntax for
#read is as follows:

READ_DIRECTIVE:
#read (FILE_HANDLE IDENTIFIER, DATA_IDENTIFIER[,DATA IDENTIFIER]..)
DATA_IDENTIFIER:
UNDECLARED_IDENTIFIER | FLOAT_IDENTIFIER | VECTOR_IDENTIFIER |
STRING_IDENTIFIER

Where FILE_HANDLEIDENTIFIER is the previously opened file. It is followed by one or m@ATA -
IDENTIFIERs separated by commas. The parentheses around the identifier list are requir@ATA-
IDENTIFIERIis any undeclared identifier or any previously declared string identifier, float identifier, or vector
identifier. Undefined identifiers will be turned into global identifiers of the type determined by the data which
is read. Previously defined identifiers remain at whatever global/local status they had when originally created.
Type checking is performed to insure that the proper type data is read into these identifiers.

The format of the data to be read must be a series of valid string literals, float literals, or vector literals sepa-
rated by commas. Expressions or identifiers are not permitted in the data file however unary minus signs and
exponential notation are permitted on float values.

If you attempt to read past end-of-file, the file is automatically closed andrthE_HANDLE IDENTIFIERIs
deleted from the symbol table. This means that the boolean functicnined (IDENTIFIER) can be used to
detect end-of-file. For example:

#fopen MyFile "mydata.txt" read
#while (defined(MyFile))
#read (MyFile,Varl,Var2,Var3)

#end

2.2 Language Directives 75

The #write Directive

You may write string, float or vector values to a plain ASCII text file from POV-Ray variables usingthe:
directive. The file must first be opened in eithette or append mode using the fopen directive. The syntax
for #write is as follows:

WRITE_DIRECTIVE:

#write (FILE_HANDLE_IDENTIFIER, DATA_ITEM[,DATA_ITEM]...)
DATA_ITEM:

FLOAT | VECTOR | STRING

WhereFILE_HANDLE IDENTIFIERIs the previously opened file. It is followed by one or mD&TAITEMS
separated by commas. The parentheses around the identifier list are reqUIX&TAATEM is any valid string
expression, float expression, or vector expression. Float expressions are evaluated and written as signed float
literals. If you require format control, you should use the (vaLUE, L, P) function to convert it to a formatted

string. See "String Functions” for details on the: function. Vector expressions are evaluated into three signed

float constants and are written with angle brackets and commas in standard POV-Ray vector notation. String
expressions are evaluated and written as specified.

Note: data read by theread directive must have comma delimiters between values and quotes around string
data but the #write directive does not automatically output commas or quotes.

For example the following#read directive reads a string, float and vector.
#read (MyFile,MyString,MyFloat,MyVect)

It expects to read something like:
"A quote delimited string", -123.45, <1,2,-3>

The POV-Ray code to write this might be:

#declare Vall = -123.45;
#declare Vectl = <1,2,-3>;
fwrite (MyFile, "\"A quote delimited string\",",vall,",",Vectl,"\n")

See "String Literals” and "Text Formatting” for details on writing special characters such as quotes, newline,
etc.

2.2.4 The #default Directive

POV-Ray creates a default texture when it begins processing. You may change those defaults as described
below. Every time you specify eexture Statement, POV-Ray creates a copy of the default texture. Anything

you put in the texture statement overrides the default settings. If you attdeheat, normal, oOr finish to an

object without any texture statement then POV-Ray checks to see if a texture has already been attached. If it has
a texture then the pigment, normal or finish will modify the existing texture. If no texture has yet been attached
to the object then the default texture is copied and the pigment, normal or finish will modify that texture.

You may change the default texture, pigment, normal or finish using the language ditectivel t as follows:

DEFAULT_DIRECTIVE:

#default {DEFAULT_ITEM }
DEFAULT_ITEM:

TEXTURE | PIGMENT | NORMAL | FINISH

76 Scene Description Language

For example:

#default {
texture {
pigment { rgb <1,0,0> }
normal { bumps 0.3 }
finish { ambient 0.4 }
}
}

This means objects will default to red bumps and slightly high ambient finish. Also you may change just part
of it like this:

#default {
pigment {rgb <1,0,0>}
}

This still changes the pigment of the default texture. At any time there is only one default texture made from the
default pigment, normal and finish. The example above does not make a separate default for pigments alone.

Note: the special texturesiles and material_map Or a texture with aexture_map may not be used as defaults.

You may change the defaults several times throughout a scene as you wish. Subseguent statements
begin with the defaults that were in effect at the time. If you wish to reset to the original POV-Ray defaults then
you should first save them as follows:

//At top of file
#declare Original_Default = texture {}

later after changing defaults you may restore it with...
#default {texture {Original_Default}}

If you do not specify a texture for an object then the default texture is attached when the object appears in the
scene. It is not attached when an object is declared. For example:

#declare My_Object =
sphere{ <0,0,0>, 1 } // Default texture not applied
object{ My_Object } // Default texture added here

You may force a default texture to be added by using an empty texture statement as follows:

#declare My_Thing =
sphere { <0,0,0>, 1 texture {} } // Default texture applied

The original POV-Ray defaults for all items are given throughout the documentation under each appropriate
section.

2.2.5 The #version Directive

As POV-Ray has evolved from version 1.0 through 3.6 we have made every effort to maintain some amount of
backwards compatibility with earlier versions. Some old or obsolete features can be handled directly without
any special consideration by the user. Some old or obsolete features can no longer be handled at all. However
someold features can still be used if you warn POV-Ray that this is an older scene #ddieion directive can

be used to switch version compatibility to different setting several times throughout a scene file. The syntax is:

2.2 Language Directives 77

VERSION_DIRECTIVE:
#version FLOAT;

Note: there should be a semi-colon after the float expression dneasion directive. This semi-colon is
introduced in POV-Ray version 3.1. If omitted, it generates a warning and some macros may not work properly.

Additionally you may use theversion=n.n option or the+mvn.n switch to establish thaitial setting. See
"Language Version” for details. For example one feature introduced in 2.0 that was incompatible with any
1.0 scene files is the parsing of float expressions. Usiagsion 1.0 turns off expression parsing as well as
many warning messages so that nearly all 1.0 files will still work. Naturally the default setting for this option is
#version 3.5.

Note: Some obsolete or re-designed featuaestotally unavailable in the current version of POV-Ray REGAR-
DLES OF THE VERSION SETTINGetails on these features are noted throughout this documentation.

The built-in float identifierrersion contains the current setting of the version compatibility option. See "Float
Expressions: Built-in Variables”. Together with the builtsiarsion identifier the#version directive allows
you to save and restore the previous values of this compatibility setting. The#newa1 identifier option is
especially useful here. For example suppasgtuff.inc is in version 1 format. At the top of the file you
could put:

#local Temp_Vers = version; // Save previous value

#version 1.0; // Change to 1.0 mode
. // Version 1.0 stuff goes here...
#version Temp_Vers; // Restore previous version

Future versions of POV-Ray may not continue to maintain full backward compatibility even withdhei on
directive. We strongly encourage you to phase in current version syntax as much as possible.

2.2.6 Conditional Directives

POV-Ray allows a variety of language directives to implement conditional parsing of various sections of your
scene file. This is especially useful in describing the motion for animations but it has other uses as well. Also
available is atwhile loop directive. You may nest conditional directives 200 levels deep.

The #if.. #else...#end Directives

The simplest conditional directive is a traditionak directive. It is of the form...

IF_DIRECTIVE:
#if (Cond) TOKENS... [#else TOKENS...] #end

TheTOKENSare any number of POV-Ray keyword, identifiers, or punctuation@@ahd) is a float expression
that is interpreted as a boolean value. The parentheses are requiregnd deective is required. A value of
0.0 is false and any non-zero value is true.

Note: extremely small values of about 1e-10 are considered zero in case of round off errors.

If Condis true, the first group of tokens is parsed normally and the second set is skipped. If false, the first set
is skipped and the second set is parsed. For example:

#declare Which=1;
#if (Which)

78 Scene Description Language

box { 0, 1}
telse

sphere { 0, 1}
#end

The box is parsed and the sphere is skipped. Changing the valueieh to 0 means the box is skipped and
the sphere is used. The1se directive and second token group is optional. For example:

#declare Which=1;

#1if (Which)
box { 0, 1}
#end

Changing the value aofhich to 0 means the box is removed.

At the beginning of the chapter "Language Directives” it was stated that "These directives can appear in almost
any place in the scene file....”. The following is an example where it will not work, it will confuse the parser:

#if(#if(yes) yes #end) #end

The #ifdef and #ifndef Directives

The #ifdef and #ifndef directive are similar to their directive however they are used to determine if an
identifier has been previously declared.

IFDEF_DIRECTIVE:

#ifdef (IDENTIFIER) TOKENS... [#else TOKENS...] #end
IFNDEF_DIRECTIVE:
#ifndef (IDENTIFIER) TOKENS... [#else TOKENS...] #end

If the IDENTIFIER exists then the first group of tokens is parsed normally and the second set is skipped. If
false, the first set is skipped and the second set is parsed. This is especially useful for replacing an undefined
item with a default. For example:

#ifdef (User_Thing)

// This section is parsed if the

// identifier "User_Thing" was

// previously declared
object{User_Thing} // invoke identifier
felse

// This section is parsed if the

// identifier "User_Thing" was not

// previously declared
box{<0,0,0>,<1,1,1>} // use a default
#end

// End of conditional part

The#ifndef directive works the opposite. The first group is parsed if the identifiroislefined. As with the
#if directive, thetelse clause is optional and thend directive is required.

The #ifdef and#ifndef directives can be used to determine whether a specific element of an array has been
assigned.

#declare MyArray=array[10]
//#declare MyArray[0]=7;
#ifdef (MyArray([0]

2.2 Language Directives 79

#debug "first element is assigned\n"
telse

#debug "first element is not assigned\n"
#end

The #switch, #case, #range and #break Directives

A more powerful conditional is theswitch directive. The syntax is as follows...

SWITCH_DIRECTIVE:

#switch (Switch_Value) SWITCH_CLAUSE... [#else TOKENS...] #end
SWITCH_CLAUSE:

#case(Case_Value) TOKENS... [#break] |

#range (Low_Value , High_Value) TOKENS... [#break]

The TOKENSare any number of POV-Ray keyword, identifiers, or punctuation @ditchValue) is a float

expression. The parentheses are required.#thedirective is required. ThB WITCHCLAUSEcomes in two

varieties. In thetcase variety, the floaSwitchValueis compared to the floataseValue If they are equal, the
condition is true.

Note: that values whose difference is less than 1e-10 are considered equal in case of round off errors.

In the #range variety,Low_ValueandHigh_Valueare floats separated by a comma and enclosed in parentheses.
If Low_Value<= Switch Valueand SwitchValue<=High_Valuethen the condition is true.

In either variety, if the clause’s condition is true, that clause’s tokens are parsed normally and parsing continues
until a #break, #else Of #end directive is reached. If the condition is false, POV-Ray skips until anather
or #range is found.

There may be any number efase or #range clauses in any order you want. If a clause evaluates true but
no #break is specified, the parsing will fall through to the nextase or #range and that clause conditional

is evaluated. Hittingbreak while parsing a successful section causes an immediate jump te:-thevithout
processing subsequent sections, even if a subsequent condition would also have been satisfied.

An optional#else clause may be the last clause. It is only executed if the clause before it was a false clause.
Here is an example:

#switch (VALUE)
#case (TEST_1)
// This section is parsed if VALUE=TEST_1
#break //First case ends
#case (TEST_2)
// This section is parsed if VALUE=TEST_2
#break //Second case ends
#range (LOW_1,HIGH_1)
// This section is parsed if (VALUE>=LOW_1)\& (VALUE<=HIGH_1)
#break //Third case ends
#range (LOW_2,HIGH_2)
// This section is parsed if (VALUE>=LOW_2)\& (VALUE<=HIGH_2)
#break //Fourth case ends
#else
// This section is parsed if no other case or
// range is true.
#end // End of conditional part

80 Scene Description Language

The #while...#end Directive

The #while directive is a looping feature that makes it easy to place multiple objects in a pattern or other uses.

WHILE_DIRECTIVE:
#while (Cond) TOKENS... #end

The TOKENSare any number of POV-Ray keyword, identifiers, or punctuation marks which abedyef the
loop. The #while directive is followed by a float expression that evaluates to a boolean value. A value of 0.0 is
false and any non-zero value is true.

Note: extremely small values of about 1e-10 are considered zero in case of round off errors.

The parentheses around the expression are required. If the condition is true parsing continues normally until
ant#end directive is reached. At the end, POV-Ray loops back to theile directive and the condition is re-
evaluated. Looping continues until the condition fails. When it fails, parsing continues afteethiairective.

Note: it is possible for the condition to fail the first time and the loop is totally skipped. It is up to the user to
insure that something inside the loop changes so that it eventually terminates.

Here is a properly constructed loop example:

#declare Count=0;
#while (Count < 5)
object { MyObject translate x*3*Count }
#declare Count=Count+1;
#end

This example places five copiesigfbject in a row spaced three units apart in the x-direction.

2.2.7 User Message Directives

With the addition of conditional and loop directives, the POV-Ray language has the potential to be more like an
actual programming language. This means that it will be necessary to have some way to see what is going on
when trying to debug loops and conditionals. To fulfill this need we have added the ability to print text messages
to the screen. You have a choice of five different text streams to use including the ability to generate a fatal error
if you find it necessary. Limited formatting is available for strings output by this method.

Text Message Streams

The syntax for a text message is any of the following:

TEXT_STREAM_DIRECTIVE:
#debug STRING | #error STRING | #warning STRING

Where STRINGIs any valid string of text including string identifiers or functions which return strings. For
example:

#switch (clock*360)
#range (0,180)
#debug "Clock in 0 to 180 range\n"
tbreak
#range (180,360)
#debug "Clock in 180 to 360 range\n"

2.2 Language Directives 81

#break

#else

#warning "Clock outside expected range\n"

#warning concat ("Value is:",str(clock*360,5,0),"\n")
#end

There are seven distinct text streams that POV-Ray uses for output. You may output only to three of them.
On some versions of POV-Ray, each stream is designated by a particular color. Text from these streams are
displayed whenever it is appropriate so there is often an intermixing of the text. The distinction is only important

if you choose to turn some of the streams off or to direct some of the streams to text files. On some systems
you may be able to review the streams separately in their own scroll-back buffer. See "Directing Text Streams
to Files” for details on re-directing the streams to a text file.

Here is a description of how POV-Ray uses each stream. You may use them for whatever purpose you want
except note that use of therror stream causes a fatal error after the text is displayed.

Debug: This stream displays debugging messages. It was primarily designed for developers but this and other
streams may also be used by the user to display messages from within their scene files.

Error: This stream displays fatal error messages. After displaying this text, POV-Ray will terminate. When the
error is a scene parsing error, you may be shown several lines of scene text that leads up to the error.

Warning: This stream displays warning messages during the parsing of scene files and other warnings. Despite
the warning, POV-Ray can continue to render the scene.

The #render and#statistsics could be accessed in previous versions. Their output is now redirected to the
#debug Stream. Thebanner and#status Streams can not be accessed by the user.

Text Formatting

Some escape sequences are available to include non-printing control characters in your text. These sequences
are similar to those used in string literals in the C programming language. The sequences are:

"\a" Bell or alarm, 0x07
"\b" Backspace, 0x08
"\E" Form feed, 0x0C
"\n" New line (line feed) Ox0A
"\r" Carriage return 0x0D
"\t" Horizontal tab 0x09
"\ UNNNN" Unicode character code NNNN OXNNNN
"\v" Vertical tab 0x0B
"\O" Null 0x00
"\\" Backslash 0x5C
A Single quote 0x27
AL Double quote 0x22

Table 2.6: All character escape sequences

For example:

#debug "This is one line.\nBut this is another"\n

82 Scene Description Language

Depending on what platform you are using, they may not be fully supported for console output. However they
will appear in any text file if you re-direct a stream to a file.

2.2.8 User Defined Macros

POV-Ray 3.1 introduced user defined macros with parameters. This feature, along with the ability to declare
#local variables, turned the POV-Ray Language into a fully functional programming language. Consequently,
it is now possible to write scene generation tools in POV-Ray’s own language that previously required external
utilities.

The #macro Directive

The syntax for declaring a macro is:

MACRO_DEFINITION:
#macro IDENTIFIER ([PARAM_IDENT] [, PARAM IDENT]...) TOKENS... #end

WherelDENTIFIER s the name of the macro anBARAMIDENTS are a list of zero or more formal param-
eter identifiers separated by commas and enclosed by parentheses. The parentheses are required even if no
parameters are specified.

The TOKENSare any number of POV-Ray keyword, identifiers, or punctuation marks which arbdtgof
the macro. The body of the macro may contain almost any POV-Ray syntax items you desire. It is terminated
by the#end directive.

Note: any conditional directives such asif...tend, #while...#end, etc. must be fully nested inside or outside
the macro so that the correspondingd directives pair-up properly.

A macro must be declared before it is invoked. All macro names are global in scope and permanent in duration.
You may redefine a macro by anothemacro directive with the same name. The previous definition is lost.
Macro names respond t@ifdef, #ifndef, and#undef directives. See "The #ifdef and #ifndef Directives” and
"Destroying Identifiers with #undef”.

Invoking Macros

You invoke the macro by specifying the macro name followed by a list of zero or more actual parameters
enclosed in parentheses and separated by commas. The number of actual parameters must match the number
of formal parameters in the definition. The parentheses are required even if no parameters are specified. The
syntax is:

MACRO_INVOCATION:

MACRO_IDENTIFIER ([ACTUAL_PARAM] [, ACTUAL_PARAM]...)
ACTUAL_PARAM:

IDENTIFIER | RVALUE

An RVALUEIs any value that can legally appear to the right of an equals signtir@are Or #1ocal dec-

laration. See "Declaring identifiers” for information oRVALUEs. When the macro is invoked, a new local
symbol table is created. The actual parameters are assigned to formal parameter identifiers as local, temporary
variables. POV-Ray jumps to the body of the macro and continues parsing until the matehirdjrective

is reached. There, the local variables created by the parameters are destroyed as well as any local identifiers

2.2 Language Directives 83

expressly created in the body of the macro. It then resumes parsing at the point where the macro was invoked. It
is as though the body of the macro was cut and pasted into the scene at the point where the macro was invoked.

Note: it is possible to invoke a macro that was declared in another file. This is quite normal and in fact is how
many "plug-ins” work (such as the popular Lens Flare macro). However, be aware that calling a macro that was
declared in a file different from the one that it is being called from involves more overhead than calling one in
the same file.

This is because POV-Ray does not tokenize and store its language. Calling a macro in another file therefore
requires that the other file be opened and closed for each call. Normally, this overhead is inconsequential;
however, if you are calling the macro many thousands of times, it can cause significant delays. A future version
of the POV-Ray language will remove this problem.

Here is a simple macro that creates a window frame object when you specify the inner and outer dimensions.

#macro Make_Frame (OuterWidth, OuterHeight, InnerWidth,
InnerHeight, Depth)
#local Horz = (OuterHeight-InnerHeight)/2;
#local Vert = (OuterWidth-InnerWidth)/2;
difference {
box{
<0,0,0>,<OuterWidth,OuterHeight,Depth>

box{
<Vert,Horz,-0.1>,
<OuterWidth-Vert,OuterHeight-Horz,Depth+0.1>
}
}
#end
Make_Frame(8,10,7,9,1) //invoke the macro

In this example, the macro has five float parameters. The actual parameters (the values 8, 10, 7, 9, and 1) are
assigned to the five identifiers in theacro formal parameter list. It is as though you had used the following
five lines of code.

#local OuterWidth = 8;
#local OuterHeight = 10;
#local InnerWidth, 7;
#local InnerHeight = 9;
#local Depth = 1;

These five identifiers are stored in the same symbol table as any other local identifier such @svert in

this example. The parameters and local variables are all destroyed whenthestatement is reached. See
"Identifier Name Collisions” for a detailed discussion of how local identifiers, parameters, and global identifiers
work when a local identifier has the same name as a previously declared identifier.

Are POV-Ray Macros a Function or a Macro?

POV-Ray macros are a strange mix of macros and functions. In traditional computer programming languages,
a macro works entirely by token substitution. The body of the routine is inserted into the invocation point by
simply copying the tokens and parsing them as if they had been cut and pasted in place. Such cut-and-paste
substitution is often callechacro substitutiorbecause it is what macros are all about. In this respect, POV-

Ray macros are exactly like traditional macros in that they use macro substitution for the body of the macro.

84 Scene Description Language

However traditional macros also use this cut-and-paste substitution strategy for parameters but POV-Ray does
not.

Suppose you have a macro in the C programming languageical_Cmac (Param) and you invoke it as

Typical Cmac (else A=B). Anywhere thataram appears in the macro body, the four tokense, 2, =, and B

are substituted into the program code using a cut-and-paste operation. No type checking is performed because
anything is legal. The ability to pass an arbitrary group of tokens via a macro parameter is a powerful (and
sadly often abused) feature of traditional macros.

After careful deliberation, we have decided against this type of parameters for our macros. The reason is that
POV-Ray uses commas more frequently in its syntax than do most programming languages. Suppose you create
a macro that is designed to operate on one vector and two floats. It might be defined: (v, r1,r2). If you

allow arbitrary strings of tokens and invoke a macro suchuasac (<1, 2, 3>, 4, 5) then it is impossible to tell

if this is a vector and two floats or if its 5 parameters with the two tokeasd1 as the first parameter. If we

design the macro to accept 5 parameters then we cannot invoke it likedhisac (Myvector, 4,5).

Function parameters in traditional programming languages do not use token substitution to pass values. They
create temporary, local variables to store parameters that are either constant values or identifier references which
are in effect a pointer to a variable. POV-Ray macros use this function-like system for passing parameters to
its macros. In our exampleourMac (<1,2,3>,4,5), POV-Ray sees the and knows it must be the start of a

vector. It parses the whole vector expression and assigns it to the first parameter exactly as though you had used
the statementlocal v=<1,2,3>;.

Although we say that POV-Ray parameters are more like traditional function parameters than macro parameters,
there still is one difference. Most languages require you to declare the type of each parameter in the definition
before you use it but POV-Ray does not. This should be no surprise because most languages require you to
declare the type of any identifier before you use it but POV-Ray does not. This means that if you pass the wrong
type value in a POV-Ray macro parameter, it may not generate an error until you reference the identifier in
the macro body. No type checking is performed as the parameter is passed. So in this very limited respect,
POV-Ray parameters are somewhat macro-like but are mostly function-like.

Returning a Value Like a Function

POV-Ray macros have a variety of uses. Like most macros, they provide a parameterized way to insert arbitrary
code into a scene file. However most POV-Ray macros will be used like functions or procedures in a traditional
programming language. Macros are designed to fill all of these roles.

When the body of a macro consists of statements that create an entire item such as an object, texture, etc.
then the macro acts like a function which returns a single value vdherrame macro example in the section
"Invoking Macros” above is such a macro which returns a value that is an object. Here are some examples of
how you might invoke it.

union { //make a union of two objects
object{ Make_Frame(8,10,7,9,1) translate 20*x}
object{ Make_Frame(8,10,7,9,1) translate -20*x}

}
#declare BigFrame = object{ Make_Frame(8,10,7,9,1)}
#declare SmallFrame = object{ Make_Frame(5,4,4,3,0.5)}

Because no type checking is performed on parameters and because the expression syntax for floats, vectors, and
colors is identical, you can create clever macros which work on all three. See the samplevacene pov
which includes this macro to interpolate values.

2.2 Language Directives 85

// Define the macro. Parameters are:
// T: Middle value of time
// Tl: Initial time
// T2: Final time
// Pl: Initial position (may be float, vector or color)
// P2: Final position (may be float, vector or color)
// Result is a value between Pl and P2 in the same proportion
// as T is between Tl and T2.
#macro Interpolate(T,T1,T2,P1,P2)
(P1+(T1+T/(T2-T1))* (P2-P1))
#end

You might invoke it withp1 andp2 as floats, vectors, or colors as follows.

sphere({
Interpolate(I,0,15,<2,3,4>,<9,8,7>), //center location is vector
Interpolate(I,0,15,3.0,5.5) //radius is float
pigment {

color Interpolate(I,0,15,rgb<l,1,0>,rgbh<0,1,1>)
}
}

As the float value varies from 0 to 15, the location, radius, and color of the sphere vary accordingly.

There is a danger in using macros as functions. In a traditional programming language function, the result to be
returned is actually assigned to a temporary variable and the invoking code treats it as a variable of a given type.
However macro substitution may result in invalid or undesired syntax. The definition of the maerpolate

above has an outermost set of parentheses. If those parentheses are omitted, it will not matter in the examples
above, but what if you do this...

#declare Value = Interpolate(I,0,15,3.0,5.5)*15;
The end result is as if you had done...
#declare Value = P1+(T1+T/(T2-T1))* (P2-P1) * 15;

which is syntactically legal but not mathematically correct becauseitterm is not multiplied. The parenthe-
ses in the original example solves this problem. The end result is as if you had done...

#declare Value = (P1+(T1+T/(T2-T1))* (P2-P1)) * 15;

which is correct.

Returning Values Via Parameters

Sometimes it is necessary to have a macro return more than one value or you may simply prefer to return a value
via a parameter as is typical in traditional programming language procedures. POV-Ray macros are capable of
returning values this way. The syntax for POV-Ray macro parameters says that the actual parameter may be an
IDENTIFIERor an RVALUE Values may only be returned via a parameter if the parameteriBBNTIFIER
Parameters that aRVALUESare constant values that cannot return information RMALUEIs anything that

legally may appear to the right of an equals sign irt@clare or #1ocal directive. For example consider the
following trivial macro which rotates an object about the x-axis.

#macro Turn_Me (Stuff,Degrees)
#declare Stuff = object{Stuff rotate x*Degrees}

86 Scene Description Language

#end

This attempts to re-declare the identifieri£ £ as the rotated version of the object. However the macro might
be invoked with Turn_Me (box{0,1},30) which uses a box object as &\VALUEparameter. This will not work
because the box is not an identifier. You can however do this

#declare MyObject=box{0,1}
Turn_Me (MyObiject, 30)

The identifiemyobject now contains the rotated box.

See "ldentifier Name Collisions” for a detailed discussion of how local identifiers, parameters, and global
identifiers work when a local identifier has the same name as a previously declared identifier.

While it is obvious thatyobject is an identifier and box{0,1} is not, it should be noted thatrurn_-

Me (object {MyObject}, 30) will not work because object{Myobject} iS considered an object statement and is
not a pure identifier. This mistake is more likely to be made with float identifiers versus float expressions.
Consider these examples.

#declare Value=5.0;

MyMacro (Value) //MyMacro can change the value of Value but...
MyMacro (+Value) //This version and the rest are not lone
MyMacro (Value+0.0) // identifiers. They are float expressions
MyMacro (Value*1.0) // which cannot be changed.

Although all four invocations ofiymacro are passed the value 5.0, only the first may modify the value of the
identifier.

Chapter 3

Scene Settings

3.1 Camera

The camera definition describes the position, projection type and properties of the camera viewing the scene.
Its syntax is:

CAMERA:
camera{ [CAMERA_ITEMS...] }

CAMERA_ITEM:
CAMERA_TYPE | CAMERA_VECTOR | CAMERA_MODIFIER |
CAMERA_IDENTIFIER

CAMERA_TYPE:
perspective | orthographic | fisheye | ultra_wide_angle |
omnimax | panoramic | cylinder CylinderType | spherical

CAMERA_VECTOR:
location <Location> | right <Right> | up <Up> |
direction <Direction> | sky <Sky>

CAMERA_MODIFIER:
angle HORIZONTAL [VERTICAL] | look_at <Look_At> |
blur_samples Num_of_Samples | aperture Size |
focal_point <Point> | confidence Blur_Confidence |
variance Blur_Variance | NORMAL | TRANSFORMATION

Camera default values:

DEFAULT CAMERA:
camera {

perspective
location <0,0,0>
direction <0,0,1>
right 1.33*x
up y
sky <0,1,0>

CAMERA TYPE: perspective

88 Scene Settings

angle : \7{}67.380 (direction_length=0.5%
right_length/tan(angle/2))
confidence : 0.9 (90\%)

direction : <0,0,1>
focal_point: <0,0,0>
location . <0,0,0>
look_at 0z

right ¢ 1.33*x
sky : <0,1,0>
up Ty
variance : 1/128

Depending on the projection type zero or more of the parameters are required:

* If no camera is specified the default camera is used.

If no projection type is given the perspective camera will be used (pinhole camera).

» The CAMERATYPEhas to be the first item in the camera statement.

OtherCAMERAITEMsmay legally appear in any order.

For other than the perspective camera, the minimum that has to be specified is the CAMERA the
cylindrical camera also requires tGAMERATYPEto be followed by a float.

» The Orthographic camera has two 'modes’. For the pure orthographic projection up or right have to be
specified. For an orthographic camera, with the same area of view as a perspective camera at the plane
which goes through the loo#t point, the angle keyword has to be use. A value for the angle is optional.

All other CAMERAITEMSs are taken from the default camera, unless they are specified differently.

3.1.1 Placing the Camera

The POV-Ray camera has ten different models, each of which uses a different projection method to project the
scene onto your screen. Regardless of the projection type all cameras usesthen, right, up, direction,

and keywords to determine the location and orientation of the camera. The type keywords and these four vectors
fully define the camera. All other camera modifiers adjust how the camera does its job. The meaning of these
vectors and other modifiers differ with the projection type used. A more detailed explanation of the camera
types follows later. In the sub-sections which follows, we explain how to place and orient the camera by the
use of these four vectors and thie; and 1ook_at modifiers. You may wish to refer to the illustration of the
perspective camera below as you read about these vectors.

Location and Look_At

Under many circumstances just two vectors in the camera statement are all you need to position the camera:
location @andlook_at vectors. For example:

camera {

location <3,5,-10>
look_at <0,2,1>

}

3.1 Camera 89

image plane

location

Figure 3.1: The perspective camera.

The location is simply the X, y, z coordinates of the camera. The camera can be located anywhere in the ray-
tracing universe. The default locationds, 0, 0>. Thelook_at vector tells POV-Ray to pan and tilt the camera

until it is looking at the specified X, y, z coordinates. By default the camera looks at a point one unit in the
z-direction from the location.

The1ook_at modifier should almost always be the last item in the camera statement. If other camera items are
placed after the1look_at vector then the camera may not continue to look at the specified point.

The Sky Vector

Normally POV-Ray pans left or right by rotating about the y-axis until it lines up withithe_at point and
then tilts straight up or down until the point is met exactly. However you may want to slant the camera sideways
like an airplane making a banked turn. You may change the tilt of the camera usig trector. For example:

camera {
location <3,5,-10>
sky <1,1,0>
look_at <0,2,1>
}

This tells POV-Ray to roll the camera until the top of the camera is in line with the sky vector. Imagine that the
sky vector is an antenna pointing out of the top of the camera. Then it uses/thector as the axis of rotation

left or right and then to tilt up or down in line with they until pointing at thelook_at point. In effect you are
telling POV-Ray to assume that the sky isn't straight up.

The sky vector does nothing on its own. It only modifies the way thex_at vector turns the camera. The
default value is sky<0,1, 0>.

Angles

The angle keyword followed by a float expression specifies the (horizontal) viewing angle in degrees of the
camera used. Even though it is possible to usedthection vector to determine the viewing angle for the
perspective camera it is much easier to use thele keyword.

90 Scene Settings

When you specify thangle, POV-Ray adjusts the length of therection vector accordingly. The formula
used is directionlength = 0.5 * rightlength / tan(angle / 2where right_lengthis the length of the-ight
vector. You should therefore specify the rection and right vectors before theangle keyword. The right
vector is explained in the next section.

There is no limitation to the viewing angle except for the perspective projection. If you choose viewing angles
larger than 360 degrees you will see repeated images of the scene (the way the repetition takes place depends
on the camera). This might be useful for special effects.

Thespherical camera has the option to also specify a vertical angle. If not specified it defaults to the horizontal
angle/2

For example if you render an image with a 2:1 aspect ratio and map it to a sphere using spherical mapping,
it will recreate the scene. Another use is to map it onto an object and if you specify transformations for the
object before the texture, say in an animation, it will look like reflections of the environment (sometimes called
environment mapping).

The Direction Vector

You will probably not need to explicitly specify or change the cametaction vector but it is described here

in case you do. It tells POV-Ray the initial direction to point the camera before moving it wittbthest or

rotate vectors (the default value iSrection<0,0,1>). It may also be used to control the (horizontal) field

of view with some types of projection. The length of the vector determines the distance of the viewing plane
from the camera’s location. A shorterrection vector gives a wider view while a longer vector zooms in for
close-ups. In early versions of POV-Ray, this was the only way to adjust field of view. However zooming should
now be done using the easier to usele keyword.

If you are using theiltra wide_angle, panoramic, OF cylindrical projection you should use a unit length
direction vector to avoid strange results. The length of therection vector does not matter when using the
orthographic, fisheye, Of omnimax projection types.

Up and Right Vectors

The primary purpose of the> andright vectors is to tell POV-Ray the relative height and width of the view
screen. The default values are:

right 4/3*x
up y

In the defaultperspective camera, these two vectors also define the initial plane of the view screen before
moving it with the 1ook_at or rotate vectors. The length of theright vector (together with th@irection
vector) may also be used to control the (horizontal) field of view with some types of projection.odihet
modifier changes both the andright vectors. Thangle calculation depends on theight vector.

Most camera types treat the and right vectors the same as therspective type. However several make
special use of them. In thethographic projection: The lengths of therp andright vectors set the size of the
viewing window regardless of theiirection vector length, which is not used by the orthographic camera.

When usingcylindrical projection: types 1 and 3, the axis of the cylinder lies alonguthgector and the
width is determined by the length efght vector or it may be overridden with thegle vector. In type 3 the
up vector determines how many units high the image is. For example if youdpavey on a camera at the

3.1 Camera 91

origin. Only points from y=2 to y=-2 are visible. All viewing rays are perpendicular to the y-axis. For type 2
and 4, the cylinder lies along theght vector. Viewing rays for type 4 are perpendicular to thent vector.

Note: that theup, right, and direction vectors should always remain perpendicular to each other or the image
will be distorted. If this is not the case a warning message will be printed. The vista buffer will not work for
non-perpendicular camera vectors.

Aspect Ratio

Together theip and right vectors define thaspect ratio(height to width ratio) of the resulting image. The
default valuesip<0, 1, 0> and right<1.33,0,0> result in an aspect ratio of 4 to 3. This is the aspect ratio of

a typical computer monitor. If you wanted a tall skinny image or a short wide panoramic image or a perfectly
square image you should adjust theandright vectors to the appropriate proportions.

Most computer video modes and graphics printers use perfectly square pixels. For example Macintosh displays
and IBM SVGA modes 640x480, 800x600 and 1024x768 all use square pixels. When your intended viewing
method uses square pixels then the width and height you set withithen andieight options or+w or +h

switches should also have the same ratio astrendright vectors.

Note: 640/480 = 4/3 so the ratio is proper for this square pixel mode.

Not all display modes use square pixels however. For example IBM VGA mode 320x200 and Amiga 320x400
modes do not use square pixels. These two modes still produce a 4/3 aspect ratio image. Therefore images
intended to be viewed on such hardware should still use 4/3 ratio onuthaind right vectors but the pixel

settings will not be 4/3.

For example:

camera {

location <3,5,-10>
up <0,1,0>
right <1,0,0>
look_at <0,2,1>

}

This specifies a perfectly square image. On a square pixel display like SVGA you would use pixel settings such
as+w4a80 +H480 Or +W600 +H600. However on the non-square pixel Amiga 320x400 mode you would want to
use values ofw240 +H400 to render a square image.

The bottom line issue is this: the and right vectors should specify the artist’s intended aspect ratio for the
image and the pixel settings should be adjusted to that same ratio for square pixels and to an adjusted pixel
resolution for non-square pixels. The andright vectors shouldhot be adjusted based on non-square pixels.

Handedness

Theright vector also describes the direction to the right of the camera. It tells POV-Ray where the right side of
your screen is. The sign of theght vector can be used to determine the handedness of the coordinate system
in use. The default value is: right<1.33,0,0>. This means that the +x-direction is to the right. It is called

a left-handedsystem because you can use your left hand to keep track of the axes. Hold out your left hand
with your palm facing to your right. Stick your thumb up. Point straight ahead with your index finger. Point
your other fingers to the right. Your bent fingers are pointing to the +x-direction. Your thumb now points into
+y-direction. Your index finger points into the +z-direction.

92 Scene Settings

To use a right-handed coordinate system, as is popular in some CAD programs and other ray-tracers, make the
same shape using your right hand. Your thumb still points up in the +y-direction and your index finger still
points forward in the +z-direction but your other fingers now say the +x-direction is to the left. That means that
the right side of your screen is now in the -x-direction. To tell POV-Ray to act like this you can use a negative

x value in the right vector such as: right<-1.33,0,0>. Since having x values increasing to the left does

not make much sense on a 2D screen you now rotate the whole thing 180 degrees around by using a positive z
value in your camera’s location. You end up with something like this.

camera {
location <0,0,10>
up <0,1,0>
right <-1.33,0,0>
look_at <0,0,0>
}

Now when you do your ray-tracer’s aerobics, as explained in the section "Understanding POV-Ray’s Coordinate
System”, you use your right hand to determine the direction of rotations.

In a two dimensional grid, x is always to the right and y is up. The two versions of handedness arise from the
question of whether z points into the screen or out of it and which axis in your computer model relates to up in
the real world.

Architectural CAD systems, like AutoCAD, tend to use tBed’s Eyeorientation that the z-axis is the elevation

and is the model’s up direction. This approach makes sense if you are an architect looking at a building blueprint
on a computer screen. z means up, and it increases towards you, with x and y still across and up the screen.
This is the basic right handed system.

Stand alone rendering systems, like POV-Ray, tend to consider you as a participant. You are looking at the
screen as if you were a photographer standing in the scene. The up direction in the model is now y, the same
as up in the real world and x is still to the right, so z must be depth, which increases away from you into the
screen. This is the basic left handed system.

Transforming the Camera

The various transformations suchtasnsiate and rotate modifiers can re-position the camera once you have
defined it. For example:

camera {

location < 0, 0, 0>
direction < 0, 0, 1>
up <0, 1, 0>
right <1, 0, 0>
rotate <30, 60, 30>
translate < 5, 3, 4>

}

In this example, the camera is created, then rotated by 30 degrees about the x-axis, 60 degrees about the y-axis
and 30 degrees about the z-axis, then translated to another point in space.

3.1 Camera 93

3.1.2 Types of Projection

The following list explains the different projection types that can be used with the camera. The most common
types are the perspective and orthographic projectionsCMMERATYPEshould be thdirstitem in acanera
statement. If none is specified, therspective camera is the default.

You should note that the vista buffer can only be used with the perspective and orthographic camera.

Perspective projection

Theperspective keyword specifies the default perspective camera which simulates the classic pinhole camera.
The (horizontal) viewing angle is either determined by the ratio between the lengthat-theion vector and

the length of the right vector or by the optional keyworghgle, which is the preferred way. The viewing angle

has to be larger than 0 degrees and smaller than 180 degrees. See the figure in "Placing the Camera” for the
geometry of the perspective camera.

Orthographic projection

The orthographic camera offers two modes of operation:

The pureorthographic projection. This projection uses parallel camera rays to create an image of the scene.
The area of view is determined by the lengths ofthght andup vectors. One of these has to be specified, they
are not taken from the default camera. If omitted the second method of the camera is used.

If, in a perspective camera, you replace thespective keyword byorthographic and leave all other param-

eters the same, you will get an orthographic view with the same image area, i.e. the size of the image is the
same. The same can be achieved by adding:ttie: keyword to an orthographic camera. A value for the angle

is optional. So this second mode is active if no up and right are within the camera statement, or when the angle
keyword is within the camera statement.

You should be aware though that the visible parts of the scene change when switching from perspective to
orthographic view. As long as all objects of interest are near the égloint they will be still visible if the
orthographic camera is used. Objects farther away may get out of view while nearer objects will stay in view.

If objects are too close to the camera location they may disappear. Too close here means, behind the orthographic
camera projection plane (the plane that goes throughddieat point).

Fisheye projection

This is a spherical projection. The viewing angle is specified bythes keyword. An angle of 180 degrees
creates the "standard” fisheye while an angle of 360 degrees creates a super-fisheye ("I-see-everything-view”).
If you use this projection you should get a circular image. If this is not the case, i.e. you get an elliptical image,
you should read "Aspect Ratio”.

Ultra wide angle projection

This projection is somewhat similar to the fisheye but it projects the image onto a rectangle instead of a circle.
The viewing angle can be specified using thele keyword.

94 Scene Settings

Omnimax projection

The omnimax projection is a 180 degrees fisheye that has a reduced viewing angle in the vertical direction. In
reality this projection is used to make movies that can be viewed in the dome-like Omnimax theaters. The image
will look somewhat elliptical. Thangie keyword is not used with this projection.

Panoramic projection

This projection is called "cylindrical equirectangular projection”. It overcomes the degeneration problem of the
perspective projection if the viewing angle approaches 180 degrees. It uses a type of cylindrical projection to
be able to use viewing angles larger than 180 degrees with a tolerable lateral-stretching distortien;1d he
keyword is used to determine the viewing angle.

Cylindrical projection

Using this projection the scene is projected onto a cylinder. There are four different types of cylindrical projec-
tions depending on the orientation of the cylinder and the position of the viewpoint. A float value in the range 1

to 4 must follow the cylinder keyword. The viewing angle and the length of the or right vector determine

the dimensions of the camera and the visible image. The camera to use is specified by a number. The types are:

1. vertical cylinder, fixed viewpoint

2. horizontal cylinder, fixed viewpoint

3. vertical cylinder, viewpoint moves along the cylinder’s axis
4.

horizontal cylinder, viewpoint moves along the cylinder’s axis

Spherical projection

Using this projection the scene is projected onto a sphere.
Syntax:

camera {
spherical
[angle HORIZONTAL [VERTICAL]]
[CAMERA_ITEMS...]

}

The first value afteengle sets the horizontal viewing angle of the camera. With the optional second value,
the vertical viewing angle is set: both in degrees. If the vertical angle is not specified, it defaults to half the
horizontal angle.

The spherical projection is similar to the fisheye projection, in that the scene is projected on a sphere. But unlike
the fisheye camera, it uses rectangular coordinates instead of polar coordinates; in this it works the same way as
spherical mapping (mafype 1).

This has a number of uses. Firstly, it allows an image rendered with the spherical camera to be mapped on a
sphere without distortion (with the fisheye camera, you first have to convert the image from polar to rectangular
coordinates in some image editor). Also, it allows effects such as "environment mapping”, often used for
simulating reflections in scanline renderers.

3.1 Camera 95

3.1.3 Focal Blur

POV-Ray can simulate focal depth-of-field by shooting a number of sample rays from jittered points within each
pixel and averaging the results.

To turn on focal blur, you must specify theerture keyword followed by a float value which determines the
depth of the sharpness zone. Large apertures give a lot of blurring, while narrow apertures will give a wide zone
of sharpness.

Note: while this behaves as a real camera does, the values for aperture are purely arbitrary and are not related
to f-stops.

You must also specify thelur_samples keyword followed by an integer value specifying the maximum number
of rays to use for each pixel. More rays give a smoother appearance but is slower. By default no focal blur is
used, i. e. the default aperture is 0 and the default number of samples is 0.

The center of theone of sharpness specified by the focal point vector. Thezone of sharpness a plane
through thefocal point and is parallel to the camera. Objects close to this plane of focus are in focus and those
farther from that plane are more blurred. The default valu€dsal_point<0, 0, 0>.

Althoughblur_samples specifies the maximum number of samples, there is an adaptive mechanism that stops
shooting rays when a certain degree of confidence has been reached. At that point, shooting more rays would
not result in a significant change.

The confidence and variance keywords are followed by float values to control the adaptive function. The
confidence Value is used to determine when the samples seem tdose enougho the correct color. The
variance value specifies an acceptable tolerance on the variance of the samples taken so far. In other words, the
process of shooting sample rays is terminated when the estimated color value is very likely (as controlled by the
confidence probability) near the real color value.

Since theconfidence is a probability its values can range from 044 (the default is 0.9, i. e. 90%). The value
for the variance should be in the range of the smallest displayable color difference (the default is 1/128). If 1
is used POV-Ray will issue a warning and then use the default instead.

Rendering with the default settings can result in quite grainy images. This can be improved by using a lower
variance. A value of 1/10000 gives a fairly good result (with default confidence andddmples set to
something like 100) without being unacceptably slow.

Larger confidence values will lead to more samples, slower traces and better images. The same holds for
smallervariance thresholds.

3.1.4 Camera Ray Perturbation

The optionahormal may be used to assign a normal pattern to the camera. For example:

camera{
location Here
look_at There
normal { bumps 0.5 }

}

All camera rays will be perturbed using this pattern. The image will be distorted as though you were looking
through bumpy glass or seeing a reflection off of a bumpy surface. This lets you create special effects. See the
animated sceneamera2.pov for an example. See "Normal” for information on normal patterns.

96 Scene Settings

3.1.5 Camera ldentifiers

Camera identifiers may be declared to make scene files more readable and to parameterize scenes so that
changing a single declaration changes many values. You may declare several camera identifiers if you wish.
This makes it easy to quickly change cameras. An identifier is declared as follows.

CAMERA_DECLARATION:
#declare IDENTIFIER = CAMERA |
#local IDENTIFIER = CAMERA

WherelDENTIFIER is the name of the identifier up to 40 characters long @AIERAIs any valid camera
statement. See "#declare vs. #local” for information on identifier scope. Here is an example...

#declare Long_Lens = camera {
location -z*100
look_at <0,0,0>
angle 3

}

#declare Short_Lens = camera {
location -z*50
look_at <0,0,0>
angle 15

}

camera {
Long_Lens // edit this line to change lenses
translate <33,2,0>

}

Note: only camera transformations can be added to an already declared camera. Camera behaviour changing
keywords are not allowed, as they are needed in an earlier stage for resolving the keyword order dependencies.

3.2 Atmospheric Effects

Atmospheric effects are a loosely-knit group of features that affect the background and/or the atmosphere
enclosing the scene. POV-Ray includes the ability to render a number of atmospheric effects, such as fog,
haze, mist, rainbows and skies.

3.2.1 Atmospheric Media

Atmospheric effects such as fog, dust, haze, or visible gas may be simulatec iy statement specified in

the scene but not attached to any object. All areas not inside a non-hollow object in the entire scene. A very
simple approach to add fog to a scene is explained in section "Fog” however this kind of fog does not interact
with any light sources likeedia does. It will not show light beams or other effects and is therefore not very
realistic.

The atmosphere media effect overcomes some of the fog’s limitations by calculating the interaction between
light and the particles in the atmosphere using volume sampling. Thus shafts of light beams will become visible
and objects will cast shadows onto smoke or fog.

3.2 Atmospheric Effects 97

Note: POV-Ray cannot sample media along an infinitely long ray. The ray must be finite in order to be possible
to sample. This means that sampling media is only possible for rays that hit an object. So no atmospheric media
will show up againsbackground O sky_sphere.

Another way of being able to sample media is using spotlights because also in this case the ray is not infinite (it
is sampled only inside the spotlight cone).

With spotlights you will be able to create the best results because their cone of light will become visible.
Pointlights can be used to create effects like street lights in fog. Lights can be made to not interact with the
atmosphere by addingdia_interaction off to the light source. They can be used to increase the overall light
level of the scene to make it look more realistic.

Complete details onedia are given in the section "Media”. Earlier versions of POV-Ray usedtabsphere
statement for atmospheric effects but that system was incompatible with the old shjectystem. So
atmosphere has been eliminated and replaced with a simpler and more powerful media feature. The user now
only has to learn onenedia system for either atmospheric or object use.

If you only want media effects in a particular area, you should use object media rather than only relying upon the
media pattern. In general it will be faster and more accurate because it only calculates inside the constraining
object.

Note: the atmosphere feature will not work if the camera is inside a non-hollow object (see section "Empty and
Solid Objects” for a detailed explanation).

3.2.2 Background

A background color can be specified if desired. Any ray that does not hit an object will be colored with this
color. The default background is black. The syntaxdarkground is:

BACKGROUND :
background {COLOR}

3.2.3 Fog

If it is not necessary for light beams to interact with atmospheric media,fthanay be a faster way to simulate
haze or fog. This feature artificially adds color to every pixel based on the distance the ray has traveled. The
syntax for fog is:

FOG:
fog { [FOG_IDENTIFIER] [FOG_ITEMS...] }
FOG_ITEMS:
fog_type Fog_Type | distance Distance | COLOR |
turbulence <Turbulence> | turb_depth Turb_Depth |
omega Omega | lambda Lambda | octaves Octaves |
fog_offset Fog_Offset | fog_alt Fog_Alt |
up <Fog_Up> | TRANSFORMATION

Fog default values:

lambda 2.
fog_type HA
fog_offset : 0.

0

0

98 Scene Settings

fog_alt : 0.0
octaves 6
omega : 0.5

turbulence : <0,0,0>
turb_depth : 0.5
up : <0,1,0>

Currently there are two fog types, the defatdy_type 1 is a constant fog anebg_type 2 is ground fog. The
constant fog has a constant density everywhere while the ground fog has a constant density for all heights below
a given point on the up axis and thins out along this axis.

The color of a pixel with an intersection depths calculated by
PIXEL.COLOR = exp(-d/D) * OBJECICOLOR + (1-exp(-d/D)) * FOGCOLOR

whereD is the specified value of the required fogstance keyword. At depth O the final color is the object’s
color. If the intersection depth equals the fog distance the final color consists of 64% of the object’s color and
36% of the fog’s color.

Note: for this equation, a distance of zero is undefined. In practice, povray will treat this value as "fog is off”.
To use an extremely thick fog, use a small nonzero number such as 1e-6 or 1e-10.

For ground fog, the height below which the fog has constant density is specified bygtherset keyword.

The fog_alt keyword is used to specify the rate by which the fog fades away. The default values for both are
0.0 so be sure to specify them if ground fog is used. At an altitudeFofj_Offset+Fog _Alt the fog has a
density of 25%. The density of the fog at height less than or equRlddDffsetis 1.0 and for height larger than
thanFog Offsetis calculated by:

1/(1 + (y - Fog _Offset) / Fog _Alt) "2

The total density along a ray is calculated by integrating from the height of the starting point to the height of the
end point.

The optionalup vector specifies a direction pointing up, generally the same as the camera’s up vector. All
calculations done during the ground fog evaluation are done relative to this up vector, i. e. the actual heights
are calculated along this vector. The up vector can also be modified using any of the known transformations
described in "Transformations”. Though it may not be a good idea to scale the up vector - the results are hardly
predictable - it is quite useful to be able to rotate it. You should also note that translations do not affect the up
direction (and thus do not affect the fog).

The required fog color has three purposes. First it defines the color to be used in blending the fog and the
background. Second it is used to specify a translucency threshold. By using a transmittance larger than zero
one can make sure that at least that amount of light will be seen through the fog. With a transmittance of 0.3
you will see at least 30% of the background. Third it can be used to make a filtering fog. With a filter value
larger than zero the amount of background light given by the filter value will be multiplied with the fog color.

A filter value of 0.7 will lead to a fog that filters 70% of the background light and leaves 30% unfiltered.

Fogs may be layered. That is, you can apply as many layers of fog as you like. Generally this is most effective
if each layer is a ground fog of different color, altitude and with different turbulence values. To use multiple
layers of fogs, just add all of them to the scene.

You may optionally stir up the fog by adding turbulence. Ehebulence keyword may be followed by a float
or vector to specify an amount of turbulence to be used.chbgs, 1ambda and octaves turbulence parameters
may also be specified. See section "Pattern Modifiers” for details on all of these turbulence parameters.

3.2 Atmospheric Effects 99

Additionally the fog turbulence may be scaled along the direction of the viewing ray using:th&iepth
amount. Typical values are from 0.0 to 1.0 or more. The default value is 0.5 but any float value may be used.

Note: the fog feature will not work if the camera is inside a non-hollow object (see section "Empty and Solid
Objects” for a detailed explanation).

3.2.4 Sky Sphere

The sky sphere is used create a realistic sky background without the need of an additional sphere to simulate
the sky. Its syntax is:

SKY_SPHERE:

sky_sphere { [SKY_SPHERE_IDENTIFIER] [SKY_SPHERE_ITEMS...] }
SKY_SPHERE_ITEM:

PIGMENT | TRANSFORMATION

The sky sphere can contain several pigment layers with the last pigment being at the top, i. e. itis evaluated last,
and the first pigment being at the bottom, i. e. it is evaluated first. If the upper layers contain filtering and/or
transmitting components lower layers will shine through. If not lower layers will be invisible.

The sky sphere is calculated by using the direction vector as the parameter for evaluating the pigment patterns.
This leads to results independent from the view point which pretty good models a real sky where the distance
to the sky is much larger than the distances between visible objects.

If you want to add a nice color blend to your background you can easily do this by using the following example.

sky_sphere {
pigment {
gradient y
color_map {
[0.5 color CornflowerBlue]
[1.0 color MidnightBlue]
}
scale 2
translate -1
}
}

This gives a soft blend frombrnflowerBlue at the horizon taiidnightBlue at the zenith. The scale and translate
operations are used to map the direction vector values, which lie in the rangecfiml, -1> to <1, 1, 1>,
onto the range fror0, 0, 0> to <1, 1, I>. Thus a repetition of the color blend is avoided for parts of the sky
below the horizon.

In order to easily animate a sky sphere you can transform it using the usual transformations described in
"Transformations”. Though it may not be a good idea to translate or scale a sky sphere - the results are hardly
predictable - it is quite useful to be able to rotate it. In an animation the color blendings of the sky can be made
to follow the rising sun for example.

Note: only one sky sphere can be used in any scene. It also will not work as you might expect if you use camera
types like the orthographic or cylindrical camera. The orthographic camera uses parallel rays and thus you will
only see a very small part of the sky sphere (you will get one color skies in most cases). Reflections in curved
surface will work though, e. g. you will clearly see the sky in a mirrored ball.

100 Scene Settings

3.2.5 Rainbow

Rainbows are implemented using fog-like, circular arcs. Their syntax is:

RAINBOW:
rainbow { [RAINBOW_IDENTIFIER] [RAINBOW_ITEMS...] }
RAINBOW_ITEM:
direction <Dir> | angle Angle | width width |
distance Distance | COLOR_MAP | jitter Jitter | up <Up> |
arc_angle Arc_Angle | falloff_angle Falloff_Angle

Rainbow default values:

arc_angle : 180.0
falloff_angle : 180.0
jitter :

up

The requirediirection vector determines the direction of the (virtual) light that is responsible for the rainbow.
Ideally this is an infinitely far away light source like the sun that emits parallel light rays. The position and
size of the rainbow are specified by the requiteglie andwidth keywords. To understand how they work you
should first know how the rainbow is calculated.

For each ray the angle between the rainbow’s direction vector and the ray’s direction vector is calculated. If
this angle lies in the interval fromAngle-width/2 to Angle+Width/2 the rainbow is hit by the ray. The

color is then determined by using the angle as an index into the rainbow’sroalpr After the color has been
determined it will be mixed with the background color in the same way like it is done for fogs.

Thus the angle and width parameters determine the angles under which the rainbow will be seen. The optional
jitter keyword can be used to add random noise to the index. This adds some irregularity to the rainbow that
makes it look more realistic.

The requirediistance keyword is the same like the one used with fogs. Since the rainbow is a fog-like effect
it is possible that the rainbow is noticeable on objects. If this effect is not wanted it can be avoided by using a
large distance value. By default a sufficiently large value is used to make sure that this effect does not occur.

Thecolor map Statement is used to assign a color map that will be mapped onto the rainbow. To be able to create
realistic rainbows it is important to know that the index into the color map increases with the angle between the
ray’s and rainbow’s direction vector. The index is zero at the innermost ring and one at the outermost ring. The
filter and transmittance values of the colors in the color map have the same meaning as the ones used with fogs
(see section "Fog”).

The default rainbow is a 360 degree arc that looks like a circle. This is no problem as long as you have a ground
plane that hides the lower, non-visible part of the rainbow. If this is not the case or if you do not want the full
arc to be visible you can use the optional keyworgs arc_angle andfalloff_angle to specify a smaller arc.

Thearc_angle keyword determines the size of the arc in degrees (from 0 to 360 degrees). A value smaller than
360 degrees results in an arc that abruptly vanishes. Since this does not look nice you candisethengle
keyword to specify a region in which the rainbow will smoothly blend into the background making it vanish
softly. The falloff angle has to be smaller or equal to the arc angle.

The up keyword determines were the zero angle position is. By changing this vector you can rotate the rainbow
about its direction. You should note that the arc goes frAra_Angle/2to +Arc_Angle/2 The soft regions go
from -Arc_Angle/2to -Falloff_Angle/2and from+Falloff _Angle/2to +Arc_Angle/2

3.3 Global Settings 101

The following example generates a 120 degrees rainbow arc that has a falloff region of 30 degrees at both ends:

rainbow {
direction <0, 0, 1>
angle 42.5
width 5
distance 1000
jitter 0.01
color_map { Rainbow_Color_Map }
up <0, 1, 0>
arc_angle 120
falloff_angle 30

}

It is possible to use any number of rainbows and to combine them with other atmospheric effects.

3.3 Global Settings

The global_settings Statement is a catch-all statement that gathers together a number of global parameters.

The statement may appear anywhere in a scene as long as it is not inside any other statement. You may have

multiple global_settings Statements in a scene. Whatever values were specified in thg dast_settings
statement override any previous settings.

Note: some items which were language directives in earlier versions of POV-Ray have been moved inside the
global_settings Statement so that it is more obvious to the user that their effect is global. The old syntax is
permitted but generates a warning.

The new syntax is:

GLOBAL_SETTINGS:
global_settings { [GLOBAL_SETTINGS_ITEMS...] }
GLOBAL_SETTINGS_ITEM:
adc_bailout Value | ambient_light COLOR | assumed_gamma Value |
hf_gray_16 [Bool] | irid_wavelength COLOR |
charset GLOBAL_CHARSET | max_intersections Number |
max_trace_level Number | number_of waves Number |
noise_generator Number | radiosity { RADIOSITY_ITEMS... } |
photon { PHOTON_ITEMS... }
GLOBAL_CHARSET:
ascii | utf8 | sys

Global setting default values:

charset : ascii

adc_bailout : 1/255

ambient_light : <1,1,1>
assumed_gamma : No gamma correction
hf_gray_16 : off

irid_wavelength : <0.25,0.18,0.14>
max_trace_level 5

max_intersections : 64

number_of_waves . 10

noise_generator 2

102 Scene Settings

Radiosity:

adc_bailout : 0.01
always_sample : on
brightness : 1.0

count 5 (max = 1600)
error_bound
gray_threshold
low_error_factor : 0.5

1
¢ 3
: 1.8
0.0

max_sample : non-positive value
minimum_reuse . 0.015
nearest_count 5 (max = 20)
normal : off

pretrace_start . 0.08

pretrace_end : 0.04
recursion_limit : 3

Each item is optional and may appear in any order. If an item is specified more than once, the last setting
overrides previous values. Details on each item are given in the following sections.

3.3.1 ADCBailout

In scenes with many reflective and transparent surfaces, POV-Ray can get bogged down tracing multiple reflec-
tions and refractions that contribute very little to the color of a particular pixel. The program uses a system called
Adaptive Depth ContrqlADC) to stop computing additional reflected or refracted rays when their contribution

is insignificant.

You may use the global settingic bailout keyword followed by float value to specify the point at which a
ray’s contribution is considered insignificant. For example:

global_settings { adc_bailout 0.01 }

The default value is 1/255, or approximately 0.0039, since a change smaller than that could not be visible in a
24 bitimage. Generally this setting is perfectly adequate and should be left alone. Setting1out to 0 will
disable ADC, relying completely ofex_trace_level to set an upper limit on the number of rays spawned.

See section "MaxiracelLevel” for details on how ADC anéax_trace_level interact.

3.3.2 AmbientLight

Ambient light is used to simulate the effect of inter-diffuse reflection that is responsible for lighting areas that
partially or completely lie in shadow. POV-Ray provides theient_1ight keyword to let you easily change

the brightness of the ambient lighting without changing every ambient value in all finish statements. It also lets
you create interesting effects by changing the color of the ambient light source. The syntax is:

global_settings { ambient_light COLOR }

The default is a white ambient light source setat <1,1,1>. Only the rgb components are used. The actual
ambient used isAmbient = FinishAmbient * GlobalAmbient

See section "Ambient” for more information.

3.3 Global Settings 103

3.3.3 AssumedGamma

Many people may have noticed at one time or another that some images are too bright or dim when displayed
on their system. As a rule, Macintosh users find that images created on a PC are too bright, while PC users find
that images created on a Macintosh are too dim.

Theassumed_gamma global setting works in conjunction with thesplay_camma INI setting (see section "Display
Hardware Settings”) to ensure that scene files render the same way across the wide variety of hardware platforms
that POV-Ray is used on. The assumed gamma setting is used in a scene file by adding

global_settings { assumed_gamma Value }

where the assumed gamma value is the correction factor to be applied before the pixels are displayed and/or
saved to disk. For scenes created in older versions of POV-Ray, the assumed gamma value will be the same as
the display gamma value of the system the scene was created on. For PC systems, the most common display
gammais 2.2, while for scenes created on Macintosh systems should use a scene gamma of 1.8. Another gamma
value that sometimes occurs in scenes is 1.0.

Scenes that do not have asumed_gamma global setting will not have any gamma correction performed on them,

for compatibility reasons. If you are creating new scenes or rendering old scenes, it is strongly recommended
that you put in an appropriatesumed_gamma global setting. For new scenes, you should use an assumed gamma
value of 1.0 as this models how light appears in the real world more realistically.

Before we go to the following sections, that explain more thoroughly what gamma is and why it is important, a
short overview of how gamma works in POV-Ray:

NO assumed_gamma iN scene :
No gamma correction is applied to output file.

assumed_gamma 1 :
Gammapisplay_Gamma iS applied to output file.
If Display_Gamma iS not specified, 2.2 is used.

assumed_gamma G .
Gammapisplay_Gamma/G iS applied to output file.
If Display_Gamma iS not specified, 2.2/G is used.

Recommended value fassumed_gamma is 1.

Monitor Gamma

The differences in how images are displayed is a result of how a computer actually takes an image and displays
it on the monitor. In the process of rendering an image and displaying it on the screen, several gamma values
are important, including the POV scene file or image file gamma and the monitor gamma.

Most image files generated by POV-Ray store numbers in the range from 0 to 255 for each of the red, green and
blue components of a pixel. These numbers represent the intensity of each color component, with 0 being black
and 255 being the brightest color (either 100% red, 100% green or 100% blue). When an image is displayed, the
graphics card converts each color component into a voltage which is sent to the monitor to light up the red, green
and blue phosphors on the screen. The voltage is usually proportional to the value of each color component.

Gamma becomes important when displaying intensities that are not the maximum or minimum possible values.
For example, 127 should represent 50% of the maximum intensity for pixels stored as numbers between 0 and

104 Scene Settings

255. On systems that do not do gamma correction, 127 will be converted to 50% of the maximum voltage,
but because of the way the phosphors and the electron guns in a monitor work, this may be only 22% of the
maximum color intensity on a monitor with a gamma of 2.2. To display a pixel which is 50% of the maximum
intensity on this monitor, we would need a voltage of 73% of the maximum voltage, which translates to storing
a pixel value of 186.

The relationship between the input pixel value and the displayed intensity can be approximated by an expo-
nential function obright = ibright ~ display _gammawhere obright is the output intensity and ibright

is the input pixel intensity. Both values are in the range from 0 to 1 (0% to 100%). Most monitors have a
fixed gamma value in the range from 1.8 to 2.6. Using the above formula with digptayna values greater

than 1 means that the output brightness will be less than the input brightness. In order to have the output and
input brightness be equal an overall system gamma of 1 is needed. To do this, we need to gamma correct the
input brightness in the same manner as above but with a gamma value of 1/djaplaya before it is sent to

the monitor. To correct for a display gamma of 2.2, this pre-monitor gamma correction uses a gamma value of
1.0/2.2 or approximately 0.45.

How the pre-monitor gamma correction is done depends on what hardware and software is being used. On
Macintosh systems, the operating system has taken it upon itself to insulate applications from the differences in
display hardware. Through a gamma control panel the user may be able to set the actual monitor gamma and
Mac will then convert all pixel intensities so that the monitor will appear to have the specified gamma value. On
Silicon Graphics machines, the display adapter has built-in gamma correction calibrated to the monitor which
gives the desired overall gamma (the default is 1.7). Unfortunately, on PCs and most UNIX systems, it is up to
the application to do any gamma correction needed.

Image File Gamma

Since most PC and UNIX applications and image file formats do not understand display gamma, they do not do
anything to correct for it. As a result, users creating images on these systems adjust the image in such a way
that it has the correct brightness when displayed. This means that the data values stored in the files are made
brighter to compensate for the darkening effect of the monitor. In essence, the 0.45 gamma correction is built in
to the image files created and stored on these systems. When these files are displayed on a Macintosh system,
the gamma correction built in to the file, in addition to gamma correction built into MacOS, means that the
image will be too bright. Similarly, files that look correct on Macintosh or SGI systems because of the built-in
gamma correction will be too dark when displayed on a PC.

The PNG format files generated by POV-Ray overcome the problem of too much or not enough gamma correc-
tion by storing the image file gamma (which is 1.0/dispmma) inside the PNG file when it is generated by
POV-Ray. When the PNG file is later displayed by a program that has been set up correctly, it uses this gamma
value as well as the current display gamma to correct for the potentially different display gamma used when
originally creating the image.

Unfortunately, of all the image file formats POV-Ray supports, PNG is the only one that has any gamma
correction features and is therefore preferred for images that will be displayed on a wide variety of platforms.

Scene File Gamma

The image file gamma problem itself is just a result of how scenes themselves are generated in POV-Ray. When
you start out with a new scene and are placing light sources and adjusting surface textures and colors, you
generally make several attempts before the lighting is how you like it. How you choose these settings depends

3.3 Global Settings 105

upon the preview image or the image file stored to disk, which in turn is dependent upon the overall gamma of
the display hardware being used.

This means that as the artist you are doing gamma correction in the POV-Ray scene file for your particular
hardware. This scene file will generate an image file that is also gamma corrected for your hardware and will
display correctly on systems similar to your own. However, when this scene is rendered on another platform,
it may be too bright or too dim, regardless of the output file format used. Rather than have you change all the
scene files to have a single fixed gamma value (heaven forbid!), POV-Ray allows you to specify in the scene file
the display gamma of the system that the scene was created on.

The assumed_gamma global setting, in conjunction with theisplay_Gamma INI setting lets POV-Ray know how

to do gamma correction on a given scene so that the preview and output image files will appear the correct
brightness on any system. Since the gamma correction is done internally to POV-Ray, it will produce output

image files that are the correct brightness for the current display, regardless of what output format is used. As
well, since the gamma correction is performed in the high-precision data format that POV-Ray uses internally,

it produces better results than gamma correction done after the file is written to disk.

Although you may not notice any difference in the output on your system with and withoutafed_ganma
setting, the assumed gamma is important if the scene is ever rendered on another platform.

3.3.4 HFGray_16

Thenf_gray_16 setting is useful when using POV-Ray to generate heightfields for use in other POV-Ray scenes.
The syntax is... globadettings{ hf_gray.16 [Bool] }

The boolean value turns the option on or off. If the keyword is specified without the boolean value then the
option is turned on. If hf_gray_16 is not specified in anylobal_settings statement in the entire scene then
the default is off.

When hf_gray_16 is on, the output file will be in the form of a heightfield, with the height at any point being
dependent on the brightness of the pixel. The brightness of a pixel is calculated in the same way that color
images are converted to grayscale imagesight = 0.3 * red + 0.59 * green + 0.11 * blue

Setting the hf_gray_16 option will cause the preview display, if used, to be grayscale rather than color. This
is to allow you to see how the heightfield will look because some file formats store heightfields in a way that
is difficult to understand afterwards. See section "Height Field” for a description of how POV-Ray heightfields
are stored for each file type.

3.3.5 Irid_Wavelength

Iridescence calculations depend upon the dominant wavelengths of the primary colors of red, green and blue
light. You may adjust the values using the global settingi_wavelength as follows...

global_settings { irid_wavelength COLOR }

The default value isgb <0.25,0.18,0.14> and any filter or transmit values are ignored. These values are
proportional to the wavelength of light but they represent no real world units.

In general, the default values should prove adequate but we provide this option as a means to experiment with
other values.

106 Scene Settings

3.3.6 Charset

This allows you to specify the assumed character set of all text strings. If you speeify only standard

ASCII character codes in the range from 0 to 127 are valid. You can easily find a table of ASCII characters
on the internet. The optioix£8 is a special Unicode text encoding and it allows you to specify characters of
nearly all languages in use today. We suggest you use a text editor with the capability to export text to UTF8
to generate input files. You can find more information, including tables with codes of valid characters on the
Unicode website The last possible option is to use a system specific character set. For details abgut the
character set option refer to the platform specific documentation.

3.3.7 MaxTrace_Level

In scenes with many reflective and transparent surfaces POV-Ray can get bogged down tracing multiple reflec-
tions and refractions that contribute very little to the color of a particular pixel. The global settingrace_-
level defines the integer maximum number of recursive levels that POV-Ray will trace a ray.

global_settings { max_trace_level Level }

This is used when a ray is reflected or is passing through a transparent object and when shadow rays are cast.
When a ray hits a reflective surface, it spawns another ray to see what that point reflects. That is trace level one.
If it hits another reflective surface another ray is spawned and it goes to trace level two. The maximum level by
default is five.

One speed enhancement added to POV-Ray in version Bdigtive Depth ContrafADC). Each time a new

ray is spawned as a result of reflection or refraction its contribution to the overall color of the pixel is reduced
by the amount of reflection or the filter value of the refractive surface. At some point this contribution can be
considered to be insignificant and there is no point in tracing any more rays. Adaptive depth control is what
tracks this contribution and makes the decision of when to bail out. On scenes that use a lot of partially reflective
or refractive surfaces this can result in a considerable reduction in the number of rays fired and makes it safer to
use much highermax_trace_level values.

This reduction in color contribution is a result of scaling by the reflection amount and/or the filter values of each
surface, so a perfect mirror or perfectly clear surface will not be optimizable by ADC. You can see the results
of ADC by watching the rRays saved andgighest Trace Level displays on the statistics screen.

The point at which a ray’s contribution is considered insignificant is controlled bydheailout value. The

default is 1/255 or approximately 0.0039 since a change smaller than that could not be visible in a 24 bit image.
Generally this setting is perfectly adequate and should be left alone. Settingi1out to O will disable ADC,

relying completely onmax_trace_level to set an upper limit on the number of rays spawned.

If max_trace_level is reached before a non-reflecting surface is found and if ADC has not allowed an early exit
from the ray tree the color is returned as black. Raisetrace_level if you see black areas in a reflective
surface where there should be a color.

The other symptom you could see is with transparent objects. For instance, try making a union of concentric
spheres with a clear texture on them. Make ten of them in the union with radius’s from 1 to 10 and render the
scene. The image will show the first few spheres correctly, then black. This is because a new level is used every
time you pass through a transparent surface. Rais@race_level to fix this problem.

Lhttp://www.unicode.org/

3.3 Global Settings 107

Note: that raisingmax_trace_level will use more memory and time and it could cause the program to crash
with a stack overflow error, although ADC will alleviate this to a large extent.

Values formax_trace_level can be set up to a maximum of 256. If there isma@_trace_level set and during
rendering the default value is reached, a warning is issued.

3.3.8 MaxlIntersections

POV-Ray uses a set of internal stacks to collect ray/object intersection points. The usual maximum number of
entries in thesé Stackss 64. Complex scenes may cause these stacks to overflow. POV-Ray does not stop but
it may incorrectly render your scene. When POV-Ray finishes rendering, a number of statistics are displayed.
If you seer-stack overflows reported in the statistics you should increase the stack size. Add a global setting
to your scene as follows:

global_settings { max_intersections Integer }

If the 1-stack overflows remain increase this value until they stop.

3.3.9 NumberOf_Waves

The waves andripples patterns are generated by summing a series of waves, each with a slightly different
center and size. By default, ten waves are summed but this amount can be globally controlled by changing the
number_of_waves Setting.

global_settings { number_of_waves Integer }

Changing this value affects both waves and ripples alike on all patterns in the scene.

3.3.10 Noisegenerator

There are three noise generators implemented.
* noise_generator 1 the noise thatwas used in P(Ray 3.1

* noise_generator 2 ‘range corrected’ version of the old noise, it does not show the plateaus seen with
noise_generator 1

* noise_generator 3 generates Perlin noise
The default imoise_generator 2

Note: The noisegenerators can also be used within the pigment/normal/etc. statement.

3.3.11 Radiosity Basics

Important notice: The radiosity features in POV-Ray are somewhat experimental. There is a high probability
that the design and implementation of these features will be changed in future versions. We cannot guarantee
that scenes using these features in this version will render identically in future releases or that full backwards
compatibility of language syntax can be maintained.

108 Scene Settings

Radiosity is an extra calculation that more realistically computes the diffuse interreflection of light. This diffuse
interreflection can be seen if you place a white chair in a room full of blue carpet, blue walls and blue curtains.
The chair will pick up a blue tint from light reflecting off of other parts of the room. Also notice that the
shadowed areas of your surroundings are not totally dark even if no light source shines directly on the surface.
Diffuse light reflecting off of other objects fills in the shadows. Typically ray-tracing uses a trick caftédent

light to simulate such effects but it is not very accurate.

Radiosity calculations are only made whefraiosity{} block is used inside thglobal_settings{} block.

The following sections describes how radiosity works, how to control it with various global settings and tips on
trading quality vs. speed.

3.4 Radiosity

3.4.1 How Radiosity Works

The problem of ray-tracing is to figure out what the light level is at each point that you can see in a scene.
Traditionally, in ray tracing, this is broken into the sum of these components:

Diffuse
the effect that makes the side of things facing the light brighter;

Specular
the effect that makes shiny things have dings or sparkles on them;

Reflection
the effect that mirrors give; and

Ambient
the general all-over light level that any scene has, which keeps things in shadow from being pure
black.

POV-Ray'’s radiosity system, based on a method by Greg Ward, provides a way to replace the last term - the
constant ambient light value - with a light level which is based on what surfaces are nearby and how bright in
turn they are.

The first thing you might notice about this definition is that it is circular: the brightness and color of everything

is dependent on everything else and vice versa. This is true in real life but in the world of ray-tracing, we can
make an approximation. The approximation that is used is: the objects you are looking at havectheir

values calculated for you by checking the other objects nearby. When those objects are checked during this
process, however, theiti ffuse term is used. The brightness of radiosity in POV-Ray is based on two things:

1. the amount of light "gathered”
2. the 'diffuse’ property of the surface finish

An object can have both radiosity and an ambient term. However, it is suggested that if you use radiosity in
a scene, you either setibient _1ight t0 0 in global_settings, OF US€ambient 0 in each object’s finish. This
lighting model is much more realistic, and POV-Ray will not try to adjust the overall brightness of the radiosity
to match the ambient level specified by the user.

3.4 Radiosity 109

How does POV-Ray calculate the ambient term for each point? By sending out more rays, in many different
directions, and averaging the results. A typical point might use 200 or more rays to calculate its ambient light
level correctly.

Now this sounds like it would make the ray-tracer 200 times slower. This is true, except that the software
takes advantage of the fact that ambient light levels change quite slowly (remember, shadows are calculated
separately, so sharp shadow edges are not a problem). Therefore, these extra rays are sentroxe onéy

while (about 1 time in 50), then these calculated values are saved and reused for nearby pixels in the image
when possible.

This process of saving and reusing values is what causes the need for a variety of tuning parameters, so you can
get the scene to look just the way you want.

3.4.2 Adjusting Radiosity

As described earlier, radiosity is turned on by usingth&osity{} block in global_setting. Radiosity has
many parameters that are specified as follows:

global_settings { radiosity { [RADIOSITY_ITEMS...] } }
RADIOSITY_ITEMS:
adc_bailout Float | always_sample Bool | brightness Float |
count Integer | error_bound Float | gray_threshold Float |
load_file Filename | low_error_factor Float | max_sample Float |
media Bool | minimum_reuse Float | nearest_count Integer |
normal Bool | pretrace_end Float | pretrace_start Float |
recursion_limit Integer | save_file Filename

Each item is optional and may appear in any order. If an item is specified more than once the last setting
overrides previous values. Details on each item is given in the following sections.

Note: Considerable changes have been made to the way radiosity works in POV-Ray 3.5 compared to POV-Ray
3.1. Old scene will not render to the same result, if they render at all. It is not possible to usedhen
directive to get backward compatibility for radiosity.

radiosity adc_bailout

You can specify an adbailout for radiosity rays. Usedc bailout = 0.01 / brightest_ambient_object for
good results. Default is 0.01.

always sample
You can force POV-Ray to only use the data from the pretrace step and not gather any new samples during the

final radiosity pass. This may reduce splotchiness. To do this; ws@s_sample off, by default it ison. It can
also be usefully when reusing previously saved radiosity data.

brightness

Thebrightness keyword specifies a float value that is the degree to which objects are brightened before being
returned upwards to the rest of the system. The default value is 1.0. In cases where you would raise the

110 Scene Settings

global_settings{ambient_light value} to increase the over all brightness in a non-radiosity scene, you can
usebrightness in a radiosity scene.

count

The integer number of rays that are sent out whenever a new radiosity value has to be calculated is given by
count. A value of 35 is the default, the maximum is 1600. When this value is too low, the light level will tend

to look a little bit blotchy, as if the surfaces you are looking at were slightly warped. If this is not important to
your scene (as in the case that you have a bump map or if you have a strong texture) then by all means use a
lower number.

error _bound

Theerror_bound float value is one of the two main speed/quality tuning values (the other is of course the number
of rays shot). In an ideal world, this would be the y value needed. It is intended to mean the fraction of error
tolerated. For example, if it were set to 1 the algorithm would not calculate a new value until the error on the
last one was estimated at as high as 100%. Ignoring the error introduced by rotation for the moment, on flat
surfaces this is equal to the fraction of the reuse distance, which in turn is the distance to the closest item hit. If
you have an old sample on the floor 10 inches from a wall, an error bound of 0.5 will get you a new sample at a
distance of about 5 inches from the wall.

The default value of 1.8 is good for a smooth general lighting effect. Using lower values is more accurate, but it
will strongly increase the danger of artifacts and therefore require highet. You can use values even lower
than 0.1 but both render time and memory use can become extremely high then.

gray_threshold

Diffusely interreflected light is a function of the objects around the point in question. Since this is recursively
defined to millions of levels of recursion, in any real life scene, every point is illuminated at least in part by
every other part of the scene. Since we cannot afford to compute this, if we only do one bounce, the calculated
ambient light is very strongly affected by the colors of the objects near it. This is known as color bleed and it
really happens but not as much as this calculation method would have you believerafh@reshold float

value grays it down a little, to make your scene more believable. A value of .6 means to calculate the ambient
value as 60% of the equivalent gray value calculated, plus 40% of the actual value calculated. At 0%, this
feature does nothing. At 100%, you always get white/gray ambient light, with no hue.

Note: this does not change the lightness/darkness, only the strength of hue/grayness (in HLS terms, it changes
S only). The default value is 0.0

low_error _factor

If you calculate just enough samples, but no more, you will get an image which has slightly blotchy lighting.
What you want is just a few extra interspersed, so that the blending will be nice and smooth. The solution to this
is the mosaic preview, controlled byet race: it goes over the image one or more times beforehand, calculating
radiosity values. To ensure that you get a few extra, the radiosity algorithm lowers the error bound during the
pre-final passes, then sets it back just before the final pass.idtherror_factor is a float tuning value which

sets the amount that the error bound is dropped during the preliminary image passes. If your low error factor is

3.4 Radiosity 111

0.8 and your error bound is set to 0.4 it will really use an error bound of 0.32 during the first passes and 0.4 on
the final pass. The default value is 0.5.

max_sample

Sometimes there can be problems with splotchiness that is caused by objects that are very bright. This can be
sometimes avoided by using thex_sample keyword. max_sample takes a float parameter which specifies the
brightest that any gathered sample is allowed to be. Any samples brighter than this will have their brightness
decreased (without affecting color). Specifying a non-positive valuedarample will allow any brightness

of samples (which is the default).

Media and Radiosity

Radiosity estimation can be affected by media. To enable this featuresadd on to theradiosity{} block.
The default isof

minimum _reuse

The minimum effective radius ratio is set hynimum_reuse float value. This is the fraction of the screen width
which sets the minimum radius of reuse for each sample point (actually, it is the fraction of the distance from
the eye but the two are roughly equal). For example, if the value is 0.02, the radius of maximum reuse for every
sample is set to whatever ground distance corresponds to 2% of the width of the screen. Imagine you sent a ray
off to the horizon and it hits the ground at a distance of 100 miles from your eye point. The reuse distance for
that sample will be set to 2 miles. At a resolution of 300*400 this will correspond to (very roughly) 8 pixels.
The theory is that you do not want to calculate values for every pixel into every crevice everywhere in the scene,
it will take too long. This sets a minimum bound for the reuse. If this value is too low, (which it should be in
theory) rendering gets slow, and inside corners can get a little grainy. If it is set too high, you do not get the
natural darkening of illumination near inside edges, since it reuses. At values higher than 2% you start getting
more just plain errors, like reusing the illumination of the open table underneath the apple. Remember that this
is a unit less ratio. The default value is 0.015.

nearestcount

Thenearest_count integer value is the minimum number of old ambient values blended together to create a new
interpolated value. The total number blended will vary dependingroi-_bound. All previous values that fit
within the specified errabound will be used in the average.

It will always be the n geometrically closest reusable points that get used. If you go lower than 4, things can get
pretty patchy. This can be good for debugging, though. Must be no more than 20, since that is the size of the
array allocated. The default value is 5.

Normal and Radiosity

Radiosity estimation can be affected by normals. To enable this featureoa@d on to the radiosity{}
block. The defaultistt

112 Scene Settings

Pretrace

To control the radiosity pre-trace gathering step, use the keywoedsace_start andpretrace_end within the
radiosity{} block. Each of these is followed by a decimal value between 0.0 and 1.0 which specifies the size
of the blocks in the mosaic preview as a percentage of the image size. The defaults are .08 fae_start

and 0.04 fopretrace_end

recursion_limit

Therecursion_limit iS an integer value which determines how many recursion levels are used to calculate the
diffuse inter-reflection. The default value is 3, the upper limit is 20.

Save and load radiosity data

You can save the radiosity data usiegre_file "filename" and load the same data later usingd_file
"file_name". In general, it is not a good idea to save and load radiosity data if scene objects are moving. Even
if data are loaded, more samples may be taken during rendering (which produces a better approximation). You
can disable samples from being taken during the final rendering phase by specifying sample off.

3.4.3 Tips on Radiosity

Have a look at the "Radiosity Tutorial” in the "Advanced Tutorial” section, to get a feel for what the visual
result of changing radiosity parameters is.

If you want to see where your values are being calculated set radiasity down to about 20, set radiosity
nearest_count t0 1 and setray_threshold to 0. This will make everything maximally patchy, so you will be

able to see the borders between patches. There will have been a radiosity calculation at the center of most
patches. As a bonus, this is quick to run. You can then change:ther bound up and down to see how it
changes things. Likewise modify nimum_reuse.

One way to get extra smooth results: crank up the sample count (we have gone as high as 1300) and drop the
low_error_factor to something small like 0.6. Bump up theearest_count to 7 or 8. This will get better

values, and more of them, then interpolate among more of them on the last pass. This is not for people with a
lack of patience since it is like a squared function. If your blotchiness is only in certain corners or near certain
objects try tuning the error bound instead. Never drop it by more than a little at a time, since the run time will
get very long.

Sometimes extra samples are taken during the final rendering pass. These newer samples can cause disconti-
nuities in the radiosity in some scenes. To decrease these artefacts, use a_pratrat8.04 (or even 0.02 if

you are really patient and picky). This will cause the majority of the samples to be taken during the preview
passes, and decrease the artefacts created during the final rendering pass. You can force POV-Ray to only use
the data from the pretrace step and not gather any new samples during the final radiosity pass. To do this, use
"always sample no” within the radiosity block inside globsettings.

If your scene uses ambient objects (especially small ambient objects) as light sources, you should probably use
a higher count (100-150 and higher). For such scenes, anlestord of 1.0 is usually good. Higher causes too
much error, but lower causes very slow rendering. And it is important to adayiailbuit.

Chapter 4

Objects

Objects are the building blocks of your scene. There are a lot of different types of objects supported by POV-
Ray. In the sections which follows, we describe "Finite Solid Primitives”, "Finite Patch Primitives”, "Infinite
Solid Primitives”, "Isosurface Object”, "Parametric Object”, and "Light Sources”. These primitive shapes may
be combined into complex shapes using "Constructive Solid Geometry” (also known as CSG).

The basic syntax of an object is a keyword describing its type, some floats, vectors or other parameters which
further define its location and/or shape and some optional object modifiers such as texture, texerier
pigment, normal, finish, interior, bounding, clipping or transformations. Specifically the syntax is:

OBJECT:
FINITE_SOLID_OBJECT | FINITE_PATCH_OBJECT |
INFINITE_SOLID_OBJECT | ISOSURFACE_OBJECT | PARAMETRIC_OBJECT |
CSG_OBJECT | LIGHT_SOURCE |
object { OBJECT_IDENTIFIER [OBJECT_MODIFIERS...] }

FINITE_SOLID_OBJECT:
BLOB | BOX | CONE | CYLINDER | HEIGHT_FIELD | JULIA FRACTAL |
LATHE | PRISM | SPHERE | SPHERESWEEP | SUPERELLIPSOID | SOR |
TEXT | TORUS

FINITE_PATCH_OBJECT:
BICUBIC_PATCH | DISC | MESH | MESH2 | POLYGON | TRIANGLE |
SMOOTH_TRIANGLE

INFINITE_SOLID_OBJECT:
PLANE | POLY | CUBIC | QUARTIC | QUADRIC

ISOSURFACE_OBJECT:

ISOSURFACE

PARAMETRIC_OBJECT:

PARAMETRIC

CSG_OBJECT:
UNION | INTERSECTION | DIFFERENCE | MERGE

Object identifiers may be declared to make scene files more readable and to parameterize scenes so that changing
a single declaration changes many values. An identifier is declared as follows.

OBJECT_DECLARATION:
#declare IDENTIFIER = OBJECT |
#local IDENTIFIER = OBJECT

114 Objects

WherelIDENTIFIERIs the name of the identifier up to 40 characters long@BJECTis any valid object. To
invoke an object identifier, you wrap it in apject{...} statement. You use theject statement regardless
of what type of object it originally was. Although early versions of POV-Ray required thig:ct wrapper all
of the time, now it is only used wittOBJECTIDENTIFIERS

Object modifiers are covered in detail later. However here is a brief overview.

The texture describes the surface properties of the object. Complete details are in "Textures”. Textures are
combinations of pigments, normals, and finishes. In the section "Pigment” you will learn how to specify the
color or pattern of colors inherent in the material. In "Normal” we describe a method of simulating various
patterns of bumps, dents, ripples or waves by modifying the surface normal vector. The section on "Finish”
describes the reflective properties of the surface. The "Interior” is a feature introduced in POV-Ray 3.1. It
contains information about the interior of the object which was formerly contained in the finish and halo parts
of a texture. Interior items are no longer part of the texture. Instead, they attach directly to the objects. The
halo feature has been discontinued and replaced with a new feature called "Media” which replaces both halo
and atmosphere.

Bounding shapes are finite, invisible shapes which wrap around complex, slow rendering shapes in order to
speed up rendering time. Clipping shapes are used to cut away parts of shapes to expose a hollow interior.
Transformations tell the ray-tracer how to move, size or rotate the shape and/or the texture in the scene.

4.1 Finite Solid Primitives

There are fourteen different solid finite primitive shapes: blob, box, cone, cylinder, height field, Julia fractal,
lathe, prism, sphere, spheresweep, superellipsoid, surface of revolution, text object and torus. These have a
well-definedinsideand can be used in CSG (see section "Constructive Solid Geometry”). They are finite and
respond to automatic bounding. You may specify an interior for these objects.

4.1.1 Blob

Blobs are an interesting and flexible object type. Mathematically they are iso-surfaces of scalar fields, i.e. their
surface is defined by the strength of the field in each point. If this strength is equal to a threshold value you are
on the surface otherwise you are not.

Picture each blob component as an object floating in space. This obféletdsvith a field that has its maximum

at the center of the object and drops off to zero at the object’s surface. The field strength of all those components
are added together to form the field of the blob. Now POV-Ray looks for points where this field has a given
value, the threshold value. All these points form the surface of the blob object. Points with a greater field value
than the threshold value are considered to be inside while points with a smaller field value are outside.

There’s another, simpler way of looking at blobs. They can be seen as a union of flexible components that
attract or repel each other to form a blobby organic looking shape. The components’ surfaces actually stretch
out smoothly and connect as if they were made of honey or something similar.

The syntax fobiob is defined as follows:

BLOB:

blob { BLOB_ITEM... [BLOB_MODIFIERS...]}
BLOB_ITEM:

sphere{<Center>, Radius,

4.1 Finite Solid Primitives 115

[strength] Strength[COMPONENT MODIFIER...] } |
cylinder{<Endl>, <End2>, Radius,
[strength] Strength [COMPONENT_MODIFIER...] } |

component Strength, Radius, <Center> |

threshold Amount
COMPONENT_MODIFIER:

TEXTURE | PIGMENT | NORMAL | FINISH | TRANSFORMATION
BLOB_MODIFIER:

hierarchy [Boolean] | sturm [Boolean] | OBJECT_MODIFIER

Blob default values:

hierarchy : on
sturm : off
threshold : 1.0

Thethreshold keyword is followed by a float value which determines the total field strength value that POV-
Ray is looking for. The default value if none is specifiectiseshold 1.0. By following the ray out into

space and looking at how each blob component affects the ray, POV-Ray will find the points in space where the
field strength is equal to the threshold value. The following list shows some things you should know about the
threshold value.

1. The threshold value must be positive.

2. A component disappears if the threshold value is greater than its strength.

3. As the threshold value gets larger, the surface you see gets closer to the centers of the components.
4. As the threshold value gets smaller, the surface you see gets closer to the surface of the components.

Cylindrical components are specified by@ inder statement. The center of the end-caps of the cylinder is
defined by the vectors<End1> and <End2>. Next is the float value of th&®adiusfollowed by the float
Strength These vectors and floats are required and should be separated by commas. The keyawoageh
may optionally precede the strength value. The cylinder has hemispherical caps at each end.

Spherical components are specified bypgere statement. The location is defined by the vectaCenter >.
Next is the float value of théradiusfollowed by the floatStrength These vector and float values are required
and should be separated by commas. The keywereength may optionally precede the strength value.

You usually will apply a single texture to the entire blob object, and you typically use transformations to change
its size, location, and orientation. However both theinder and sphere Statements may have individual
texture, pigment, normal, finish, and transformations applied to them. You may not apply sepesater
statements to the components but you may specify one for the entire blob.

Note: by unevenly scaling a spherical component you can create ellipsoidal components. The tutorial section
on "Blob Object” illustrates individually textured blob components and many other blob examples.

The component keyword is an obsolete method for specifying a spherical component and is only used for
compatibility with earlier POV-Ray versions. It may not have textures or transformations individually applied
toit.

The strength parameter of either type of blob component is a float value specifying the field strength at the
center of the object. The strength may be positive or negative. A positive value will make that component
attract other components while a negative value will make it repel other components. Components in different,
separate blob shapes do not affect each other.

You should keep the following things in mind.

116 Objects

1. The strength value may be positive or negative. Zero is a bad value, as the net result is that no field was
added — you might just as well have not used this component.

2. If strength is positive, then POV-Ray will add the component’s field to the space around the center of the
component. If this adds enough field strength to be greater than the threshold value you will see a surface.

3. If the strength value is negative, then POV-Ray will subtract the component’s field from the space around
the center of the component. This will only do something if there happen to be positive components
nearby. The surface around any nearby positive components will be dented away from the center of the
negative component.

After all components and the optionalreshold value have been specified you may specify zero or more blob
modifiers. A blob modifier is any regular object modifier or therarchy or sturm keywords.

The components of each blob object are internally bounded by a spherical bounding hierarchy to speed up blob
intersection tests and other operations. Using the optional keywogdarchy followed by an optional boolean
float value will turn it off or on. By default it is on.

The calculations for blobs must be very accurate. If this shape renders improperly you may add the keyword
sturn followed by an optional boolean float value to turn off or on POV-Ray’s slower-yet-more-accurate Stur-
mian root solver. By default it is off.

An example of a three component blob is:

BLOB:

blob {
threshold 0.6
sphere { <.75, 0, 0>, 1, 1}
sphere { <-.375, .64952, 0>, 1, 1 }
sphere { <-.375, -.64952, 0>, 1, 1}
scale 2

}

If you have a single blob component then the surface you see will just look like the object used, i.e. a sphere or
a cylinder, with the surface being somewhere inside the surface specified for the component. The exact surface
location can be determined from the blob equation listed below (you will probably never need to know this,
blobs are more for visual appeal than for exact modeling).

For the more mathematically minded, here’s the formula used internally by POV-Ray to create blobs. You do
not need to understand this to use blobs. The density of the blob field of a single component is:

2
. distance) 2
density= strength <1— (mdlus))

Table 4.1: Density of a blob field.

wheredistanceis the distance of a given point from the spherical blob’s center or cylinder blob’s axis. This
formula has the nice property that it is exactly equal to the strength parameter at the center of the component
and drops off to exactly 0 at a distance from the center of the component that is equal to the radius value. The
density formula for more than one blob component is just the sum of the individual component densities.

4.1 Finite Solid Primitives 117

4.1.2 Box

A simple box can be defined by listing two corners of the box using the following syntaxsforstatement:

BOX:
box

{
<Corner_1>, <Corner_2>
[OBJECT_MODIFIERS...]

corner 2

corner 1

Figure 4.1: The geometry of a box.

Where<Corner _1> and <Corner _2> are vectors defining the X, y, z coordinates of the opposite corners of
the box.

Note: that all boxes are defined with their faces parallel to the coordinate axes. They may later be rotated to
any orientation using therotate keyword.

Boxes are calculated efficiently and make good bounding shapes (if manually bounding seems to be necessary).

4.1.3 Cone

Thecone statement creates a finite length cone drastum(a cone with the point cut off). The syntax is:

CONE:
cone
{
<Base_Point>, Base_Radius, <Cap_Point>, Cap_Radius
[open] [OBJECT_MODIFIERS...]
}

Where <Base _Point > and < Cap_Point > are vectors defining the X, y, z coordinates of the center of the
cone’s base and cap anBase _Radius andCap_Radius are float values for the corresponding radii.

Normally the ends of a cone are closed by flat discs that are parallel to each other and perpendicular to the
length of the cone. Adding the optional keywaigkn after Cap_Radius will remove the end caps and results
in a tapered hollow tube like a megaphone or funnel.

118 Objects

cap radius

base radius

Figure 4.2: The geometry of a cone.

4.1.4 Cylinder

Thecylinder statement creates a finite length cylinder with parallel end caps The syntax is:

CYLINDER:
cylinder
{
<Base_Point>, <Cap_Point>, Radius
[open] [OBJECT_MODIFIERS...]

/}‘ cap point

\\\‘H_L_r;/,/

I

:

I

: radius

v

I

: .

- ,:(}(/ base point

-7 1 =

Figure 4.3: The geometry of a cylinder.

Where<Base _Point > and <Cap_Point > are vectors defining the x, y, z coordinates of the cylinder's base
and cap andRadius is a float value for the radius.

Normally the ends of a cylinder are closed by flat discs that are parallel to each other and perpendicular to the
length of the cylinder. Adding the optional keywosgen after the radius will remove the end caps and results
in a hollow tube.

4.1 Finite Solid Primitives 119

4.1.5 Height Field

Height fields are fast, efficient objects that are generally used to create mountains or other raised surfaces out of
hundreds of triangles in a mesh. The ght _field Statement syntax is:

HEIGHT_FIELD:
height_field{
[HF_TYPE]
"filename"
[HF_MODIFIER...]
[OBJECT_MODIFIER...]
}
HF_TYPE:
gif | tga | pot | png | pgm | ppm | jpeg | tiff | sys | function
HF_MODIFIER:
hierarchy [Boolean] |
smooth \
water_level Level

Heightfield default values:

hierarchy : on
smooth : off
water_level : 0.0

A height field is essentially a one unit wide by one unit long square with a mountainous surface on top. The
height of the mountain at each point is taken from the color number or palette index of the pixels in a graphic
image file. The maximum height is one, which corresponds to the maximum possible color or palette index
value in the image file.

Figure 4.4: The size and orientation of an un-scaled height field.

The mesh of triangles corresponds directly to the pixels in the image file. Each square formed by four neighbor-
ing pixels is divided into two triangles. An image with a resolutiorNef pixels hagN-1)*(M-1) squares
that are divided into 2*(N-1)*(M-1) triangles.

The resolution of the height field is influenced by two factors: the resolution of the image and the resolution of
the color/index values. The size of the image determines the resolution in the x- and z-direction. A larger image
uses more triangles and looks smoother. The resolution of the color/index value determines the resolution along
the y-axis. A height field made from an 8-bit image can have 256 different height levels while one made from a

120 Objects

/ color height

1.00
0.75
0.50
0.25
0.00

LRV

Figure 4.5: Relationship of pixels and triangles in a height field.

16-bitimage can have up to 65536 different height levels. Thus the second height field will look much smoother
in the y-direction if the height field is created appropriately.

The size/resolution of the image does not affect the size of the height field. The un-scaled height field size will
always be 1 by 1 by 1. Higher resolution image files will create smaller triangles, not larger height fields.

There are eight or possibly nine types of files which can define a height field. The image file type used to create
a height field is specified by one of the keywords, tga, pot, png, pgm, ppm, tiff, jpeg and possibly sys

which is a system specific (e. g. Windows BMP or Macintosh Pict) format file. Specifying the file type is
optional. If it is not defined the same file type will be assumed as the one that is set as the output file type. This
is useful when the source for theight _field is also generated with POV-Ray.

The GIF, PNG, PGM, TIFF and possibly SYS format files are the only ones that can be created using a standard
paint program. Though there are paint programs for creating TGA image files they will not be of much use for
creating the special 16 bit TGA files used by POV-Ray (see below andGk#y 16" for more details).

In an image file that uses a color palette, like GIF, the color number is the palette index at a given pixel. Use
a paint program to look at the palette of a GIF image. The first color is palette index zero, the second is index
one, the third is index two and so on. The last palette entry is index 255. Portions of the image that use low
palette entries will result in lower parts of the height field. Portions of the image that use higher palette entries
will result in higher parts of the height field.

Height fields created from GIF files can only have 256 different height levels because the maximum number of
colors in a GIF file is 256.

The color of the palette entry does not affect the height of the pixel. Color entry O could be red, blue, black or
orange but the height of any pixel that uses color entry 0 will always be 0. Color entry 255 could be indigo, hot
pink, white or sky blue but the height of any pixel that uses color entry 255 will always be 1.

You can create height field GIF images with a paint program or a fractal programrliketint. You can
usually get rractint from most of the same sources as POV-Ray.

A POT file is essentially a GIF file with a 16 bit palette. The maximum number of colors in a POT file is 65536.
This means a POT height field can have up to 65536 possible height values. This makes it possible to have
much smoother height fields.

Note: the maximum height of the field is still 1 even though more intermediate values are possible.

4.1 Finite Solid Primitives 121

At the time of this writing the only program that created POT files was a freeware MS-Dos/Windows program
calledrractint. POT files generated with this fractal program create fantastic landscapes.

The TGA and PPM file formats may be used as a storage device for 16 bit numbers rather than an image file.
These formats use the red and green bytes of each pixel to store the high and low bytes of a height value.
These files are as smooth as POT files but they must be generated with special custom-made programs. Several
programs can create TGA heightfields in the format POV uses, such &g andTerrain Maker.

PNG format heightfields are usually stored in the form of a grayscale image with black corresponding to lower
and white to higher parts of the height field. Because PNG files can store up to 16 bits in grayscale images they
will be as smooth as TGA and PPM images. Since they are grayscale images you will be able to view them
with a regular image viewer. gforge can create 16-bit heightfields in PNG format. Color PNG images will be
used in the same way as TGA and PPM images.

SYS format is a platform specific file format. See your platform specific documentation for details.
In addition to all the usual object modifiers, there are three additional height field modifiers available.

The optionalater_level parameter may be added after the file name. It consists of the keyaarel1evel

followed by a float value telling the program to ignore parts of the height field below that value. The default
value is zero and legal values are between zero and one. For examplelevel 0.5 tells POV-Ray to only

render the top half of the height field. The other halbé&ow the wateland could not be seen anyway. Using
water_level renders faster than cutting off the lower part using CSG or clipping. This term comes from the
popular use of height fields to render landscapes. A height field would be used to create islands and another
shape would be used to simulate water around the islands. A large portion of the height field would be obscured
by the water so thewater_level parameter was introduced to allow the ray-tracer to ignore the unseen parts of
the height field.water_level is also used to cut away unwanted lower values in a height field. For example if
you have an image of a fractal on a solid colored background, where the background color is palette entry O,
you can remove the background in the height field by specifyifg,er_level 0.001.

Normally height fields have a rough, jagged look because they are made of lots of flat triangles. Adding the
keyword smooth causes POV-Ray to modify the surface normal vectors of the triangles in such a way that the
lighting and shading of the triangles will give a smooth look. This may allow you to use a lower resolution file
for your height field than would otherwise be needed. However, smooth triangles will take longer to render. The
default value is off.

In order to speed up the intersection tests a one-level bounding hierarchy is available. By default it is always
used but it can be switched off usingerarchy off to improve the rendering speed for small height fields (i.e.
low resolution images). You may optionally use a boolean value suchiasarchy on Of hierarchy off.

4.1.6 Julia Fractal

A julia fractal object is a 3-Dslice of a 4-D object created by generalizing the process used to create the classic
Julia sets. You can make a wide variety of strange objects usingjthea_fractal statement including some
that look like bizarre blobs of twisted taffy. Thalia_fractal syntaxis:

JULIA_FRACTAL:
julia_fractal
{
<4D_Julia_Parameter>
[JF_ITEM...] [OBJECT_MODIFIER...]

122 Objects

JF_ITEM:
ALGEBRA_TYPE | FUNCTION_TYPE | max_iteration Count |
precision Amt | slice <4D_Normal>, Distance
ALGEBRA_TYPE:
quaternion | hypercomplex
FUNCTION_TYPE:
QUATERNATION:
sqr | cube
HYPERCOMPLEX:
sqr | cube | exp | reciprocal | sin | asin | sinh |
asinh | cos | acos | cosh | acosh | tan | atan |tanh |
atanh | In | pwr(X_Val, Y_Val)

Julia Fractal default values:

ALGEBRA_TYPE : quaternion
FUNCTION_TYPE ¢ sqr
max_iteration : 20
precision : 20

slice, DISTANCE : <0,0,0,1>, 0.0

The required 4-D vector4D_Julia _Parameter > is the classic Julia parameiein the iterated formul&h)

+ p. The julia fractal object is calculated by using an algorithm that determines whether an arbitraty@oint

in 4-D space is inside or outside the object. The algorithm requires generating the sequence of@ctors

h(1), ... by iterating the formuleh(n+1) = f(h(n)) + p (n = 0, 1, ..., max _iteration-1)

where p is the fixed 4-D vector parameter of the julia fractal &@d is one of the functionsqr, cube,
specified by the presence of the corresponding keyword. The pai@x that begins the sequence is

considered inside the julia fractal object if none of the vectors in the sequence escapes a hypersphere of radius

4 about the origin before the iteration number reaches the integereration value. As you increasesx_-

iteration, Some points escape that did not previously escape, forming the julia fractal. Depending on the

<4DJulia _Parameter >, the julia fractal object is not necessarily connected; it may be scattered fractal dust.

Using a low max_iteration can fuse together the dust to make a solid object. A highiteration iS more

accurate but slows rendering. Even though it is not accurate, the solid shapes you get with:aiowtat ion

value can be quite interesting. If none is specified, the defawdiSteration 20.

Since the mathematical object described by this algorithm is four-dimensional and POV-Ray renders three
dimensional objects, there must be a way to reduce the number of dimensions of the object from four dimensions
to three. This is accomplished by intersecting the 4-D fractal with a 3-D "plane” defined byithemodifier

and then projecting the intersection to 3-D space. The keyword is followed by 4-D vector and a float separated
by a comma. The slice plane is the 3-D space that is perpendiculai4d Normal > and is Distance units

from the origin. Zero length<4D_Normal > vectors or a <4D_Normal > vector with a zero fourth component

are illegal. If none is specified, the default islice <0,0,0,1>,0.

You can get a good feel for the four dimensional nature of a julia fractal by using POV-Ray’s animation feature
to vary a slice’s Distance parameter. You can make the julia fractal appear from nothing, grow, then shrink

to nothing as Distance changes, much as the cross section of a 3-D object changes as it passes through a
plane.

The precision parameter is a tolerance used in the determination of whether points are inside or outside the
fractal object. Larger values give more accurate results but slower rendering. Use as low a value as you can
without visibly degrading the fractal object’s appearance but note values less than 1.0 are clipped at 1.0. The
default if none is specified isrecision 20.

The presence of the keywordsguaternion Or hypercomplex determine which 4-D algebra is used to calculate

4.1 Finite Solid Primitives 123

the fractal. The default isuaternion. Both are 4-D generalizations of the complex numbers but neither
satisfies all the field properties (all the properties of real and complex numbers that many of us slept through in
high school). Quaternions have non-commutative multiplication and hypercomplex numbers can fail to have a
multiplicative inverse for some non-zero elements (it has been proved that you cannot successfully generalize
complex numbers to four dimensions with all the field properties intact, so something has to break). Both of
these algebras were discovered in the 19th century. Of the two, the quaternions are much better known, but one
can argue that hypercomplex numbers are more useful for our purposes, since complex valued functions such
as sin, cos, etc. can be generalized to work for hypercomplex numbers in a uniform way.

For the mathematically curious, the algebraic properties of these two algebras can be derived from the multi-
plication properties of the unit basis vectors ¥%,0,0,0>, i=< 0,1,0,0>, j=<0,0,1,8> and k= 0,0,0,>. In

both algebras 1 x = x 1 = x for any x (1 is the multiplicative identity). The basis vectors 1 and i behave exactly
like the familiar complex numbers 1 and i in both algebras.

iy =k jk = 1 ki = 3
i1 = -k kj = -1 ik = -3
ii = 9§ = kk = -1 ik = -1

Table 4.1: Quaternion basis vector multiplication rules

ij =k Jk = -i ki = -3
ii= % ki = -1 ik = -3
ii = 9§ = kk = -1 ik = 1

Table 4.2: Hypercomplex basis vector multiplication rules

A distance estimation calculation is used with the quaternion calculations to speed them up. The proof that this
distance estimation formula works does not generalize from two to four dimensions but the formula seems to
work well anyway, the absence of proof notwithstanding!

The presence of one of the function keywords, cube, etc. determines which function is used fdth)

in the iteration formulah(n+1) = f(h(n)) + p . The default issqr. Most of the function keywords work
only if the hypercomplex keyword is present. Onlysqr andcube work with quaternion. The functions are all
familiar complex functions generalized to four dimensions. Function Keyword Maps 4-D value h to:

A simple example of a julia fractal object is:

julia_fractal {
<-0.083,0.0,-0.83,-0.025>
quaternion

sqr

max_iteration 8

precision 15

}

The first renderings of julia fractals using quaternions were done by Alan Norton and later by John Hart in
the '80’s. This POV-Ray implementation followsactint in pushing beyond what is known in the literature

by using hypercomplex numbers and by generalizing the iterating formula to use a variety of transcendental
functions instead of just the classic Mandelbz@t+ c formula. With an extra two dimensions and eighteen
functions to work with, intrepid explorers should be able to locate some new fractal beasts in hyperspace, so
have at it!

124 Objects

sqgr h*h

cube h*h*h

exp e raised to the power h
reciprocal 1/h

sin sine of h

asin arcsine of h

sinh hyperbolic sine of h

asinh inverse hyperbolic sine of h
cos cosine of h

acos arccosine of h

cosh hyperbolic cos of h

acosh inverse hyperbolic cosine of h
tan tangent of h

atan arctangent of h

tanh hyperbolic tangent of h

atanh inverse hyperbolic tangent of h
in natural logarithm of h

pwr (%,) h raised to the complex power x+iy

Table 4.3: Function Keyword Maps 4-D value of h

4.1.7 Lathe

The1lathe is an object generated from rotating a two-dimensional curve about an axis. This curve is defined by
a set of points which are connected by linear, quadratic, cubic or bezier spline curves. The syntax is:

LATHE:
lathe

{
[SPLINE_TYPE] Number_Of_Points, <Point_1>
<Point_2>... <Point_n>
[LATHE_MODIFIER...]
}
SPLINE_TYPE:
linear_spline | quadratic_spline | cubic_spline | bezier_spline
LATHE_MODIFIER:
sturm | OBJECT_MODIFIER

Lathe default values:

SPLINE_TYPE : linear_spline
sturm . off

The first item is a keyword specifying the type of spline. The default if none is specifieddsr_sp1ine. The
required integer valuBlumber_Of _Points specifies how many two-dimensional points are used to define the
curve. The points follow and are specified by 2-D vectors. The curve is not automatically closed, i.e. the first
and last points are not automatically connected. You will have to do this yourself if you want a closed curve.
The curve thus defined is rotated about the y-axis to form the lathe object, centered at the origin.

The following examples creates a simple lathe object that looks like a thick cylinder, i.e. a cylinder with a thick
wall:

lathe {

4.1 Finite Solid Primitives 125

linear_spline

5,

<2, 0>, <3, 0>, <3, 5>, <2, 5>, <2, 0>
pigment {Red}

}

The cylinder has an inner radius of 2 and an outer radius of 3, giving a wall width of 1. It's height is 5 and it's
located at the origin pointing up, i.e. the rotation axis is the y-axis.

Note: the first and last point are equal to get a closed curve.

The splines that are used by the lathe and prism objects are a little bit difficult to understand. The basic concept
of splines is to draw a curve through a given set of points in a determined way. The defadlr_spline is

the simplest spline because it's nothing more than connecting consecutive points with a line. This means the
curve that is drawn between two points only depends on those two points. No additional information is taken
into account. The other splines are different in that they do take other points into account when connecting two
points. This creates a smooth curve and, in the case of the cubic spline, produces smoother transitions at each
point.

Thequadratic_spline keyword creates splines that are made of quadratic curves. Each of them connects two
consecutive points. Since those two points (call them second and third point) are not sufficient to describe a
quadratic curve, the predecessor of the second point is taken into account when the curve is drawn. Mathemat-
ically, the relationship (their relative locations on the 2-D plane) between the first and second point determines
the slope of the curve at the second point. The slope of the curve at the third point is out of control. Thus
quadratic splines look much smoother than linear splines but the transitions at each point are generally not
smooth because the slopes on both sides of the point are different.

Thecubic_spline keyword creates splines which overcome the transition problem of quadratic splines because
they also take a fourth point into account when drawing the curve between the second and third point. The slope
at the fourth point is under control now and allows a smooth transition at each point. Thus cubic splines produce
the most flexible and smooth curves.

Thebezier_spline is an alternate kind of cubic spline. Points 1 and 4 specify the end points of a segment and
points 2 and 3 are control points which specify the slope at the endpoints. Points 2 and 3 do not actually lie on
the spline. They adjust the slope of the spline. If you draw an imaginary line between point 1 and 2, it represents
the slope at point 1. It is a line tangent to the curve at point 1. The greater the distance between 1 and 2, the
flatter the curve. With a short tangent the spline can bend more. The same holds true for control point 3 and
endpoint 4. If you want the spline to be smooth between segments, points 3 and 4 on one segment and points 1
and 2 on the next segment must form a straight line and point 4 of one segment must be the same as point 1 on
the next segment.

You should note that the number of spline segments, i. e. curves between two points, depends on the spline
type used. For linear splines you get n-1 segments connecting the points P[i], i=1,...,n. A quadratic spline gives

you n-2 segments because the last point is only used for determining the slope, as explained above (thus you
will need at least three points to define a quadratic spline). The same holds for cubic splines where you get n-3

segments with the first and last point used only for slope calculations (thus needing at least four points). The

bezier spline requires 4 points per segment, creating n/4 segments.

If you want to get a closed quadratic and cubic spline with smooth transitions at the end points you have to
make sure that in the cubic case P[n-1] = P[2] (to get a closed curve), P[n] = P[3] and P[n-2] = P[1] (to smooth
the transition). In the quadratic case P[n-1] = P[1] (to close the curve) and P[n] = P[2].

The sturm keyword can be used to specify that the slower, but more accurate, Sturmian root solver should be
used. Use it, if the shape does not render properly. Since a quadratic polynomial has to be solved for the linear

126 Objects

spline lathe, the Sturmian root solver is not needed.

4.1.8 Prism

Theprism is an object generated specifying one or more two-dimensional, closed curves in the x-z plane and
sweeping them along y axis. These curves are defined by a set of points which are connected by linear, quadratic,
cubic or bezier splines. The syntax for the prism is:

PRISM:
prism
{
[PRISM_ITEMS...] Height_1, Height_2, Number_Of_Points,
<Point_1>, <Point_2>, ... <Point_n>
[open] [PRISM_MODIFIERS...]
}
PRISM_ITEM:
linear_spline | quadratic_spline | cubic_spline |
bezier_spline | linear_sweep | conic_sweep
PRISM_MODIFIER:
sturm | OBJECT_MODIFIER

Prism default values:

SPLINE_TYPE : linear_spline
SWEEP_TYPE : linear_sweep
sturm : off

The first items specify the spline type and sweep type. The defaults if none is specifiedsis sp1ine and
linear_sweep. This is followed by two float valuesHeight _1 and Height _2 which are the y coordinates of

the top and bottom of the prism. This is followed by a float value specifying the number of 2-D points you will
use to define the prism. (This includes all control points needed for quadratic, cubic and bezier splines). This is
followed by the specified number of 2-D vectors which define the shape in the x-z plane.

The interpretation of the points depends on the spline type. The prism object allows you to use any number of
sub-prisms inside one prism statement (they are of the same spline and sweep type). Wherever an even number
of sub-prisms overlaps a hole appears.

Note: you need not have multiple sub-prisms and they need not overlap as these examples do.

In the 1inear_spline the first point specified is the start of the first sub-prism. The following points are con-
nected by straight lines. If you specify a value identical to the first point, this closes the sub-prism and next point
starts a new one. When you specify the value of that sub-prism’s start, then it is closed. Each of the sub-prisms
has to be closed by repeating the first point of a sub-prism at the end of the sub-prism’s point sequence. In this
example, there are two rectangular sub-prisms nested inside each other to create a frame.

prism {
linear_spline
0, 1, 10,

<0,0>, <6,0>, <6,8>, <0,8>, <0,0>, //outer rim
<1,1>, <5,1>, <5,7>, <1,7>, <1,1> //inner rim
}

The last sub-prism of a linear spline prism is automatically closed - just like the last sub-polygon in the polygon
statement - if the first and last point of the sub-polygon’s point sequence are not the same. This make it very easy

4.1 Finite Solid Primitives 127

to convert between polygons and prisms. Quadratic, cubic and bezier splines are never automatically closed.

Inthe quadratic_spline, each sub-prism needs an additional control point at the beginning of each sub-prisms’
point sequence to determine the slope at the start of the curve. The first point specified is the control point which
is not actually part of the spline. The second point is the start of the spline. The sub-prism ends when this second
point is duplicated. The next point is the control point of the next sub-prism. The point after that is the first
point of the second sub-prism. Here is an example:

prism {
quadratic_spline
0, 1, 12,
<1,-1>, <0,0>, <6,0>, //outer rim; <1,-1> is control point and
<6,8>, <0,8>, <0,0>, //<0,0> is first \& last point

<2,0>, <1,1>, <5,1>, //inner rim; <2,0> is control point and
<5,7>, <1,7>, <1,1> //<1,1> is first \& last point
}

In the cubic_spline, each sub-prism needs two additional control points — one at the beginning of each sub-
prisms’ point sequence to determine the slope at the start of the curve and one at the end. The first point
specified is the control point which is not actually part of the spline. The second point is the start of the spline.
The sub-prism ends when this second point is duplicated. The next point is the control point of the end of the
first sub-prism. Next is the beginning control point of the next sub-prism. The point after that is the first point
of the second sub-prism.

Here is an example:

prism {
cubic_spline
0, 1, 14,
<1,-1>, <0,0>, <6,0>, //outer rim; First control is <1,-1> and
<6,8>, <0,8>, <0,0>, //<0,0> is first \& last point.
<-1,1>, //Last control of first spline is <-1,1>

<2,0>, <1,1>, <5,1>, //inner rim; First control is <2,0> and
<5,7>, <1,7>, <1,1>, //<1,1> is first \& last point
<0,2> //Last control of first spline is <0,2>

}

Thebezier_spline is an alternate kind of cubic spline. Points 1 and 4 specify the end points of a segment and
points 2 and 3 are control points which specify the slope at the endpoints. Points 2 and 3 do not actually lie on
the spline. They adjust the slope of the spline. If you draw an imaginary line between point 1 and 2, it represents
the slope at point 1. It is a line tangent to the curve at point 1. The greater the distance between 1 and 2, the
flatter the curve. With a short tangent the spline can bend more. The same holds true for control point 3 and
endpoint 4. If you want the spline to be smooth between segments, point 3 and 4 on one segment and point 1
and 2 on the next segment must form a straight line and point 4 of one segment must be the same as point one
on the next segment.

By default linear sweeping is used to create the prism, i.e. the prism’s walls are perpendicular to the x-z-plane
(the size of the curve does not change during the sweep). You can alsentiseweep that leads to a prism
with cone-like walls by scaling the curve down during the sweep.

Like cylinders the prism is normally closed. You can remove the caps on the prism by usingitheyword.
If you do so you should not use it with CSG because the results may get wrong.

128 Objects

For an explanation of the spline concept read the description of the "Lathe” object. Also see the tutorials on
"Lathe Object” and "Prism Object”.

The sturm keyword specifies the slower but more accurate Sturmian root solver which may be used with the
cubic or bezier spline prisms if the shape does not render properly. The linear and quadratic spline prisms do
not need the Sturmian root solver.

4.1.9 Sphere

The syntax of thephere oObject is:

SPHERE:
sphere

{
<Center>, Radius
[OBJECT_MODIFIERS...]

radius
center

Figure 4.6: The geometry of a sphere.

Where<Center > is a vector specifying the x, y, z coordinates of the center of the spherermtius is a
float value specifying the radius. Spheres may be scaled unevenly giving an ellipsoid shape.

Because spheres are highly optimized they make good bounding shapes (if manual bounding seems to be
necessary).

4.1.10 Sphere Sweep

The syntax of thephere_sweep Object is:

SPHERE_SWEEP :

sphere_sweep {
linear_spline | b_spline | cubic_spline
NUM_OF_SPHERES,

CENTER, RADIUS,
CENTER, RADIUS,

4.1 Finite Solid Primitives 129

CENTER, RADIUS
[tolerance DEPTH_TOLERANCE]
[OBJECT_MODIFIERS]

}

Spheresweep default values:
tolerance : 1.0e-6 (0.000001)

A Sphere Sweep is the envelope of a moving sphere with varying radius, or, in other words, the space a sphere
occupies during its movement along a spline.

Sphere Sweeps are modeled by specifying a list of single spheres which are then interpolated.

Three kinds of interpolation are supported:

* linear_spline : Interpolating the input data with a linear function, which means that the single spheres
are connected by straight tubes.

* b_spline : Approximating the input data using a cubic b-spline function, which results in a curved object.
* cubic_spline : Approximating the input data using a cubic spline, which results in a curved object.

The sphere list (center and radius of each sphere) can take as many spheres as you like to describe the object,
but you will need at least two spheres foriaear_spline, and four spheres faf spline Or cubic_spline.

Optional: The depth tolerance that should be used for the intersection calculations. This is done by adding the
tolerance keyword and the desired value: the default distance is 1.0e-6 (0.000001) and should do for most
sphere sweep objects.

You should change this when you see dark spots on the surface of the object. These are probably caused by
an effect called "Self-Shading”. This means that the object casts shadows onto itself at some points because
of calculation errors. A ray tracing program usually defines the minimal distance a ray must travel before it
actually hits another (or the same) object to avoid this effect. If this distance is chosen too small, Self-Shading
may occur.

If so, specifytolerance 1.0e-4 or higher.

Note: if these dark spots remain after raising the tolerance, you might get rid of these spots by using Adaptive
Supersampling (Method 2) for antialiasing. Images look better with antialiasing anyway.

Note: the merge CSG operation is not recommended with Sphere Sweeps: there could be a small gap between
the merged objects!

4.1.11 Superquadric Ellipsoid

Thesuperellipsoid Object creates a shape known asaperquadric ellipsoidbject. It is an extension of the
quadric ellipsoid. It can be used to create boxes and cylinders with round edges and other interesting shapes.
Mathematically it is given by the equation:

foy.2) = (M) + () @ 3 _1-0

Table 4.2:

130 Objects

The values ot andn, called theeast-westandnorth-southexponent, determine the shape of the superquadric
ellipsoid. Both have to be greater than zero. The sphere is giverriyandn = 1.

The syntax of the superquadric ellipsoid is:

SUPERELLIPSOID:
superellipsoid
{
<Value_E, Value_N>
[OBJECT_MODIFIERS...]

}

The 2-D vector specifies theand n values in the equation above. The object sits at the origin and occupies a
space about the size of aox{<-1,-1,-1>,<1,1,1>}.

Two useful objects are the rounded box and the rounded cylinder. These are declared in the following way.

#declare Rounded_Box = superellipsoid { <Round, Round> }
#declare Rounded_Cylinder = superellipsoid { <1, Round> }

The roundedness valueund determines the roundedness of the edges and has to be greater than zero and
smaller than one. The smaller you choose the values, the smaller and sharper the edges will get.

Very small values ok andn might cause problems with the root solver (the Sturmian root solver cannot be
used).

4.1.12 Surface of Revolution

The sor object is asurface of revolutiorgenerated by rotating the graph of a function about the y-axis. This
function describes the dependence of the radius from the position on the rotation axis. The syntax is:

SOR:
SOor

Number_Of_Points, <Point_1>, <Point_2>, ... <Point_n>
[open] [SOR_MODIFIERS...]

}
SOR_MODIFIER:
sturm | OBJECT_MODIFIER

SOR default values:
sturm : off

The float valueNumber_Of _Points specifies the number of 2-D vectors which follow. The point®oint _1>
through<Point _n> are two-dimensional vectors consisting of the radius and the corresponding height, i.e. the
position on the rotation axis. These points are smoothly connected (the curve is passing through the specified
points) and rotated about the y-axis to form the SOR object. The first and last points are only used to determine
the slopes of the function at the start and end point. They do not actually lie on the curve. The function used
for the SOR object is similar to the splines used for the lathe object. The difference is that the SOR object is
less flexible because it underlies the restrictions of any mathematical function, i.e. to any given point y on the
rotation axis belongs at most one function value, i.e. one radius value. You cannot rotate closed curves with the
SOR object. Also, make sure that the curve does not cross zero (y-axis) as this can result in ’less than perfect’
bounding cylinders. POV-Ray will very likely fail to render large chunks of the part of the spline contained in
such an interval.

4.1 Finite Solid Primitives 131

The optional keyword open allows you to remove the caps on the SOR object. If you do this you should not
use it with CSG because the results may be wrong.

The SOR object is useful for creating bottles, vases, and things like that. A simple vase could look like this:

#declare Vase = sor {
7,

<0.000000, 0.000000>
<0.118143, 0.000000>
<0.620253, 0.540084>
<0.210970, 0.827004>
<0.194093, 0.962025>
<0.286920, 1.000000>
<0.468354, 1.033755>
open

}

One might ask why there is any need for a SOR object if there is already a lathe object which is much more
flexible. The reason is quite simple. The intersection test with a SOR object involves solving a cubic polynomial
while the test with a lathe object requires to solve a 6th order polynomial (you need a cubic spline for the same
smoothness). Since most SOR and lathe objects will have several segments this will make a great difference in
speed. The roots of the 3rd order polynomial will also be more accurate and easier to find.

Thesturn keyword may be added to specify the slower but more accurate Sturmian root solver. It may be used
with the surface of revolution object if the shape does not render properly.

The following explanations are for the mathematically interested reader who wants to know how the surface of
revolution is calculated. Though it is not necessary to read on it might help in understanding the SOR object.

The function that is rotated about the y-axis to get the final SOR object is given by

rP=f(h)y=A-h®+B-h>+C-h+D

Table 4.3:

with radiusr and height. Since this is a cubic function in h it has enough flexibility to allow smooth curves.

The curve itself is defined by a set of n points P(i), i=0...n-1, which are interpolated using one function for every
segment of the curve. A segment j, j=1...n-3, goes from point P(j) to point P(j+1) and uses points P(j-1) and
P(j+2) to determine the slopes at the endpoints. If there are n points we will have n-3 segments. This means
that we need at least four points to get a proper curve. The coefficients A(j), B(j), C(j) and D(j) are calculated
for every segment using the equation

where r(j) is the radius and h(j) is the height of point P(j).

The figure below shows the configuration of the points P(i), the location of segment j, and the curve that is
defined by this segment.

4.1.13 Text

A text object creates 3-D text as an extruded block letter. Currently only TrueType fonts (ttf) and TrueType
Collections (ttc) are supported but the syntax allows for other font types to be added in the future. If TrueType

132 Objects

b=M-x with:

r(j)?
r(j+1)?
po |21 (r(i+1) —r(j=1)
h(j+1)—h(j—-1)
2-r(j+1)-(r(j+2)—r(j)
h(j+2) —h(j)

h(j)3 h(j)? h(j) 1
M — h(j+1)° h(j+1? h(j+1) 1
- 3-h(j)? 2-h(j) 1 0
3-h(j+1)? 2-h(j+1) 1 0
2
_ | B(
*= 1 el
D(j)
Table 4.4:

Height h
-
o
el

2.0 "
AN

0.0
-4.0 -20 0.0 2.0 4.0

Radius r

Figure 4.7: Points on a surface of revolution.

Collections are used, the first font found in the collection will be used. The syntax is:

TEXT_OBECT:
text {
ttf "fontname.ttf/ttc" "String_of_Text"
Thickness, <Offset>
[OBJECT_MODIFIERS...]
}

Wherefontname.ttf OF fontname.ttc iS the name of the TrueType font file. It is a quoted string literal or string
expression. The string expression which follows is the actual text of the string object. It too may be a quoted
string literal or string expression. See section "Strings” for more on string expressions.

4.1 Finite Solid Primitives 133

The text will start with the origin at the lower left, front of the first character and will extend in the +x-direction.
The baseline of the text follows the x-axis and descender drop into the -y-direction. The front of the character
sits in the x-y-plane and the text is extruded in the +z-direction. The front-to-back thickness is specified by the
required value Thickness

Characters are generally sized so that 1 unit of vertical spacing is correct. The characters are about 0.5 to 0.75
units tall.

The horizontal spacing is handled by POV-Ray internally including any kerning information stored in the font.
The required vector <Offset > defines any extra translation between each character. Normally you should
specify a zero for this value. Specifyingi+*x would put additional 0.1 units of space between each character.
Here is an example:

text {
ttf "timrom.ttf" "POV-Ray" 1, 0
pigment { Red }

}

Only printable characters are allowed in text objects. Characters such as return, line feed, tabs, backspace etc.
are not supported.

For easy access to your fonts, set the LibrBgth to the directory that contains your font collection.

4.1.14 Torus

A torus is a 4th order quartic polynomial shape that looks like a donut or inner tube. Because this shape is so
useful and quartics are difficult to define, POV-Ray lets you take a short-cut and define a torus by:

TORUS:
torus
{
Major, Minor
[TORUS_MODIFIER...]

}
TORUS_MODIFIER:
sturm | OBJECT_MODIFIER

Torus default values:
sturm : off

whereMajor is a float value giving the major radius aminor is a float specifying the minor radius. The
major radius extends from the center of the hole to the mid-line of the rim while the minor radius is the radius of
the cross-section of the rim. The torus is centered at the origin and lies in the x-z-plane with the y-axis sticking
through the hole.

The torus is internally bounded by two cylinders and two rings forming a thick cylinder. With this bounding
cylinder the performance of the torus intersection test is vastly increased. The test for a valid torus intersection,
i.e. solving a 4th order polynomial, is only performed if the bounding cylinder is hit. Thus a lot of slow root
solving calculations are avoided.

Calculations for all higher order polynomials must be very accurate. If the torus renders improperly you may
add the keyword sturm to use POV-Ray’s slower-yet-more-accurate Sturmian root solver.

134 Objects

major radius

minor radius

center line

Figure 4.8: Major and minor radius of a torus.

4.2 Finite Patch Primitives

There are six totally thin, finite objects which have no well-defined inside. They are bicubic patch, disc, smooth
triangle, triangle, polygon and mesh / mesh2. They may be combined in CSG union but cannot be used in other
types of CSG (or inside alipped_by Statement). Because these types are finite POV-Ray can use automatic
bounding on them to speed up rendering time. As with all shapes they can be translated, rotated and scaled.

4.2.1 Bicubic Patch

A bicubic_patch is a 3D curved surface created from a mesh of triangles. POV-Ray supports a type of bicubic
patch called &8ezier patch A bicubic patch is defined as follows:

BICUBIC_PATCH:
bicubic_patch
{
PATCH_ITEMS...
<Point_1>,<Point_2>,<Point_3>,<Point_4>,
<Point_5>,<Point_6>,<Point_7>,<Point_8>,
<Point_9>,<Point_10>,<Point_11>,<Point_12>,
<Point_13>,<Point_14>,<Point_15>,<Point_16>
[OBJECT_MODIFIERS...]
}
PATCH_ITEMS:
type Patch_Type | u_steps Num_U_Steps | v_steps Num_V_Steps |
flatness Flatness

Bicubic patch default values:

flatness : 0.0
u_steps : 0
0

v_steps

The keywordcype is followed by a float Patch _Type which currently must be either O or 1. For type 0 only
the control points are retained within POV-Ray. This means that a minimal amount of memory is needed but
POV-Ray will need to perform many extra calculations when trying to render the patch. Type 1 preprocesses
the patch into many subpatches. This results in a significant speedup in rendering at the cost of memory.

4.2 Finite Patch Primitives 135

The four parametersype, flatness, u_steps andv_steps may appear in any order. Ontype is required.

They are followed by 16 vectors (4 rows of 4) that define the x, y, z coordinates of the 16 control points which
define the patch. The patch touches the four corner poiiint 1>, <Point 4>, <Point _13> and

<Point _16> while the other 12 points pull and stretch the patch into shape. The Bezier surface is enclosed by
the convex hull formed by the 16 control points, this is known astirevex hull property

The keywords:_steps andv_steps are each followed by integer values which tell how many rows and columns
of triangles are the minimum to use to create the surface, both default to 0. The maximum number of individual
pieces of the patch that are tested by POV-Ray can be calculated from the follguatgs = 2 usteps *
2°v_steps

This means that you really should keepteps and v_steps under 4. Most patches look just fine withsteps
3 andv_steps 3, which translates to 64 subpatches (128 smooth triangles).

As POV-Ray processes the Bezier patch it makes a test of the current piece of the patch to see if it is flat enough
to just pretend it is a rectangle. The statement that controls this test is specified with the:ss keyword

followed by a float. Typical flatness values range from 0 to 1 (the lower the slower). The default if none is
specified is 0.0.

If the value for flatness is 0 POV-Ray will always subdivide the patch to the extend specifiegtbys and
v_steps. If flatness is greater than 0 then every time the patch is split, POV-Ray will check to see if there is any
need to split further.

There are both advantages and disadvantages to using a non-zero flatness. The advantages include:

- If the patch is not very curved, then this will be detected and POV-Ray will not waste a lot of time looking at
the wrong pieces.

- If the patch is only highly curved in a couple of places, POV-Ray will keep subdividing there and concentrate
its efforts on the hard part.

The biggest disadvantage is that if POV-Ray stops subdividing at a particular level on one part of the patch and
at a different level on an adjacent part of the patch there is the potential for cracking. This is typically visible
as spots within the patch where you can see through. How bad this appears depends very highly on the angle at
which you are viewing the patch.

Like triangles, the bicubic patch is not meant to be generated by hand. These shapes should be created by a
special utility. You may be able to acquire utilities to generate these shapes from the same source from which
you obtained POV-Ray. Here is an example:

bicubic_patch {

type 0

flatness 0.01

u_steps 4

v_steps 4

<0, 0, 2>, <1, 0, 0>, <2, 0, 0>, <3, 0,-2>,
<0, 1 0>, <1, 1, 0>, <2, 1, 0>, <3, 1, 0>,
<0, 2, 0>, <1, 2, 0>, <2, 2, 0>, <3, 2, 0>,
<0, 3, 2>, <1, 3, 0>, <2, 3, 0>, <3, 3, -2>

<

}

The triangles in a POV-Rayi cubic_patch are automatically smoothed using normal interpolation but it is up to
the user (or the user’s utility program) to create control points which smoothly stitch together groups of patches.

136 Objects

4.2.2 Disc

Another flat, finite object available with POV-Ray is th&i sc. The disc is infinitely thin, it has no thickness. If
you want a disc with true thickness you should use a very short cylinder. A disc shape may be defined by:

DISC:
disc
{
<Center>, <Normal>, Radius [, Hole_Radius]
[OBJECT_MODIFIERS...]
}

Disc default values:
HOLE RADIUS : 0.0

The vectoCenter > defines the X, y, z coordinates of the center of the disc. Kiormal > vector describes
its orientation by describing its surface normal vector. This is followed by a float specifyingRadius . This
may be optionally followed by another float specifying the radius of a hole to be cut from the center of the disc.

Note: The inside of a disc is the inside of the plane that contains the disc. Also note that it is not constrained by
the radius of the disc.

4.2.3 Mesh

Themesh object can be used to efficiently store large numbers of triangles. Its syntax is:

MESH:
mesh
{
MESH_TRIANGLE...
[MESH_MODIFIER...]
}
MESH_TRIANGLE:
triangle
{
<Corner_1>, <Corner_2>, <Corner_3>
[uv_vectors <uv_Corner_1>, <uv_Corner_2>, <uv_Corner_3>]
[MESH_TEXTURE]
o
smooth_triangle
{
<Corner_1>, <Normal_1>,
<Corner_2>, <Normal_2>,
<Corner_3>, <Normal_3>
[uv_vectors <uv_Corner_1>, <uv_Corner_2>, <uv_Corner_3>]
[MESH_TEXTURE]
}
MESH_TEXTURE:
texture { TEXTURE_IDENTIFIER }
texture_list {
TEXTURE_IDENTIFIER TEXTURE_IDENTIFIER TEXTURE_IDENTIFIER

4.2 Finite Patch Primitives 137

MESH_MODIFIER:
inside_vector <direction> | hierarchy [Boolean] |
OBJECT_MODIFIER

Mesh default values:
hierarchy : on

Any number oftriangle and/orsmooth_triangle Statements can be used and each of those triangles can be
individually textured by assigning a texture identifier to it. The texture has to be declared before the mesh is
parsed. It is not possible to use texture definitions inside the triangle or smooth triangle statements. This is a
restriction that is necessary for an efficient storage of the assigned textures. See "Triangle and Smooth Triangle”
for more information on triangles.

Themesh object can supportv_mapping. For this, per triangle the keyword _vectors has to be given, together
with three 2D uv-vectors. Each vector specifies a location in the xy-plane from which the texture has to be
mapped to the matching points of the triangle. Also see the sectionapping.

The mesh’s components are internally bounded by a bounding box hierarchy to speed up intersection testing.
The bounding hierarchy can be turned off with therarchy off keyword. This should only be done if memory
is short or the mesh consists of only a few triangles. The defamtis:rchy on.

Copies of a mesh object refer to the same triangle data and thus consume very little memory. You can easily
trace a hundred copies of a 10000 triangle mesh without running out of memory (assuming the first mesh
fits into memory). The mesh object has two advantages over a union of triangles: it needs less memory and
it is transformed faster. The memory requirements are reduced by efficiently storing the triangles vertices
and normals. The parsing time for transformed meshes is reduced because only the mesh object has to be
transformed and not every single triangle as it is necessary for unions.

The mesh object can currently only include triangle and smooth triangle components. That restriction may
change, allowing polygonal components, at some point in the future.

Solid Mesh

Triangle mesh objectsnésh andnesh2) can now be used in CSG objects such as difference and intersect,
because, after addingside_vector, they do have a defined ’inside’. This will only work for well-behaved
meshes, which are completely closed volumes. If meshes have any holes in them, this might work, but the
results are not guaranteed.

To determine if a point is inside a triangle mesh, POV-Ray shoots a ray from the point in some arbitrary direction.
If this vector intersects an odd number of triangles, the point is inside the mesh. If it intersects an even number
of triangles, the point is outside of the mesh. You can specify the direction of this vector. For example, to use
+z as the direction, you would add the following line to the triangle mesh description (following all other mesh
data, but before the object modifiers).

inside_vector <0, 0, 1>

This change does not have any effect on unions of triangles... these will still be always hollow.

424 Mesh2

The new mesh syntax is designed for use in conversion from other file formats.

138

Objects

MESH2

mesh?2 {

}

VECTORS. . .
LISTS... |
INDICES... |
MESH_MODIFIERS

VECTORS
vertex_vectors

{

H

number_of_vertices,
<vertexl>, <vertex2>,

normal_vectors

{

H

number_of_normals,
<normall>, <normal2>,

uv_vectors

{

}
LISTS

number_of_uv_vectors,
<uv_vectl>, <uv_vect2>,

texture_list

{

H

number_of_textures,
texture { Texturel },
texture { Texture2 },

INDICES
face_indices

{

H

number_of_faces,

<index_a, index_b, index_c> [,texture_index [,
texture_index, texture_index]],

<index_d, index_e, index_f> [,texture_index [,
texture_index, texture_index]],

normal_indices

{

number_of_faces,
<index_a, index_b, index_c>,
<index_d, index_e, index_f>,

H

uv_indices {

number_of_faces,
<index_a, index_b, index_c>,
<index_d, index_e, index_f>,

4.2 Finite Patch Primitives 139

MESH_MODIFIER :
inside_vector <direction> | OBJECT_MODIFIERS

mesh2 has to be specified in the orddECTORS., LISTS...INDICES... Thenormal_vectors, uv_vectors, and
texture_list sections are optional. If the number of normals equals the number of vertices then the_normal
indices section is optional and the indexes from the=_indices section are used instead. Likewise for the
uv_indices section.

Note: that the numbers of uindices must equal number of faces.

The indexes are ZERO-BASED! So the first item in each list has an index of zero.

Smooth and Flat triangles in the same mesh

You can specify both flat and smooth triangles in the same mesh. To do this, specify the smooth triangles first
in the face_indices section, followed by the flat triangles. Then, specify normal indices (indhea1_indices

section) for only the smooth triangles. Any remaining triangles that do not have normal indices associated with
them will be assumed to be flat triangles.

Mesh Triangle Textures

To specify a texture for an individual mesh triangle, specify a single integer texture index following the face-
index vector for that triangle.

To specify three textures for vertex-texture interpolation, specify three integer texture indices (separated by
commas) following the face-index vector for that triangle.

Vertex-texture interpolation and textures for an individual triangle can be mixed in the same mesh

4.2.5 Polygon

Thepolygon Object is useful for creating rectangles, squares and other planar shapes with more than three edges.
Their syntax is:

POLYGON:
polygon
{
Number_Of_Points, <Point_1> <Point_2>... <Point_n>
[OBJECT_MODIFIER...]
}

The floatNumber_Of _Points tells how many points are used to define the polygon. The poinfint _1>
through<Point _n> describe the polygon or polygons. A polygon can contain any number of sub-polygons,
either overlapping or not. In places where an even number of polygons overlaps a hole appears. When you
repeat the first point of a sub-polygon, it closes it and starts a new sub-polygon’s point sequence. This means
that all points of a sub-polygon are different.

If the last sub-polygon is not closed a warning is issued and the program automatically closes the polygon. This
is useful because polygons imported from other programs may not be closed, i.e. their first and last point are
not the same.

140 Objects

All points of a polygon are three-dimensional vectors that have to lay on the same plane. If this is not the case
an error occurs. It is common to use two-dimensional vectors to describe the polygon. POV-Ray assumes that
the z value is zero in this case.

A square polygon that matches the default planar image map is simply:
polygon {

4!
<0, 0>, <0, 1>, <1, 1>, <1, 0>

texture {
finish { ambient 1 diffuse 0 }
pigment { image_map { gif "test.gif" } }

}

//scale and rotate as needed here

}

The sub-polygon feature can be used to generate complex shapes like the letter "P”, where a hole is cut into
another polygon:

#declare P = polygon {
12,
<0, 0>, <0, 6>, <4, 6>, <4, 3>, <1, 3>, <1,0>, <0, 0>,
<1, 4>, <1, 5>, <3, 5>, <3, 4>, <1, 4>

}

The first sub-polygon (on the first line) describes the outer shape of the letter "P”. The second sub-polygon (on
the second line) describes the rectangular hole that is cut in the top of the letter "P”. Both rectangles are closed,
i.e. their first and last points are the same.

The feature of cutting holes into a polygon is based on the polygon inside/outside test used. A pointis considered
to be inside a polygon if a straight line drawn from this point in an arbitrary direction crosses an odd number of
edges (this is known akrdan’s curve theorejn

Another very complex example showing one large triangle with three small holes and three separate, small
triangles is given below:

polygon {
28,
<0, 0> <1, 0> <0, 1> <0, 0> // large outer triangle
<.3, 1> <.4, 7> <.3, .8><.3, .7> // small outer triangle #1
<.5, .5> <.6, .5> <.5, .6> <.5, .5> // small outer triangle #2
<.7, .3><.8, .3> <.7, .4> <.7, .3> // small outer triangle #3
<.5, .2> <.6, .2> <.5, .3> <.5, .2> // inner triangle #1
<.2, .5> <.3, .5> <.2, .6> <.2, .5> // inner triangle #2
<.1, .1> <.2, .1» <.1, .2> <.1, .1> // inner triangle #3

4.2.6 Triangle and Smooth Triangle

Thetriangle primitive is available in order to make more complex objects than the built-in shapes will permit.
Triangles are usually not created by hand but are converted from other files or generated by utilities. A triangle
is defined by

TRIANGLE:

4.3 Infinite Solid Primitives 141

triangle
{

<Corner_1>, <Corner_2>, <Corner_3>
[OBJECT_MODIFIER...]
}

where<Corner _n> is a vector defining the x, y, z coordinates of each corner of the triangle.

Because triangles are perfectly flat surfaces it would require extremely large numbers of very small triangles
to approximate a smooth, curved surface. However much of our perception of smooth surfaces is dependent
upon the way light and shading is done. By artificially modifying the surface normals we can simulate a smooth
surface and hide the sharp-edged seams between individual triangles.

Thesmooth_triangle primitive is used for just such purposes. The smooth triangles use a formula called Phong
normal interpolation to calculate the surface normal for any point on the triangle based on normal vectors which
you define for the three corners. This makes the triangle appear to be a smooth curved surface. A smooth
triangle is defined by

SMOOTH_TRIANGLE:
smooth_triangle
{
<Corner_1>, <Normal_ 1>, <Corner_2>,
<Normal_2>, <Corner_3>, <Normal_ 3>
[OBJECT_MODIFIER...]
}

where the corners are defined as in regular triangles amébrmal _n> is a vector describing the direction of
the surface normal at each corner.

These normal vectors are prohibitively difficult to compute by hand. Therefore smooth triangles are almost
always generated by utility programs. To achieve smooth results, any triangles which share a common vertex
should have the same normal vector at that vertex. Generally the smoothed normal should be the average of all
the actual normals of the triangles which share that point.

The mesh object is a way to combine manyiangle andsmooth_triangle Objects together in a very efficient
way. See "Mesh” for details.

4.3 Infinite Solid Primitives

There are five polynomial primitive shapes that are possibly infinite and do not respond to automatic bounding.
They are plane, cubic, poly, quadric and quartic. They do have a well defined inside and may be used in CSG
and inside a1ipped_by Statement. As with all shapes they can be translated, rotated and scaled.

4.3.1 Plane

Theplane primitive is a simple way to define an infinite flat surface. The plane is not a thin boundary or can
be compared to a sheet of paper. A plane is a solid object of infinite size that divides POV-space in two parts,
inside and outside the plane. The plane is specified as follows:

PLANE:
plane

142 Objects

<Normal>, Distance
[OBJECT_MODIFIERS...]
}

The <Normal > vector defines the surface normal of the plane. A surface normal is a vector which points up
from the surface at a 90 degree angle. This is followed by a float value that gives the distance along the normal
that the plane is from the origin (that is only true if the normal vector has unit length; see below). For example:

plane { <0, 1, 0>, 4}

This is a plane where straight up is defined in the positive y-direction. The plane is 4 units in that direction away
from the origin. Because most planes are defined with surface normals in the direction of an axis you will often
see planes defined using the y or z built-in vector identifiers. The example above could be specified as:

plane { y, 4}

The plane extends infinitely in the x- and z-directions. It effectively divides the world into two pieces. By
definition the normal vector points to the outside of the plane while any points away from the vector are defined
as inside. This inside/outside distinction is important when using planes in CSGLasn@d by. It is also
important when using fog or atmospheric media. If you place a camera on the "inside” half of the world, then
the fog or media will not appear. Such issues arise in any solid object but it is more common with planes.
Users typically know when they have accidentally placed a camera inside a sphere or box but "inside a plane”
is an unusual concept. In general you can reverse the inside/outside properties of an object by adding the object
modifier inverse. See "Inverse” and "Empty and Solid Objects” for details.

A plane is called golynomialshape because it is defined by a first order polynomial equation. Given a plane:
plane { <A, B, C>, D }
it can be represented by the equatiamx + B*y + C*z - D*sqrt(A2 + B2 + C2) = 0

Therefore our exampleplane{y, 4} is actually the polynomial equation y=4. You can think of this as a set of
all x, y, z points where all have y values equal to 4, regardless of the x or z values.

This equation is a first order polynomial because each term contains only single powers of X, y or z. A second
order equation has terms like X"2, y"2, 2°2, xy, xz and yz. Another name for a 2nd order equation is a quadric
equation. Third order polys are called cubics. A 4th order equation is a quartic. Such shapes are described in
the sections below.

4.3.2 Poly, Cubic and Quartic

Higher order polynomial surfaces may be defined by the use pfa shape. The syntax is

POLY:
poly
{
Order, <Al, A2, A3,... An>
[POLY_MODIFIERS...]

}
POLY_MODIFIERS:
sturm | OBJECT_MODIFIER

Poly default values:

sturm : off

4.3 Infinite Solid Primitives 143

where Order is an integer number from 2 to 15 inclusively that specifies the order of the equatibn.
A2, ... An are float values for the coefficients of the equation. Therenaseich terms wheren =
((Order+1)*(Order+2)*(Order+3))/6.

Thecubic object is an alternate way to specify 3rd order polys. Its syntax is:

CUBIC:
cubic

{
<Al, A2, A3,... A20>

[POLY_MODIFIERS...]
}

Also 4th order equations may be specified with ¢hertic object. Its syntax is:

QUARTIC:
quartic
{
<Al, A2, A3,... A35>
[POLY_MODIFIERS...]
}

The following table shows which polynomial terms correspond to which x,y,z factors for the orders 2 to 7.
Remembetubic is actually a 3rd order polynomial andartic is 4th order.

Polynomial shapes can be used to describe a large class of shapes including the torus, the lemniscate, etc. For
example, to declare a quartic surface requires that each of the coeffigients (A35) be placed in order

into a single long vector of 35 terms. As an example let’s define a torus the hard way. A Torus can be represented
by the equationx?® + v* + z% + 2 x2 y2 + 2 x2 22 + 2 y2 22 = 2 (r02 + r_12) %2 + 2 (r.02 - r_12) y?

-2 (r02 + 1r12) 2% + (r.02 - r12)%2 =10

Where r0 is the major radius of the torus, the distance from the hole of the donut to the middle of the ring of
the donut, and_d is the minor radius of the torus, the distance from the middle of the ring of the donut to the
outer surface. The following object declaration is for a torus having major radius 6.3 minor radius 3.5 (Making
the maximum width just under 20).

// Torus having major radius sqrt(40), minor radius sqrt(12)

quartic {
<1, 0, 0, 0, 2, 0, 0, 2, 0,
-104, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 2, 0, 56, 0,
0, 0, 0, 1, 0, -104, 0, 784 >
sturm

}

Poly, cubic and quartics are just like quadrics in that you do not have to understand one to use one. The file
shapesq. inc has plenty of pre-defined quartics for you to play with.

Polys use highly complex computations and will not always render perfectly. If the surface is not smooth, has
dropouts, or extra random pixels, try using the optional keywetdn in the definition. This will cause a slower

but more accurate calculation method to be used. Usually, but not always, this will solve the problem. If sturm
does not work, try rotating or translating the shape by some small amount.

There are really so many different polynomial shapes, we cannot even begin to list or describe them all. We
suggest you find a good reference or text book if you want to investigate the subject further.

144

Objects

2nd 3rd 4th 5th 6th 7th 5th 6th 7th 6th 7th
AL X2 X2 X2 X X8 x? As Vo xy? x%y3 Ag1 22 xZ°
A xy Xy x%y xty xdy xBy A V222 xy?Z x¥’B Ag 72 xZP
A; xz X*z X3z Xz X0z X8z Asz Y222 xy?Z2 x¥?Z2 Mgz z xz
Az x x2 x3 x4 x5 x8 Asu Yz xy’z x¥°z Ags 1 X
As V2 xy2 xB2 x3y2 xdy2 x5y Ass V2 xy? X2y2 Ags y7
As yz xyz Xyz Xqyz xlyz Xdyz Ass YZ* xyZ* Xy Ags y6z
Az y xy Xy xy xly X% Agr y22 xy22 Xy Ag y®
As 722 xz2 X222 X322 x*22 x°Z2 A yZ2 xyZ2 x%y7® Ags y°z2
Ag z xz Xz Xz Xz x°z Aso Yz Xyz Xyz Agg y°z
Apl x x2 X8 x4 x5 Asg Y Xy X2y Ago y°
Arr Voxy® xR 3y xdys As; 25 %75 255 Ao V7
A v’z xy’z xy’z X’z X’z Asy Z° xz* x2z* Ag y*z?
Al y2 o oxy? x%y? x3y?2 xty? Asz; 728 xz3 X273 Aogs y*z
A1 yz? xyz? x%yz2 x3yZ2 X%z Asy 72 xz° x%z% Ags y4
A1s yz xyz Xyz xyz Xyz Ass z Xz Xz Aogs y3z4
A1e y xy xy Xy x%y Ase 1 X X Age y3z®
Aq7 22 xz2B2 X228 X322 X4 As7 y® xy® Ag7 y3z2
A 2 xZ2 X222 X322 X2 Asg y°z Xy°z Ags y3z
Ao z xz Xz Xz xX*z Asg 5 xy® Agog y3
Ago 1 x X2 x3 x4 Aso viZ2 xy*Z? Ao y2z°
Aoy ythooxyt xdyt X3y Ag1 y'z xy*z Ajo1 y%z*
Az vz xy’z %z xyz As 4 xy* A102 y?z3
A23 y2ooxy® By Xy Aes v} xyZ Aoz y’z?
Ans V22 X222 X222 X222 Ags V2 32 A vz
Azs Y’z xy’z xy’z X%’z Aes y%z xy’z A1os y?
Aze y2 oxy? xfy? o x3y? Ass 3 xy3 A106 yz®
Ar7 yz2 xyzZ® x%yZ® x%yZ Aey v xy?’Z* Agor yz°
Aog yz2 xyz?2 x%yz?2 x%yZ2 Aes v2Z2 xy?Z® Aggs yz*
A29 yz xyz Xyz Xz As9 y’2> xy’Z® Aiog yz>
Agzp y Xy x%y x3y Ao y?z Xy?z A110 yz?
Asp A x xA B3 A7 y2 xy? A1 yz
Az 2 xz22 X2 x3A A7y yz° xyz® A112 y
A3 22 xz2 x2Z2 X3 A3 yz* xyz* Al13 z
Az z Xz Xz x3z A7y yz® xyz® Al1a 28
Ass 1 X X2 x3 Azs yz? xyz? A11s yad
Ase % xy® x2y° Ate yz Xyz Ai16 z'
Asz7 vz xy'z %'z Apg y Xy A7 z
Asg y* xy* x2y* Azs z° xz° Ais 2
Asg y3z2 xy?Z22 x%3Z2 Aqg pAd xz° A11g z
Ao v’z xy’z xy%z Ag z xz* A120 1

Table 4.4: Cubic and quartic polynomial terms

4.4 Isosurface Object 145

4.3.3 Quadric

The quadric object can produce shapes like paraboloids (dish shapes) and hyperboloids (saddle or hourglass
shapes). It can also produce ellipsoids, spheres, cones, and cylinders but you should st8etbe-one, and
cylinder oObjects built into POV-Ray because they are faster than the quadric version.

Note: do not confuse "quaDRic” with "quaRTic”. A quadric is a 2nd order polynomial while a quartic is 4th
order.

Quadrics render much faster and are less error-prone but produce less complex objects. The syntax is:

QUADRIC:
quadric
{
<A,B,C>,<D,E,F>,<G,H, I>,J
[OBJECT_MODIFIERS...]
}

Although the syntax actually will parse 3 vector expressions followed by a float, we traditionally have written
the syntax as above wher@ throughJ are float expressions. These 10 float that define a surface of x, y, z
points which satisfy the equation £x By?+CZ+Dxy+Exz+Fyz+Gx+Hy+1z+J=0

Different values oA, B, C, ... J will give different shapes. If you take any three dimensional point and
use its x, y and z coordinates in the above equation the answer will be 0 if the point is on the surface of the
object. The answer will be negative if the point is inside the object and positive if the point is outside the object.
Here are some examples:

X2+Y2+72-1=0 Sphere
X2+Y2-1=0 Infinite cylinder along the Z axis
X2+Y2-72=0 Infinite cone along the Z axis

Table 4.5: Some quartic shapes

The easiest way to use these shapes is to include the standard fifes . inc into your program. It contains
several pre-defined quadrics and you can transform these pre-defined shapes (using translate, rotate and scale)
into the ones you want. For a complete list, see the filapes.inc.

4.4 |Isosurface Object

Details about many of the things that can be done with the isosurface object are discussed in the isosurface
tutorial section. Below you will only find the syntax basics:

isosurface {
function { FUNCTION_ITEMS }
[contained_by { SPHERE | BOX }]
[threshold FLOAT_VALUE]
[accuracy FLOAT_VALUE]
[max_gradient FLOAT_VALUE]
[evaluate PO, P1, P2]
[open]
[max_trace INTEGER] | [all_intersections]
[OBJECT_MODIFIERS...]

146 Objects

}
Isosurface default values:

contained_by : box{-1,1}
threshold : 0.0
accuracy : 0.001
max_gradient : 1.1

function { ... } This must be specified and be the first item of thesurface statement. Here you place all
the mathematical functions that will describe the surface.

contained by { ... } Thecontained by 'object’ limits the area where POV-Ray samples for the surface of
the function. This container can either be a sphere or a box, both of which use the standard POV-Ray syntax. If
not specified @ox {<-1,-1,-1>, <1,1,1>} will be used as default.

contained_by { sphere { CENTER, RADIUS } }
contained_by { box { CORNER1, CORNERZ2 } }

threshold This specifies how much strength, or substance to givedbheirface. The surface appears where
the function value equals thenreshold value. The default threshold is 0.

function = threshold

accuracy The isosurface finding method is a recursive subdivision method. This subdivision goes on until the
length of the interval where POV-Ray finds a surface point is less than the speecifiedcy. The default value

is 0.001.

Smaller values produces more accurate surfaces, but it takes longer to render.

max_gradient POV-Ray can find the first intersecting point between a ray andsthe rface of any continuous
function if the maximum gradient of the function is known. Therefore you can speeify aradient for the
function. The default value is 1.1. When thex_gradient used to find the intersecting point is too high, the
render slows down considerably. When it is too low, artefacts or holes may appear on the isosurface. When it
is way too low, the surface does not show at all. While rendering the isosurface POV-Ray records the found
gradient values and prints a warning if these values are higher or much lower than the specifiediient:

Warning: The maximum gradient found was 5.257, but max_gradient of
the isosurface was set to 5.000. The isosurface may contain holes!
Adjust max_gradient to get a proper rendering of the isosurface.

Warning: The maximum gradient found was 5.257, but max_gradient of
the isosurface was set to 7.000. Adjust max_gradient to
get a faster rendering of the isosurface.

For best performance you should specify a value close to the real maximum gradient.

evaluate POV-Ray can also dynamically adapt the used meadient. To activate this technique you have to
specify theevaluate keyword followed by three parameters:

» PO: the minimum maxgradient in the estimation process,
» P1: an over-estimating factor. This means that the_ gradient is multiplied by the P1 parameter.
« P2: an attenuation parameter (1 or less)

In this case POV-Ray starts with thex_gradient valuero and dynamically changes it during the render using
p1 andr2. In the evaluation process, the P1 and P2 parameters are used in quadratic functions. This means that

4.5 Parametric Object 147

over-estimation increases more rapidly with higher values and attenuation more rapidly with lower values. Also
with dynamicmax_gradient, there can be artefacts and holes.

If you are unsure what values to use, start a render witheutiate to get a value fomax_gradient. Now you
can use it withevaluate like this:

» PO : found maxgradient * minfactor
'min_factor’ being a float between 0 and 1 to reducerthegradient to a ‘'minimum maxgradient’. The
ideal value for PO would be the average of the found meadients, but we do not have access to that
information.
A good starting point is 0.6 for the mifactor

» P1: sgrt(found maxgradient/(found maxgradient * minfactor))
'min_factor’ being the same as used in PO this will give an over-estimation factor of more than 1, based
on your minimum maxgradient and the found magradient.

* P2:1orless
0.7 is a good starting point.

When there are artifacts / holes in the isosurface, increase théactor and / or P2 a bit. Example: when the
first run gives a found magradient of 356, start with

#declare Min_factor= 0.6;
isosurface {

evaluate 356*Min_factor, sqrt(356/(356*Min_factor)), 0.7
//evaluate 213.6, 1.29, 0.7

}

This method is only an approximation of what happens internally, but it gives faster rendering speeds with the
majority of isosurfaces.

open When the isosurface is not fully contained within the contaibgdbject, there will be a cross section.
Where this happens, you will see the surface of the container. Withpthekeyword, these cross section
surfaces are removed. The inside of the isosurface becomes visible.

Note: thatopen slows down the render speed. Also, it is not recommended to use it with CSG operations.

max_trace Isosurfaces can be used in CSG shapes since they are solid finite objects - if not finite by themselves,
they are through the cross section with the container.

By default POV-Ray searches only for the first surface which the ray intersects. But when usingwafiace

in CSG operations, the other surfaces must also be found. Therefore, the keywatdce must be added to

the isosurface statement. It must be followed by an integer value. To check for all surfaces, use the keyword
all_intersections instead.

With a11_intersections POV-Ray keeps looking until all surfaces are found. Witheg trace it only checks

until that number is reached.

4.5 Parametric Object

Where the isosurface object uses implicit surface functions, F(x,y,z)=0, the parametric object is a set of equa-
tions for a surface expressed in the form of the parameters that locate points on the surface, x(u,v), y(u,v), z(u,v).
Each pair of values for u and v gives a single peiat y, z> in 3d space

148 Objects

The parametric object is not a solid object it is "hollow”, like a thin shell.
Syntax:

parametric {
function { FUNCTION_ITEMS },
function { FUNCTION_ITEMS },
function { FUNCTION_ITEMS }
<ul,vl>, <u2,v2>
[contained_by { SPHERE | BOX }]
[max_gradient FLOAT_VALUE]
[accuracy FLOAT_VALUE]
[precompute DEPTH, VarList]

}

Parametric default values:
accuracy : 0.001

The first function calculates thevalue of the surface, the secon@nd the third the value. Allowed is any
function that results in a float.

<ul,vl>, <u2,v2> boundaries of theu, v) space, in which the surface has to be calculated

containedby { ... } The containedy 'object’ limits the area where POV-Ray samples for the surface of
the function. This container can either be a sphere or a box, both of which use the standard POV-Ray syntax. If
not specified aox {<-1,-1,-1>, <1,1,1>} will be used as default.

max_gradient, It is not really the maximum gradient. It's the maximum magnitude of all six partial derivatives
over the specified ranges of u and v. That is, if you takeiu, dx/dv, dy/du, dy/dv, dz/du, anddz/dv and
calculate them over the entire range, the_gradient is the maximum of the absolute values of all of those
values.

accuracy The default value is 0.001. Smaller values produces more accurate surfaces, but take longer to render.

precompute can speedup rendering of parametric surfaces. It simply divides parametric surfaces into small ones

(2°depth) and precomputes ranges of the variables(x,y,z) which you specify after depth. The maximum depth is

20. High values of depth can produce arrays that use a lot of memory, take longer to parse and render faster. If
you declare a parametric surface with the precompute keyword and then use it twice, all arrays are in memory
only once.

Example, a unit sphere:

parametric {
function { sin(u)*cos(v) }
function { sin(u)*sin(v) }
function { cos(u) }

<0,0>, <2*pi,pi>

contained_by { sphere{0, 1.1} }
max_gradient ?7?

accuracy 0.0001

precompute 10 x,v,z

pigment {rgb 1}

4.6 Constructive Solid Geometry 149

4.6 Constructive Solid Geometry

In addition to all of the primitive shapes POV-Ray supports, you can also combine multiple simple shapes into
complex shapes usingConstructive Solid GeometCSG). There are four basic types of CSG operations:
union, intersection, difference, and merge. CSG objects can be composed of primitives or other CSG objects to
create more, and more complex shapes.

4.6.1 Inside and Outside

Most shape primitives, like spheres, boxes and blobs divide the world into two regions. One region is inside
the object and one is outside. Given any point in space you can say it is either inside or outside any particular
primitive object. Well, it could be exactly on the surface but this case is rather hard to determine due to numerical
problems.

Even planes have an inside and an outside. By definition, the surface normal of the plane points towards the
outside of the plane. You should note that triangles cannot be used as solid objects in CSG since they have no
well defined inside and outside. Triangle-based shapes (mesh2) can only be used in CSG when they are
closed objects and have an inside vector specified.

Note:: Although triangles, bicubipatches and some other shapes have no well defined inside and outside, they
have a front- and backside which makes it possible to use a texture on the front side and antextnieron
the back side.

CSG uses the concepts of inside and outside to combine shapes together as explained in the following sections.

Imagine you have two objects that partially overlap like shown in the figure below. Four different areas of points
can be distinguished: points that are neither in objexdr in objects, points that are in objeatbut not in object
B, points that are not in objeatbut in objects and last not least points that are in objectind object.

Figure 4.9: Two overlapping objects.

Keeping this in mind it will be quite easy to understand how the CSG operations work.

When using CSG it is often useful to invert an object so that it will be inside-out. The appearance of the object
is not changed, just the way that POV-Ray perceives it. When:the se keyword is used theinsideof the
shape is flipped to become thmutsideand vice versa.

The inside/outside distinction is not important fon@ion, but is important for intersection, difference,
and merge.Therefore any objects may be combined usitg on but only solid objects, i.e. objects that have a
well-defined interior can be used in the other kinds of CSG. The objects described in "Finite Patch Primitives”

150 Objects

have no well defined inside/outside. All objects described in the sections "Finite Solid Primitives” and "Infinite
Solid Primitives”.

4.6.2 Union

Figure 4.10: The union of two objects.

The simplest kind of CSG is theiion. The syntax is:

UNION:
union

{
OBJECTS. ..
[OBJECT_MODIFIERS...]
}

Unions are simply glue used to bind two or more shapes into a single entity that can be manipulated as a single
object. The image above shows the uniorr@&nds. The new object created by the union operation can be
scaled, translated and rotated as a single shape. The entire union can share a single texture but each object
contained in the union may also have its own texture, which will override any texture statements in the parent
object.

You should be aware that the surfaces inside the union will not be removed. As you can see from the figure this
may be a problem for transparent unions. If you want those surfaces to be removed you will have to use the
merge operations explained in a later section.

The following union will contain a box and a sphere.

union {
box { <-1.5, -1, -1>, <0.5, 1, 1>}
cylinder { <0.5, 0, -1>, <0.5, 0, 1>, 1}
}

Earlier versions of POV-Ray placed restrictions on unions so you often had to combine objeciswithte
statements. Those earlier restrictions have been liftedis@site is no longer needed. It is still supported for
backwards compatibility.

Split_Union

split_union IS a boolean keyword that can be added to a union. It has two stdtes, its default ison.

4.6 Constructive Solid Geometry 151

split_union IS used when photons are shot at the CSG-object. The object is split up in its compound parts,
photons are shot at each part separately. This is to prevent photons from being shot at 'empty spaces’ in the
object, for example the holes in a grid. With compact objects, without 'empty Spages’ union off can

improve photon gathering.

union {
object {...}
object {...}
split_union off

}

4.6.3 Intersection

Theintersection Object creates a shape containing only those areas where all components overlap. A point is
part of an intersection if it is inside both objectsands, as show in the figure below.

Figure 4.11: The intersection of two objects.

The syntax is:

INTERSECTION:
intersection
{
SOLID_OBJECTS. ..
[OBJECT_MODIFIERS...]
}

The component objects must have well defined inside/outside properties. Patch objects are not allowed.
Note: if all components do not overlap, the intersection object disappears.
Here is an example that overlaps:
intersection {
box { <-1.5, -1, -1>, <0.5, 1, 1>}

cylinder { <0.5, 0, -1>, <0.5, 0, 1>, 1}
}

152 Objects

4.6.4 Difference

The CS&difference operation takes the intersection between the first object and the inverse of all subsequent
objects. Thus only points inside objecand outside objeat belong to the difference of both objects.

The result is a subtraction of the 2nd shape from the first shape as shown in the figure below.

Figure 4.12: The difference between two objects.

The syntax is:

DIFFERENCE:
difference
{
SOLID_OBJECTS...
[OBJECT_MODIFIERS...]
}

The component objects must have well defined inside/outside properties. Patch objects are not allowed.
Note: if the first object is entirely inside the subtracted objects, the difference object disappears.
Here is an example of a properly formed difference:

difference {
box { <-1.5, -1, -1>, <0.5, 1, 1>}
cylinder { <0.5, 0, -1>, <0.5, 0, 1>, 1}
}

Note: internally, POV-Ray simply adds theverse keyword to the second (and subsequent) objects and then
performs an intersection.

The example above is equivalent to:

intersection {
box { <-1.5, -1, -1>, <0.5, 1, 1>}
cylinder { <0.5, 0, -1>, <0.5, 0, 1>, 1 inverse }

}

4.6.5 Merge

Theunion operation just glues objects together, it does not remove the objects’ surfaces insidethé&nder
most circumstances this does not matter. However if a transparenh is used, those interior surfaces will be

4.7 Light Sources 153

visible. The merge operations can be used to avoid this problem. It works justdiken but it eliminates the
inner surfaces like shown in the figure below.

Figure 4.13: Merge removes inner surfaces.

The syntax is:

MERGE :
merge
{
SOLID_OBJECTS...
[OBJECT_MODIFIERS...]
}

The component objects must have well defined inside/outside properties. Patch objects are not allowed.

Note: that in generaherge is slower rendering thamion when used with non transparent objects. A small test
may be needed to determine what is the optimal solution regarding speed and visual result.

4.7 Light Sources

Thelight_source is not really an object. Light sources have no visible shape of their own. They are just points
or areas which emit light. They are categorized as objects so that they can be combined with regular objects
usingunion. Their full syntax is:

LIGHT_SOURCE:
light_source
{
<Location>, COLOR
[LIGHT_MODIFIERS...]
}
LIGHT_MODIFIER:
LIGHT_TYPE | SPOTLIGHT_ITEM | AREA_LIGHT_ITEMS |
GENERAL_LIGHT_MODIFIERS
LIGHT_TYPE:
spotlight | shadowless | cylinder | parallel
SPOTLIGHT_ITEM:
radius Radius | falloff Falloff | tightness Tightness |
point_at <Spot>
PARALLEL_ITEM:

154 Objects

point_at <Spot>
AREA_LIGHT_ITEM:
area_light <Axis_1>, <Axis_2>, Size_1, Size_2 |
adaptive Adaptive | jitter Jitter | circular | orient
GENERAL_LIGHT_MODIFIERS:
looks_like { OBJECT } |
TRANSFORMATION fade_distance Fade_Distance |
fade_power Fade_Power | media_attenuation [Bool] |
media_interaction [Bool] | projected_through

Light source default values:

LIGHT_TYPE : pointlight
falloff ¢ 70
media_interaction : on
media_attenuation : off

point_at . <0,0,0>
radius : 70
tightness : 10

The different types of light sources and the optional modifiers are described in the following sections.

The first two items are common to all light sources. Kimcation > vector gives the location of the light.
The COLORgives the color of the light. Only the red, green, and blue components are significant. Any transmit
or filter values are ignored.

Note: you vary the intensity of the light as well as the color using this parameter. A color sueh as.5,
0.5,0.5> gives a white light that is half the normal intensity.

All of the keywords or items in the syntax specification above may appear in any order. Some keywords only
have effect if specified with other keywords. The keywords are grouped into functional categories to make it
clear which keywords work together. TREENERALLIGHT_MODIFIERSwork with all types of lights and all
options.

Note: that TRANSFORMATIONSuch astranslate, rotate etc. may be applied but no oth@BJECT-
MODIFIERSmay be used.

There are three mutually exclusive light types. If nGHT_TYPEis specified it is a point light. The other
choices arespot1ight andcylinder.

4.7.1 Point Lights

The simplest kind of light is a point light. A point light source sends light of the specified color uniformly in all
directions. The default light type is a point source. Kication > and COLORIs all that is required. For
example:

light_source {
<1000,1000,-1000>, rgb <1,0.75,0> //an orange light
}

4.7 Light Sources 155

4.7.2 Spotlights

Normally light radiates outward equally in all directions from the source. Howeversthe ight keyword can
be used to create a cone of light that is bright in the center and falls of to darkness in a soft fringe effect at the
edge.

Although the cone of light fades to soft edges, objects illuminated by spotlights still cast hard shadows. The
syntax is:

SPOTLIGHT_SOURCE:
light_source
{
<Location>, COLOR spotlight
[LIGHT_MODIFIERS...]
}
LIGHT_MODIFIER:
SPOTLIGHT_ITEM | AREA_LIGHT_ITEMS | GENERAL_LIGHT_MODIFIERS
SPOTLIGHT_ITEM:
radius Radius | falloff Falloff | tightness Tightness |
point_at <Spot>

Default values:

radius: 30 degrees
falloff: 45 degrees
tightness: 0

Thepoint_at keyword tells the spotlight to point at a particular 3D coordinate. A line from the location of the
spotlight to thepoint_at coordinate forms the center line of the cone of light. The following illustration will be
helpful in understanding how these values relate to each other.

location

point_at

Figure 4.14: The geometry of a spotlight.

The falloff, radius, and tightness keywords control the way that light tapers off at the edges of the cone.
These four keywords apply only when th&ot1ight Or cylinder keywords are used.

The falloff keyword specifies the overall size of the cone of light. This is the point where the light falls off

to zero intensity. The float value you specify is the angle, in degrees, between the edge of the cone and center
line. The radius keyword specifies the size of the "hot-spot” at the center of the cone of light. The "hot-spot”

is a brighter cone of light inside the spotlight cone and has the same center lineadThevalue specifies the

156 Objects

angle, in degrees, between the edge of this bright, inner cone and the center line. The light inside the inner cone
is of uniform intensity. The light between the inner and outer cones tapers off to zero.

For example, assumingtaghtness 0, with radius 10 andfalloff 20 the light from the center line out to 10
degrees is full intensity. From 10 to 20 degrees from the center line the light falls off to zero intensity. At 20
degrees or greater there is no light.

Note: if the radius and falloff values are close or equal the light intensity drops rapidly and the spotlight has a
sharp edge.

The values for theadius, andtightness parameters are half the opening angles of the corresponding cones,
both angles have to be smaller than 90 degrees. The light smoothly falls off between the radius and the falloff
angle like shown in the figures below (as long as the radius angle is not negative).

1.0

— radius =0

radius = 15
===~ radius = 30
——=- radius = 45

0.5

Light intensity multiplier

0.0 -
00 100 200 30.0 400 500 60.0 700 80.0 90.0
Angle between light ray and spotlight's centerline

Figure 4.15: Intensity multiplier curve with a fixed falloff angle of 45 degrees.

—— falloff = 45 hY
falloff = 60
---- falloff = 75 W\
——- falloff = 90 \ \

0.5 VoA
\

Light intensity multiplier

\ .
0.0
0.0 10.0 20.0 30.0 400 500 600 70.0 800 90.0

Angle between light ray and spotlight's centerline

Figure 4.16: Intensity multiplier curve with a fixed radius angle of 45 degrees.

Thetightness keyword is used to specify aadditionalexponential softening of the edges. A value other than

0, will affect light within the radius cone as well as light in the falloff cone. The intensity of light at an angle
from the center line is given byntensity * cos(angle)tightness . The default value for tightness is 0.
Lower tightness values will make the spotlight brighter, making the spot wider and the edges sharper. Higher
values will dim the spotlight, making the spot tighter and the edges softer. Values from 0 to 100 are acceptable.

You should note from the figures that the radius and falloff angles interact with the tightness parameter. To give
the tightness value full control over the spotlight's appearance use radius 0 falloff 90. As you can see from

4.7 Light Sources 157

0.5

Light intensity multiplier

0.

.0
0.0 10.0 20.0 30.0 400 500 600 70.0 800 90.0
Angle between light ray and spotlight's centerline

Figure 4.17: Intensity multiplier curve with fixed angle and falloff angles of 30 and 60 degrees respectively and
different tightness values.

the figure below. In that case the falloff angle has no effect and the lit area is only determined by the tightness
parameter.

Light intensity multiplier

00 100 200 300 400 500 600 70.0 800 90.0
Angle between light ray and spotlight's centerline

Figure 4.18: Intensity multiplier curve with a negative radius angle and different tightness values.

Spotlights may be used anyplace that a normal light source is used. Like any light sources, they are invisible.
They may also be used in conjunction with area lights.

4.7.3 Cylindrical Lights

Thecylinder keyword specifies a cylindrical light source that is great for simulating laser beams. Cylindrical
light sources work pretty much like spotlights except that the light rays are constrained by a cylinder and not a
cone. The syntax is:

CYLINDER_LIGHT_SOURCE:
light_source
{
<Location>, COLOR cylinder
[LIGHT_MODIFIERS...]

158 Objects

LIGHT_MODIFIER:
SPOTLIGHT_ITEM | AREA_LIGHT_ITEMS | GENERAL_LIGHT_MODIFIERS
SPOTLIGHT_ITEM:
radius Radius | falloff Falloff | tightness Tightness |
point_at <Spot>

Default values:

radius: 0.75 degrees
falloff: 1 degrees
tightness: 0

Thepoint_at, radius, falloff andtightness keywords control the same features as with the spotlight. See
"Spotlights” for details.

You should keep in mind that the cylindrical light source is still a point light source. The rays are emitted from
one point and are only constraint by a cylinder. The light rays are not parallel.

4.7.4 Parallel Lights

syntax:

light_source {
LOCATION_VECTOR, COLOR
[LIGHT_SOURCE_ITEMS...]
parallel
point_at VECTOR

}

Theparallel keyword can be used with any type of light source.
Note: for normal point lightspoint _at must come afteparallel.

Parallel lights are useful for simulating very distant light sources, such as sunlight. As the name suggests, it
makes the light rays parallel.

Technically this is done by shooting rays from the closest point on a plane to the object intersection point. The
plane is determined by a perpendicular defined by the lightt ion and thepoint _at vector.

Two things must be considered when choosing the light location (specifically, its distance):

1. Any parts of an object "above” the light plane still get illuminated according to the light direction, but
they will not cast or receive shadows.

2. fade_distance andfade_power use the lightlocation to determine distance for light attenuation, so the
attenuation still looks like that of a point source.
Area light also uses the light location in its calculations.

4.7.5 ArealLights

Area light sources occupy a finite, one- or two-dimensional area of space. They can cast soft shadows because
an object can partially block their light. Point sources are either totally blocked or not blocked.

4.7 Light Sources 159

The area_1ight keyword in POV-Ray creates sources that are rectangular in shape, sort of like a flat panel
light. Rather than performing the complex calculations that would be required to model a true area light, it is
approximated as an array of point light sources spread out over the area occupied by the light. The array-effect
applies to shadows only. The object’s illumination is still that of a point source. The intensity of each individual
point light in the array is dimmed so that the total amount of light emitted by the light is equal to the light color
specified in the declaration. The syntax is:

AREA_LIGHT_SOURCE:

light_source {
LOCATION_VECTOR, COLOR
area_light
AXIS_1_VECTOR, AXIS_2_VECTOR, Size_1, Size_2
[adaptive Adaptive] [jitter]
[circular] [orient]
[[LIGHT_MODIFIERS...]
}

Any type of light source may be an area light.

The aredight command defines the location, the size and orientation of the area light as well as the number
of lights in the light source array. The location vector is the centre of a rectangle defined by the two vectors
<Axis _1> and<Axis _2>. These specify the lengths and directions of the edges of the light.

Figure 4.19: 4x4 Area light, location and vectors.

Since the area lights are rectangular in shape these vectors should be perpendicular to each other. The larger the
size of the light the thicker the soft part of shadows will be. The integers Bared Size2 specify the number

of rows and columns of point sources of the. The more lights you use the smoother your shadows will be but
the longer they will take to render.

Note: it is possible to specify spotlight parameters along with the area light parameters to create area spotlights.
Using area spotlights is a good way to speed up scenes that use area lights since you can confine the lengthy
soft shadow calculations to only the parts of your scene that need them.

An interesting effect can be created using a linear light source. Rather than having a rectangular shape, a linear
light stretches along a line sort of like a thin fluorescent tube. To create a linear light just create an area light
with one of the array dimensions set to 1.

The jitter command is optional. When used it causes the positions of the point lights in the array to be

160 Objects

randomly jittered to eliminate any shadow banding that may occur. The jittering is completely random from
render to render and should not be used when generating animations.

Theadaptive command is used to enable adaptive sampling of the light source. By default POV-Ray calculates
the amount of light that reaches a surface from an area light by shooting a test ray at every point light within
the array. As you can imagine this is very slow. Adaptive sampling on the other hand attempts to approximate
the same calculation by using a minimum number of test rays. The number specified after the keyword controls
how much adaptive sampling is used. The higher the number the more accurate your shadows will be but the
longer they will take to render. If you are not sure what value to use a good starting paingsive 1. The

adaptive keyword only accepts integer values and cannot be set lower than O.

When performing adaptive sampling POV-Ray starts by shooting a test ray at each of the four corners of the
area light. If the amount of light received from all four corners is approximately the same then the area light
is assumed to be either fully in view or fully blocked. The light intensity is then calculated as the average
intensity of the light received from the four corners. However, if the light intensity from the four corners differs
significantly then the area light is partially blocked. The area light is split into four quarters and each section
is sampled as described above. This allows POV-Ray to rapidly approximate how much of the area light is in
view without having to shoot a test ray at every light in the array. Visually the sampling goes like shown below.

level O level 1 level 2
2x2 rays 3x3 rays 5x5 rays
® e O @ O 080 O

: : : o000
e e e 060 O
° ¢ O @0 O 0O

@® new ray samples

O samples reused from the previous level

Figure 4.20: Area light adaptive samples.

While the adaptive sampling method is fast (relatively speaking) it can sometimes produce inaccurate shadows.
The solution is to reduce the amount of adaptive sampling without completely turning it off. The number after
the adaptive keyword adjusts the number of times that the area light will be split before the adaptive phase
begins. For example if you usedaptive 0 a minimum of 4 rays will be shot at the light. If you useiaptive

1 a minimum of 9 rays will be shok(aptive 2 gives 25 raysadaptive 3 gives 81 rays, etc). Obviously the

more shadow rays you shoot the slower the rendering will be so you should use the lowest value that gives
acceptable results.

The number of rays never exceeds the values you specify for rows and columns of points. For example
light x,y,4,4 specifies a 4 by 4 array of lights. If you specifyaptive 3 it would mean that you should start
with a 9 by 9 array. In this case no adaptive sampling is done. The 4 by 4 array is used.

The circular command has been added to area lights in order to better create circular soft shadows. With
ordinary area lights the pseudo-lights are arranged in a rectangular grid and thus project partly rectangular
shadows around all objects, including circular objects.

By including thecircular tag in an area light, the light is stretched and squashed so that it looks like a circle:
this way, circular or spherical light sources are better simulated.

A few things to remember:

4.7 Light Sources 161

* Circular area lights can be ellipses: the AXISYECTOR and AXIS2_ VECTOR define the shape and
orientation of the circle; if the vectors are not equal, the light source is elliptical in shape.

» Rectangular artefacts may still show up with very large area grids.
» There is no point in usingircular with linear area lights or area lights which have a 2x2 size.

» The area of a circular light is roughly 78.5 per cent of a similar size rectangular area light. Increase your
axis vectors accordingly if you wish to keep the light source area constant.

Theorient command has been added to area lights in order to better create soft shadows. Without this modifier,
you have to take care when choosing the axis vectors of anligtdga since they define both its area and
orientation.

Area lights are two dimensional: shadows facing the area light receive light from a larger surface area than
shadows at the sides of the area light.

soft shadow

area light

full shadow

Figure 4.21: Area light facing object

Actually, the area from which light is emitted at the sides of the area light is reduced to a single line, only casting
soft shadows in one direction.

soft shadow

area light

full shadow

Figure 4.22: Area light not facing object

Between these two extremes the surface area emitting light progresses gradually.

By including theorient modifier in an area light, the light is rotated so that for every shadow test, it always
faces the point being tested. The initial orientation is no longer important, so you only have to consider the
desired dimensions (area) of the light source when specifying the axis vectors.

In effect, this makes the area light source appear 3-dimensional (e.g. alighteaith perpendicular axis
vectors of the same size and dimensions usingular andorient simulates a spherical light source).

162 Objects

Orient has a few restrictions:
1. It can be used with "circular” lights only.
2. The two axes of the area light must be of equal length.

3. The two axes of the area light should use an equal number of samples, and that number should be greater
than one

These three rules exist because without them, you can get unpredictable results from the orient feature.

If one of the first two rules is broken, POV will issue a warning and correct the problem. If the third rule is
broken, you will only get the error message, and POV will not automatically correct the problem.

4.7.6 Shadowless Lights

Using theshadowless keyword you can stop a light source from casting shadows. These lights are sometimes
called "fill lights”. They are another way to simulate ambient light however shadowless lights have a definite
source. The syntax is:

SHADOWLESS_LIGHT_SOURCE:
light_source
{
<Location>, COLOR shadowless
[LIGHT_MODIFIERS...]

}
LIGHT_MODIFIER:
AREA_LIGHT_ITEMS | GENERAL_LIGHT_MODIFIERS

shadowless may be used with all types of light sources. The only restriction is ¢hatowless should be
before or afterll spotlight or cylinder option keywords. Do not mix or you get the message "Keyword 'the
one following shadowless’ cannot be used with standard light source”. Also note that shadowless lights will not
cause highlights on the illuminated objects.

4.7.7 Lookslike

Normally the light source itself has no visible shape. The light simply radiates from an invisible point or area.
You may give a light source any shape by adding&s_1ike { OBJECT} statement.

There is an impliecho_shadow attached to thelooks_like Object so that light is not blocked by the object.
Without the automati@ao_shadow the light inside the object would not escape. The object would, in effect, cast
a shadow over everything.

If you want the attached object to block light then you should attach it withian and not alcoks_l1ike as
follows:

union {
light_source { <100, 200, -300> color White }
object { My_Lamp_Shape }

}

Presumably parts of the lamp shade are transparent to let some light out.

4.7 Light Sources 163

4.7.8 ProjectedThrough

Syntax:

light_source {
LOCATION_VECTOR, COLOR
[LIGHT_SOURCE_ITEMS...]
projected_through { OBJECT }
}

Projectedthrough can be used with any type of light source. Any object can be used, provided it has been
declared before.

Projecting a light through an object can be thought of as the opposite of shadowing: only the light rays that hit
the projectedhrough object will contribute to the scene.

This also works with aredights, producing spots of light with soft edges.

Any objects between the light and the projected through object will not cast shadows for this light. Also any
surface within the projected through object will not cast shadows.

Any textures or interiors on the object will be stripped and the object will not show up in the scene.

4.7.9 Light Fading

By default POV-Ray does not diminish light from any light source as it travels through space. In order to get
a more realistic effectfade_distance andfade_power keywords followed by float values can be used to model
the distance based falloff in light intensity.

Thefade_distance is used to specify the distance at which the full light intensity arrives, i. e. the intensity which
was given by theCOLORSspecification. The actual attenuation is described bytthe power Fade Power,
which determines the falloff rate. For example linear or quadratic falloff can be used by settingpwer to 1

or 2 respectively. The complete formula to calculate the factor by which the light is attenuated is

. 2
attenuation=

fade_power
fad&distance)

1+(d

Table 4.5:

with d being the distance the light has traveled.

You should note two important facts: First, fesde Distance larger than one the light intensity at distances
smaller tharFade Distance actually increases. This is necessary to get the light source color if the distance
traveled equals th€ade Distance . Second, only light coming directly from light sources is attenuated.
Reflected or refracted light is not attenuated by distance.

4.7.10 Atmospheric Media Interaction

By default light sources will interact with an atmosphere added to the scene. This behavior can be switched off
by usingmedia_interaction off inside the light source statement.

Note: in POV-Ray 3.0 this feature was turned off and on with the atmosphere keyword.

164 Objects

no fading

fading power 1
=-=== fading power 2
—-— fading power 3

Light intensity multiplier

b
o

0.0
0.0

Relative distance to light source

Figure 4.23: Light fading functions for different fading powers.

4.7.11 Atmospheric Attenuation

Normally light coming from light sources is not influenced by fog or atmospheric media. This can be changed
by turning themedia_attenuation on for a given light source on. All light coming from this light source will

now be diminished as it travels through the fog or media. This results in an distance-based, exponential intensity
falloff ruled by the used fog or media. If there is no fog or media no change will be seen.

Note:in POV-Ray 3.0 this feature was turned off and on with the atmosplagteniuation keyword.

4.8 Light Groups

Light groups make it possible to create a 'union’ of ligltturces and objects, where the objects in the group
are illuminated by the lights in the group or, if desired, also by the global Bglatces. The lighsources in the
group can only illuminate the objects that are in the group.

Light_groups are for example useful when creating scenes in which some objects turn out to be too dark but
the average light is exactly how it should be, as the ligitrces in the group do not contribute to the global
lighting.

Syntax :

light_group {
LIGHT_GROUP LIGHT |
LIGHT_GROUP OBJECT |
LIGHT_GROUP
[LIGHT_GROUP MODIFIER]
}

LIGHT_GROUP LIGHT:

light_source | light_source IDENTIFIER
LIGHT_GROUP OBJECT:

OBJECT | OBJECT IDENTIFIER
LIGHT_GROUP MODIFIER:

global_lights BOOL | TRANSFORMATION

4.8 Light Groups 165

global_lights. Add this command to the liglgroup to have objects in the group also be illuminated by global
light sources.

Light groups may be nested. In this case light groups inherit the light sources of the light group they are
contained by.

Light groups can be seen as a 'union of an object with liginirce’ and can be used in CSG.
Examples, simple lighgroup:

#declare RedLight = light_source {
<-500,500,-500>
rgb <1,0,0>

}

light_group {
light_source {RedLight}
sphere {0,1 pigment {rgb 1}}
global_lights off

}

Nested lightgroup:

#declare L1 = light_group {
light_source {<10,10,0>, rgb <1,0,0>}
light_source {<0,0,-100>, rgb <0,0,1>}
sphere {0,1 pigment {rgb 1}}

light_group {
light_source {<0,100,0>, rgb 0.5}
light_group {L1}

Light_groups in CSG:

difference {

light_group {
sphere {0,1 pigment {rgb 1}}
light_source {<-100,0,-100> rgb <1,0,0>}
global_lights off

}

light_group {
sphere {<0,1,0>,1 pigment {rgb 1}}
light_source {<100,100,0> rgb <0,0,1>}
global_lights off

}

rotate <-45,0,0>

In the last example the result will be a sphere illuminated red, where the part that is differenced away is
illuminated blue. In result comparable to the difference between two spheres with a different pigment.

166 Objects

4.9 Object Modifiers

A variety of modifiers may be attached to objects. The following items may be applied to any object:

OBJECT_MODIFIER:
clipped_by { UNTEXTURED_SOLID_OBJECT... }
clipped_by { bounded_by }
bounded_by { UNTEXTURED_SOLID_OBJECT... }
bounded_by { clipped_by }
no_shadow
no_image [Bool]
no_reflection [Bool]
inverse
sturm [Bool]
hierarchy [Bool]
double_illuminate [Bool]
hollow [Bool]
interior { INTERIOR_ITEMS... } |
material { [MATERIAL_IDENTIFIER] [MATERIAL_ITEMS...] } |
texture { TEXTURE_BODY } |
interior_texture { TEXTURE_BODY } |
pigment { PIGMENT_BODY } |
normal { NORMAL_BODY }
finish { FINISH_ITEMS... } |
photons { PHOTON_ITEMS...}
TRANSFORMATION

Transformations such as translate, rotate and scale have already been discussed. The modifiers "Textures” and its
parts "Pigment”, "Normal”, and "Finish” as well as "Interior”, and "Media” (which is part of interior) are each

in major chapters of their own below. In the sub-sections below we cover several other important modifiers:
clipped_by, bounded_by, material, inverse, hollow, no_shadow, no_image, no_reflection, double_illuminate

andsturm. Although the examples below use object statements and object identifiers, these modifiers may be
used on any type of object such as sphere, box etc.

49.1 ClippedBy

The clipped.-by statement is technically an object modifier but it provides a type of CSG similar to CSG
intersection. The syntax is:

CLIPPED_BY:
clipped_by { UNTEXTURED_SOLID_OBJECT... } |
clipped_by { bounded_by }

WhereUNTEXTUREDSOLID OBJECTis one or more solid objects which have had no texture applied. For
example:

object {
My_Thing
clipped_by{plane{y,0}}
}

Every part of the objeaty_Thing that is inside the plane is retained while the remaining part is clipped off
and discarded. In anintersection object the hole is closed off. Withclipped by it leaves an opening. For

4.9 Object Modifiers 167

example the following figure shows objecbeing clipped by objeat.

Figure 4.24: An object clipped by another object.

You may use:1ipped_by to slice off portions of any shape. In many cases it will also result in faster rendering
times than other methods of altering a shape. Occasionally you will want to uset theed by andbounded_by
options with the same object. The following shortcut saves typing and uses less memory.

object {
My_Thing
bounded_by { box { <0,0,0>, <1,1,1> } }
clipped_by { bounded_by }

}

This tells POV-Ray to use the same box as a clip that was used as a bound.

4.9.2 BoundedBy

The calculations necessary to test if a ray hits an object can be quite time consuming. Each ray has to be tested
against every object in the scene. POV-Ray attempts to speed up the process by building a set of invisible boxes,
called bounding boxes, which cluster the objects together. This way a ray that travels in one part of the scene
does not have to be tested against objects in another, far away part of the scene. When a large number of objects
are present the boxes are nested inside each other. POV-Ray can use bounding boxes on any finite object and
even some clipped or bounded quadrics. However infinite objects (such as a planes, quartic, cubic and poly)
cannot be automatically bound. CSG objects are automatically bound if they contain finite (and in some cases
even infinite) objects. This works by applying the CSG set operations to the bounding boxes of all objects
used inside the CSG object. For difference and intersection operations this will hardly ever lead to an optimal
bounding box. It is sometimes better (depending on the complexity of the CSG object) to have you place a
bounding shape yourself using ounded_by Statement.

Normally bounding shapes are not necessary but there are cases where they can be used to speed up the rendering
of complex objects. Bounding shapes tell the ray-tracer that the object is totally enclosed by a simple shape.
When tracing rays, the ray is first tested against the simple bounding shape. If it strikes the bounding shape the
ray is further tested against the more complicated object inside. Otherwise the entire complex shape is skipped,
which greatly speeds rendering. The syntax is:

BOUNDED_BY:
bounded_by { UNTEXTURED_SOLID_OBJECT... } |
bounded_by { clipped_by }

168 Objects

WhereUNTEXTUREDSOLID OBJECTis one or more solid objects which have had no texture applied. For
example:

intersection {

sphere { <0,0,0>, 2 }

plane { <0,1,0>, 0 }

plane { <1,0,0>, 0 }

bounded_by { sphere { <0,0,0>, 2 } }
}

The best bounding shape is a sphere or a box since these shapes are highly optimized, although, any shape may
be used. If the bounding shape is itself a finite shape which responds to bounding slabs then the object which it
encloses will also be used in the slab system.

While it may a good idea to manually add@&inded by to intersection, difference and merge, it is bestéwer

bound a union. If a union has neounded_by POV-Ray can internally split apart the components of a union and
apply automatic bounding slabs to any of its finite parts. Note that some utilities suehwasov may be able

to generate bounds more efficiently than POV-Ray’s current system. However most unions you create yourself
can be easily bounded by the automatic system. For technical reasons POV-Ray cannot split a merge object. It
is maybe best to hand bound a merge, especially if it is very complex.

Note: if bounding shape is too small or positioned incorrectly it may clip the object in undefined ways or
the object may not appear at all. To do true clipping, us®ped by as explained in the previous section.
Occasionally you will want to use the ipped_by andbounded_by options with the same object. The following
shortcut saves typing and uses less memory.

object {
My_Thing
clipped_by{ box { <0,0,0>,<1,1,1 > }}
bounded_by{ clipped_by }

}

This tells POV-Ray to use the same box as a bound that was used as a clip.

4.9.3 Material

One of the changes in POV-Ray 3.1 was the removal of several items framure { finish{...} } and to
move them to the newinterior statement. Thealo statement, formerly part afexture, is now renamed
media and made a part of theiterior.

This split was deliberate and purposeful (see "Why are Interior and Media Necessary?”) however beta testers
pointed out that it made it difficult to entirely describe the surface properties and interior of an object in one
statement that can be referenced by a single identifier in a texture library.

The result is that we created a "wrapper” arouféxture and interior which we callmaterial.

The syntax is:

MATERIAL:
material { [MATERIAL_IDENTIFIER] [MATERIAL ITEMS...] }
MATERIAL ITEMS:
TEXTURE | INTERIOR_TEXTURE | INTERIOR | TRANSFORMATIONS

For example:

4.9 Object Modifiers 169

#declare MyGlass=material{ texture{ Glass_T } interior{ Glass_I }}
object { MyObject material{ MyGlass}}

Internally, the "material” is not attached to the object. The material is just a container that brings the texture and
interior to the object. It is the texture and interior itself that is attached to the object. Users should still consider
texture and interior as separate items attached to the object.

The material is just a "bucket” to carry them. If the object already has a texture, then the material texture is
layered over it. If the object already has an interior, the material interior fully replaces it and the old interior
is destroyed. Transformations inside the material affect only the textures and interiors which are inside the
material{} wrapper and only those textures or interiors specified are affected. For example:

object {
MyObject
material
texture { MyTexture }
scale 4 //affects texture but not object or interior

interior { MyInterior }
translate 5*x //affects texture and interior, not object

}

Note: Thematerial statement has nothing to do with the erial map statement. Aaterial map iS nota way
to create patterned material. See "Material Maps” for explanation of this unrelated, yet similarly named, older
feature.

49.4 Inverse

When using CSG it is often useful to invert an object so that it will be inside-out. The appearance of the object
is not changed, just the way that POV-Ray perceives it. Whenthe se keyword is used theinsideof the
shape is flipped to become tbatsideand vice versa. For example:

object { MyObject inverse }

The inside/outside distinction is also important when attachingrior to an object especially ifedia is also
used. Atmospheric media and fog also do not work as expected if your camera is inside an object. Using
inverse is useful to correct that problem.

495 Hollow

POV-Ray by default assumes that objects are made of a solid material that completely fills the interior of an
object. By adding thenhol1ow keyword to the object you can make it hollow, also see the "Empty and Solid
Objects” chapter. That is very useful if you want atmospheric effects to exist inside an object. Itis even required
for objects containing an interior media. The keyword may optionally be followed by a float expression which
is interpreted as a boolean value. For examplaow off may be used to force it off. When the keyword is
specified alone, it is the sametas low on. By defaulthollow is of£ when not specified.

In order to get a hollow CSG object you just have to make the top level object hollow. All children will assume
the same hollow State except when their state is explicitly set. The following example will set both spheres
inside the union hollow

170 Objects

union {
sphere { -0.5*x,
sphere { 0.5*x,
hollow

}

}

1
1}

while the next example will only set the second sphere hollow because the first sphere was explicitly set to be
not hollow.

union {
sphere { -0.5*x, 1 hollow off }
sphere { 0.5*x, 1}
hollow on

49.6 NaShadow

You may specify theio_shadow keyword in an object to make that object cast no shadow. This is useful for
special effects and for creating the illusion that a light source actually is visible. This keyword was necessary in
earlier versions of POV-Ray which did not have theoks_1ike statement. Now it is useful for creating things

like laser beams or other unreal effects. During test rendering it speeds thingsupdfiow is applied.

Simply attach the keyword as follows:

object {
My_Thing
no_shadow

}

4.9.7 Nalmage, NaReflection

Syntax:

OBJECT {
[OBJECT_ITEMS...]
no_image
no_reflection

}

These two keywords are very similar in usage and function tadhgadow keyword, and control an object’s
visibility.

You can use any combination of the three with your object.

Whenno_image is used, the object will not be seen by the camera, either directly or through transparent/refractive

objects. However, it will still cast shadows, and show up in reflections (ualessfiection and/Omo_shadow
is used also).

Whenno_reflection is used, the object will not show up in reflections. It will be seen by the camera (and
through transparent/refractive objects) and cast shadows, unlessge and/orno_shadow is used.

Using these three keywords you can produce interesting effects like a sphere casting a rectangular shadow, a
cube that shows up as a cone in mirrors, etc.

4.9 Object Modifiers 171

4.9.8 Doublellluminate

Syntax:

OBJECT {
[OBJECT_ITEMS...]
double_illuminate

}

A surface has two sides; usually, only the side facing the light source is illuminated, the other side remains in
shadow. Wherouble_illuminate is used, the other side is also illuminated.
This is useful for simulating effects like translucency (as in a lamp shade, sheet of paper, etc).

Note: double_illuminate only illuminates both sides of the same surface, so on a sphere, for example, you will
not see the effect unless the sphere is either partially transparent, or if the camera is inside and the light source
outside of the sphere (or vise versa).

499 Sturm

Some of POV-Ray’s objects allow you to choose between a fast but sometimes inaccurate root solver and a
slower but more accurate one. This is the case for all objects that involve the solution of a cubic or quartic
polynomial. There are analytic mathematical solutions for those polynomials that can be used.

Lower order polynomials are trivial to solve while higher order polynomials require iterative algorithms to solve
them. One of those algorithms is the Sturmian root solver. For example:

blob {
threshold .65
sphere { <.5,0,0>, .8,
sphere { <-.5,0,0>,.8,
sturm

1}
11}

The keyword may optionally be followed by a float expression which is interpreted as a boolean value. For
examplesturm off may be used to force it off. When the keyword is specified alone, it is the sameas
on. By defaultsturn is o£ £ when not specified.

The following list shows all objects for which the Sturmian root solver can be used.
* blob
* cubic
« lathe (only with quadratic splines)
* poly
* prism (only with cubic splines)
* quartic

* SOr

172 Objects

Chapter 5

Textures

Thetexture statement is an object modifier which describes what the surface of an object looks like, i.e. its
material. Textures are combinations of pigments, normals, and finishes. Pigment is the color or pattern of colors
inherent in the material. Normal is a method of simulating various patterns of bumps, dents, ripples or waves
by modifying the surface normal vector. Finish describes the reflective properties of a material.

Note: that in previous versions of POV-Ray, the texture also contained information about the interior of an
object. This information has been moved to a separate object modifier calletior. See ”Interior” for
details.

There are three basic kinds of textures: plain, patterned, and layerguairtextureconsists of a single
pigment, an optional normal, and a single finish.pétterned textureombines two or more textures using a
block pattern or blending function pattern. Patterned textures may be made quite complex by nesting patterns
within patterns. At the innermost levels however, they are made up from plain texturésyered texture
consists of two or more semi-transparent textures layered on top of one another.

Note: although we call a plain textunglain it may be a very complex texture with patterned pigments and
normals. The termplain only means that it has a single pigment, normal, and finish.

The syntax forexture is as follows:

TEXTURE :
PLAIN_TEXTURE | PATTERNED_TEXTURE | LAYERED_TEXTURE
PLAIN_TEXTURE:
texture
{
[TEXTURE_IDENTIFIER]
[PNF_IDENTIFIER...]
[PNF_ITEMS...]
}
PNF_IDENTIFIER:
PIGMENT_IDENTIFIER | NORMAL_IDENTIFIER | FINISH_IDENTIFIER
PNF_ITEMS:
PIGMENT | NORMAL | FINISH | TRANSFORMATION
LAYERED_TEXTURE:
NON_PATTERNED_TEXTURE. ..
PATTERNED_TEXTURE:

174 Textures

texture
{
[PATTERNED_TEXTURE_ID]
[TRANSFORMATIONS...]
bl
texture
{
PATTERN_TYPE
[TEXTURE_PATTERN_MODIFIERS...]
b
texture
{
tiles TEXTURE tile2 TEXTURE
[TRANSFORMATIONS...]
b
texture
{
material_map
{
BITMAP_TYPE "bitmap.ext"
[MATERIAL_MODS...] TEXTURE... [TRANSFORMATIONS...]
}
}
TEXTURE_PATTERN_MODIFIER:
PATTERN_MODIFIER | TEXTURE_LIST |
texture_map { TEXTURE_MAP_BODY }

In the PLAIN.TEXTURE each of the items are optional but if they are presenffEXTUREIDENTIFIER
must be first. If no texture identifier is given, then POV-Ray creates a copy of the default texture. See "The
#default Directive” for details.

Next are optional pigment, normal, and/or finish identifiers which fully override any pigment, normal and
finish already specified in the previous texture identifier or default texture. Typically this is used for backward
compatibility to allow things liketexture { MyPigment } wheremypigment is a pigment identifier.

Finally we have optionadigment, normal Or finish statements which modify any pigment, normal and finish
already specified in the identifier. If no texture identifier is specified thenent, normal andfinish statements
modify the current default values. This is the typical plain texture:

texture {
pigment { MyPigment }
normal { MyNormal }
finish { MyFinish }
scale SoBig
rotate SoMuch
translate SoFar

}

The TRANSFORMATIONSay be interspersed between the pigment, normal and finish statements but are
generally specified last. If they are interspersed, then they modify only those parts of the texture already
specified. For example:

texture {
pigment { MyPigment }
scale SoBig //affects pigment only

5.1 Pigment 175

normal { MyNormal }

rotate SoMuch //affects pigment and normal

finish { MyFinish }

translate SoFar //finish is never transformable no matter what.
//Therefore affects pigment and normal only

}

Texture identifiers may be declared to make scene files more readable and to parameterize scenes so that chang-
ing a single declaration changes many values. An identifier is declared as follows.

TEXTURE_DECLARATION:
#declare IDENTIFIER = TEXTURE |
#local IDENTIFIER = TEXTURE

WherelIDENTIFIERIs the name of the identifier up to 40 characters long BBATUREis any validtexture
statement. See "#declare vs. #local” for information on identifier scope.

The sections below describe all of the options available in "Pigment”, "Normal”, and "Finish” which are the
main part of plain textures.. There are also separate sections for "Patterned Textures” and "Layered Textures”
which are made up of plain textures.

Note: thetiles andmaterial_map versions of patterned textures are obsolete and are only supported for back-
wards compatibility.

5.1 Pigment

The color or pattern of colors for an object is defined by ament statement. All plain textures must have a
pigment. If you do not specify one the default pigment is used. The color you define is the way you want the
object to look if fully illuminated. You pick the basic color inherent in the object and POV-Ray brightens or
darkens it depending on the lighting in the scene. The parameter is galtedit because we are defining the
basic color the object actually is rather than how it looks.

The syntax for pigment is:

PIGMENT:
pigment {
[PIGMENT_IDENTIFIER]
[PIGMENT_TYPE]
[PIGMENT_MODIFIER...]
}
PIGMENT_TYPE:
PATTERN_TYPE | COLOR |
image_map {
BITMAP_TYPE "bitmap.ext" [IMAGE_MAP_MODS...]
}
PIGMENT_MODIFIER:
PATTERN_MODIFIER | COLOR_LIST | PIGMENT_LIST |
color_map { COLOR_MAP_BODY } | colour_map { COLOR_MAP_BODY } |
pigment_map { PIGMENT_MAP_BODY } | quick_color COLOR |
quick_colour COLOR

Each of the items in a pigment are optional but if they are present, they must be in the order shown. Any items
after the PIGMENT.IDENTIFIERmodify or override settings given in the identifier. If no identifier is specified

176 Textures

then the items modify the pigment values in the current default texturePTGBRIENTTYPEfall into roughly

four categories. Each category is discussed the sub-sections which follow. The four categories are solid color
and image map patterns which are specifigitgment Statements or color list patterns, color mapped patterns
which use POV-Ray’s wide selection of general patterns. See "Patterns” for details about specific patterns.

The pattern type is optionally followed by one or more pigment modifiers. In addition to general pattern mod-
ifiers such as transformations, turbulence, and warp modifiers, pigments may alsoC@QUORLIST, PIG-
MENT_LIST, color_map, pigment map, andquick_color Which are specific to pigments. See "Pattern Modifiers”

for information on general modifiers. The pigment-specific modifiers are described in sub-sections which fol-
low. Pigment modifiers of any kind apply only to the pigment and not to other parts of the texture. Modifiers
must be specified last.

A pigment statement is part oftaxture specification. However it can be tedious to useaure Statement
just to add a color to an object. Therefore you may attach a pigment directly to an object without explicitly
specifying that it as part of a texture. For example instead of this:

object { My_Object texture {pigment { color Red } } }
you may shorten it to:
object { My_Object pigment {color Red } }

Doing so creates an entitexture Structure with defaultormal and finish statements just as if you had
explicitly typed the full texture {...} around it.

Pigment identifiers may be declared to make scene files more readable and to parameterize scenes so that
changing a single declaration changes many values. An identifier is declared as follows.

PIGMENT_DECLARATION:
#declare IDENTIFIER = PIGMENT |
#local IDENTIFIER = PIGMENT

WherelDENTIFIERIs the name of the identifier up to 40 characters longRIBIMENT is any validpigment
statement. See "#declare vs. #local” for information on identifier scope.

5.1.1 Solid Color Pigments

The simplest type of pigment is a solid color. To specify a solid color you simply put a color specification inside
apigment statement. For example:

pigment { color Orange }

A color specification consists of the optional keyword1or followed by a color identifier or by a specification

of the amount of red, green, blue, filtered and unfiltered transparency in the surface. See section "Specifying
Colors” for more details about colors. Any pattern modifiers used with a solid color are ignored because there
is no pattern to modify.

5.1.2 Color List Pigments

There are four color list patternshecker, hexagon, brick andobject. The result is a pattern of solid colors
with distinct edges rather than a blending of colors as with color mapped patterns. Each of these patterns is
covered in more detail in a later section. The syntax is:

5.1 Pigment 177

COLOR_LIST_PIGMENT:
pigment {brick [COLOR_1, [COLOR_2]] [PIGMENT_MODIFIERS...] }|
pigment {checker [COLOR_1, [COLOR_2]] [PIGMENT_MODIFIERS...]}|
pigment {
hexagon [COLOR_1, [COLOR_2, [COLOR_3]]] [PIGMENT_MODIFIERS...]
H
pigment {object OBJECT_IDENTIFIER | OBJECT {} [COLOR_1l, COLOR_2]}

EachCOLORn is any valid color specification. There should be a comma between each color @i the

keyword should be used as a separator so that POV-Ray can determine where each color specification starts and
ends. Therrick andchecker pattern expects two colors anekagon expects three. If an insufficient number of

colors is specified then default colors are used.

5.1.3 Color Maps

Most of the color patterns do not use abrupt color changes of just two or three colors like those in the brick,
checker or hexagon patterns. They instead use smooth transitions of many colors that gradually change from
one point to the next. The colors are defined in a pigment modifier calledoa map that describes how the
pattern blends from one color to the next.

Each of the various pattern types available is in fact a mathematical function that takes any x, y, z location and
turns it into a number between 0.0 and 1.0 inclusive. That number is used to specify what mix of colors to use
from the color map.

The syntax for color_ map is as follows:

COLOR_MAP:

color_map { COLOR_MAP_BODY } | colour_map { COLOR_MAP_BODY }
COLOR_MAP_BODY:

COLOR_MAP_IDENTIFIER | COLOR_MAP_ENTRY...
COLOR_MAP_ENTRY:

[Value COLOR] |

[Value_1, Value_2 color COLOR_1 color COLOR_2]

Where eaclvalue _nis a float values between 0.0 and 1.0 inclusive and €4hORN, is color specifications.

Note: the [] brackets are part of the actu&lOLORMAP_ENTRY They are not notational symbols denoting
optional parts. The brackets surround each entry in the color map.

There may be from 2 to 256 entries in the map. The alternate spellingr_map may be used.
Here is an example:

sphere {
<0,1,2>, 2
pigment {
gradient x //this is the PATTERN_TYPE
color_map {
color Red]
color Yellow]
color Blue]
color Green]
color Cyan]

® oo W |

178 Textures

}

The pattern functionradient x is evaluated and the result is a value from 0.0 to 1.0. If the value is less than
the first entry (in this case 0.1) then the first color (red) is used. Values from 0.1 to 0.3 use a blend of red and
yellow using linear interpolation of the two colors. Similarly values from 0.3 to 0.6 blend from yellow to blue.

The 3rd and 4th entries both have values of 0.6. This causes an immediate abrupt shift of color from blue to
green. Specifically a value that is less than 0.6 will be blue but exactly equal to 0.6 will be green. Moving along,
values from 0.6 to 0.8 will be a blend of green and cyan. Finally any value greater than or equal to 0.8 will be
cyan.

If you want areas of unchanging color you simply specify the same color for two adjacent entries. For example:

color_map f{
[0.1 color Red]
[0.3 color Yellow]
[0.6 color Yellow]
[0.8 <color Green]

}
In this case any value from 0.3 to 0.6 will be pure yellow.

The first syntax version dEOLORMAP_ENTRYwith one float and one color is the current standard. The other
double entry version is obsolete and should be avoided. The previous example would look as follows using the
old syntax.

color_map f{
[0.0 0.
0.

color Red color Red]

color Red color Yellow]
color Yellow color Yellow]
color Yellow color Green]
color Green color Green]

0 o W — o |
o o o
o© oy W

(
[0
(0.
[0

}

You may use:olor_map With any patterns excepbrick, checker, hexagon, object and image_map. YOU may
declare and usev1or_map identifiers. For example:

#declare Rainbow_Colors=
color_map {
[0.0 color Magenta]
[0 color Yellow]
[0.67 color Cyan]
[1.0 color Magenta]
}
object {
My_Object
pigment {
gradient x
color_map { Rainbow_Colors }

}

5.1 Pigment 179

5.1.4 Pigment Maps and Pigment Lists

In addition to specifying blended colors with a color map you may create a blend of pigments gsingra _-
map. The syntax for a pigment map is identical to a color map except you specify a pigment in each map entry
(and not a color).

The syntax folpigment map is as follows:

PIGMENT_MAP:

pigment_map { PIGMENT_MAP_BODY }
PIGMENT_MAP_BODY:

PIGMENT_MAP_IDENTIFIER | PIGMENT_MAP_ENTRY...
PIGMENT_MAP_ENTRY:

[Value PIGMENT_BODY]

WhereValue is a float value between 0.0 and 1.0 inclusive and €d6&MENT.BODY is anything which can
be inside aigment{. ..} statement. Theigment keyword and{} braces need not be specified.

Note: that the[] brackets are part of the actu®®IGMENT.MAP_ENTRY They are not notational symbols
denoting optional parts. The brackets surround each entry in the pigment map.

There may be from 2 to 256 entries in the map.
For example

sphere {
<0,1,2>, 2
pigment {
gradient x //this is the PATTERN_TYPE
pigment_map {
[0.3 wood scale 0.2]
[0.3 Jade] //this is a pigment identifier
[0.6 Jade]
[0.9 marble turbulence 1]

}

When thegradient x function returns values from 0.0 to 0.3 the scaled wood pigment is used. From 0.3 to 0.6
the pigment identifier Jade is used. From 0.6 up to 0.9 a blend of Jade and a turbulent marble is used. From 0.9
on up only the turbulent marble is used.

Pigment maps may be nested to any level of complexity you desire. The pigments in a map may have color
maps or pigment maps or any type of pigment you want. Any entry of a pigment map may be a solid color
however if all entries are solid colors you should use &r_map which will render slightly faster.

Entire pigments may also be used with the block patterns sucthasker, hexagon andbrick. For example...

pigment {

checker

pigment { Jade scale .8 }

pigment { White_Marble scale .5 }
}

Note: that in the case of block patterns thiement wrapping is required around the pigment information.

A pigment map is also used with theerage pigment type. See "Average” for details.

180 Textures

You may not useigment map or individual pigments with anmage map. See section "Texture Maps” for an
alternative way to do this.

You may declare and use pigment map identifiers but the only way to declare a pigment block pattern list is to
declare a pigment identifier for the entire pigment.

5.1.5 Image Maps

When all else fails and none of the above pigment pattern types meets your needs you camuigeman to
wrap a 2-D bit-mapped image around your 3-D objects.

Specifying an Image Map

The syntax for anmage_map is:

IMAGE_MAP:
pigment
{
image_map
{
[BITMAP_TYPE] "bitmap[.ext]"
[IMAGE_MAP_MODS...]
}
[PIGMENT_MODFIERS...]
}
BITMAP_TYPE:
gif | tga | iff | ppm | pgm | png | jpeg | tiff | sys
IMAGE_MAP_MOD:
map_type Type | once | interpolate Type |
filter Palette, Amount | filter all Amount |
transmit Palette, Amount | transmit all Amount

After the optionaBITMAP_TYPEkeyword is a string expression containing the name of a bitmapped image file
of the specified type. If thBITMAP_TYPEis not given, the same type is expected as the type set for output.
Example:

plane {
-z,0
pigment {
image_map {png "Eggs.png"}
}
}

plane {
-z,0
pigment {
image_map {"Eggs"}
}
}

The second method will look for, and use "Eggs.png” if the output file type is set imb€OutputFile_-
Type=N in INI-file or +FN on command line). It is particularly useful when the image used ifvthe nap is

5.1 Pigment 181

also rendered with POV-Ray.
Several optional modifiers may follow the file specification. The modifiers are described below.

Note: earlier versions of POV-Ray allowed some modifiers beforaBIFéMAP_TYPEDbut that syntax is being
phased out in favor of the syntax described here.

Note: sys format is a system-specific format such as BMP for Windows or Pict for Macintosh.

Filenames specified in thmage map statements will be searched for in the home (current) directory first and,
if not found, will then be searched for in directories specified byangr Library Path options active. This
would facilitate keeping all your image maps files in a separate subdirectory and givingrary_Path option

to specify where your library of image maps are. See "Library Paths” for details.

By default, the image is mapped onto the x-y-plane. The imagedgctedonto the object as though there were

a slide projector somewhere in the -z-direction. The image exactly fills the square area from (x,y) coordinates
(0,0) to (1,1) regardless of the image’s original size in pixels. If you would like to change this default you may
translate, rotate or scale the pigment or texture to map it onto the object’s surface as desired.

In the section "Checker”, thenecker pigment pattern is explained. The checks are described as solid cubes
of colored clay from which objects are carved. With image maps you should imagine that each pixel is a long,
thin, square, colored rod that extends parallel to the z-axis. The image is made from rows and columns of these
rods bundled together and the object is then carved from the bundle.

If you would like to change this default orientation you may translate, rotate or scale the pigment or texture to
map it onto the object’s surface as desired.

The file name is optionally followed by one or mor&8I TMAP.MODIFIERS The filter, filter all,
transmit, and transmit all modifiers are specific to image maps and are discussed in the following sections.
An image_map may also use generic bitmap modifiegs_type, once and interpolate described in "Bitmap
Modifiers”

The Filter and Transmit Bitmap Modifiers

To make all or part of an image map transparent you can spegifiter and/ortransmit values for the color
palette/registers of PNG, GIF or IFF pictures (at least for the modes that use palettes). You can do this by
adding the keywordilter or transmit following the filename. The keyword is followed by two numbers. The

first number is the palette number value and the second is the amount of transparency. The values should be
separated by a comma. For example:

image_map {
gif "mypic.gif"
filter 0, 0.5 // Make color 0 50\% filtered transparent
filter 5, 1.0 // Make color 5 100\% filtered transparent
transmit 8, 0.3 // Make color 8 30\% non-filtered transparent

}

You can give the entire image @lter OF transmit value usingfilter all Amount Of transmit all
Amount. For example:

image_map {
gif "stnglass.gif"
filter all 0.9

182 Textures

Note: early versions of POV-Ray used the keywarg@ha to specify filtered transparency however that word is
often used to describe non-filtered transparency. For this reasbnis no longer used.

See section "Specifying Colors” for details on the differences between filtered and non-filtered transparency.

Using the Alpha Channel

Another way to specify non-filtered transmit transparency in an image map is by usimptre channel
POV-Ray will automatically use the alpha channel for transmittance when one is stored in the image. PNG file
format allows you to store a different transparency for each color index in the PNG file, if desired. If your paint
programs support this feature of PNG you can do the transparency editing within your paint program rather than
specifying transmit values for each color in the POV file. Since PNG and TGA image formats can also store
full alpha channel (transparency) information you can generate image maps that have transparency which is not
dependent on the color of a pixel but rather its location in the image.

Although POV usesransmit 0.0 to specify no transparency and. o to specify full transparency, the alpha
data ranges from 0 to 255 in the opposite direction. Alpha data 0 means the samenasit 1.0 and alpha
data 255 producesansmit 0.0.

5.1.6 Quick Color

When developing POV-Ray scenes it is often useful to do low quality test runs that render fastero The
command line switch orouality INI option can be used to turn off some time consuming color pattern and
lighting calculations to speed things up. See "Quality Settings” for details. However all settings of
Quality=5 or lower turns off pigment calculations and creates gray objects.

By adding aguick_color to a pigment you tell POV-Ray what solid color to use for quick renders instead of a
patterned pigment. For example:

pigment {

gradient x

color_map({
[0.0 color Yellow]
[0.3 color Cyan]
[0.6 color Magenta]
[1.0 color Cyan]

}

turbulence 0.5

lambda 1.5

omega 0.75

octaves 8

quick_color Neon_Pink

}

This tells POV-Ray to use solitkon_Pink for test runs at qualityos or lower but to use the turbulent gradient
pattern for rendering até and higher. Solid color pigments such as

pigment {color Magenta}

automatically set theuick_color to that value. You may override this if you want. Suppose you have 10
spheres on the screen and all are yellow. If you want to identify them individually you could give each a
differentquick_color like this:

5.2 Normal 183

sphere {
<1,2,3>,4
pigment { color Yellow quick_color Red }

}
sphere {
<-1,-2,-3>,4
pigment { color Yellow quick_color Blue }

}

and so on. At-o6 or higher they will all be yellow but atos or lower each would be different colors so you
could identify them.

The alternate spellinguick_colour is also supported.

5.2 Normal

Ray-tracing is known for the dramatic way it depicts reflection, refraction and lighting effects. Much of our
perception depends on the reflective properties of an object. Ray tracing can exploit this by playing tricks on
our perception to make us see complex details that are not really there.

Suppose you wanted a very bumpy surface on the object. It would be very difficult to mathematically model lots
of bumps. We can however simulate the way bumps look by altering the way light reflects off of the surface.
Reflection calculations depend on a vector callesuaface normalector. This is a vector which points away
from the surface and is perpendicular to it. By artificially modifying (or perturbing) this normal vector you can
simulate bumps. This is done by adding an optionakmal statement.

Note: that attaching a normal pattern does not really modify the surface. It only affects the way light reflects or
refracts at the surface so that it looks bumpy.

The syntax is:

NORMAL:

normal { [NORMAL_IDENTIFIER] [NORMAL TYPE] [NORMAL_MODIFIER...] }
NORMAL_TYPE:

PATTERN_TYPE Amount |

bump_map { BITMAP_TYPE "bitmap.ext" [BUMP_MAP_MODS...]}
NORMAL_MODIFIER:

PATTERN_MODIFIER | NORMAL_LIST | normal_map { NORMAL_MAP_BODY } |

slope_map{ SLOPE_MAP_BODY } | bump_size Amount |

no_bump_scale Bool | accuracy Float

Each of the items in a normal are optional but if they are present, they must be in the order shown. Any items
after theNORMALIDENTIFIER modify or override settings given in the identifier. If no identifier is specified
then the items modify the normal values in the current default texture PAl@ ERNTYPEmay optionally be
followed by a float value that controls the apparent depth of the bumps. Typical values range from 0.0 to 1.0 but
any value may be used. Negative values invert the pattern. The default value if none is specified is 0.5.

There are four basic types BIORMALTYPEs. They are block pattern normals, continuous pattern normals,
specialized normals and bump maps. They differ in the types of modifiers you may use with them. The
pattern type is optionally followed by one or more normal modifiers. In addition to general pattern modifiers
such as transformations, turbulence, and warp modifiers, normals may also R®ORMALLIST, slope map,

normal map, andbump_size Which are specific to normals. See "Pattern Modifiers” for information on general

184 Textures

modifiers. The normal-specific modifiers are described in sub-sections which follow. Normal modifiers of any
kind apply only to the normal and not to other parts of the texture. Modifiers must be specified last.

Originally POV-Ray had some patterns which were exclusively used for pigments while others were exclusively
used for normals. Since POV-Ray 3.0 you can use any pattern for either pigments or normals. For example it
is now valid to useipples as a pigment ofood as a normal type. The patternsnps, dents, ripples, waves,
wrinkles, and bump_map Were once exclusively normal patterns which could not be used as pigments. Because
these six types use specialized normal modification calculations they cannotshayemap, normal_map or

wave shape modifiers. All other normal pattern types may use them. Because block pattenns:, hexagon,

object and brick do not return a continuous series of values, they cannot use these modifiers either. See
"Patterns” for details about specific patterns.

A normal statement is part of aexture specification. However it can be tedious to use éture Statement
just to add bumps to an object. Therefore you may attach a normal directly to an object without explicitly
specifying that it as part of a texture. For example instead of this:

object {My_Object texture { normal { bumps 0.5 } } }
you may shorten it to:
object { My_Object normal { bumps 0.5 } }

Doing so creates an entitexture Structure with defaulpignent and finish statements just as if you had
explicitly typed the full texture {...} around it. Normal identifiers may be declared to make scene files more
readable and to parameterize scenes so that changing a single declaration changes many values. An identifier is
declared as follows.

NORMAL_DECLARATION:
#declare IDENTIFIER = NORMAL |
#local IDENTIFIER = NORMAL

WherelDENTIFIER is the name of the identifier up to 40 characters long IM@RMALIs any validnormal
statement. See "#declare vs. #local” for information on identifier scope.

5.2.1 Slope Maps

A slope map is a normal pattern modifier which gives the user a great deal of control over the exact shape of the
bumpy features. Each of the various pattern types available is in fact a mathematical function that takes any x,
y, z location and turns it into a number between 0.0 and 1.0 inclusive. That number is used to specify where the
various high and low spots are. Theope_ map lets you further shape the contours. It is best illustrated with a
gradient normal pattern. Suppose you have...

plane{ z, 0
pigment{ White }
normal { gradient x }

}

This gives a ramp wave pattern that looks like small linear ramps that climb from the points at x=0 to x=1 and
then abruptly drops to 0 again to repeat the ramp from x=1 to x=2. A slope map turns this simple linear ramp
into almost any wave shape you want. The syntax is as follows...

SLOPE_MAP:
slope_map { SLOPE_MAP_BODY }
SLOPE_MAP_BODY:

5.2 Normal 185

SLOPE_MAP_IDENTIFIER | SLOPE_MAP_ENTRY...
SLOPE_MAP_ENTRY:
[Value, <Height, Slope>]

Note: the [1 brackets are part of the actuILOPEMAP_ENTRY They are not notational symbols denoting
optional parts. The brackets surround each entry in the slope map.

There may be from 2 to 256 entries in the map.

Eachvalue is a float value between 0.0 and 1.0 inclusive and eadHeight , Slope > is a 2 component

vector such as<0,1> where the first value represents the apparent height of the wave and the second value
represents the slope of the wave at that point. The height should range between 0.0 and 1.0 but any value could
be used.

The slope value is the change in height per unit of distance. For example a slope of zero means flat, a slope of
1.0 means slope upwards at a 45 degree angle and a slope of -1 means slope down at 45 degrees. Theoretically
a slope straight up would have infinite slope. In practice, slope values should be kept in the range -3.0 to +3.0.
Keep in mind that this is only the visually apparent slope. A normal does not actually change the surface.

For example here is how to make the ramp slope up for the first half and back down on the second half creating
a triangle wave with a sharp peak in the center.

normal {
gradient x // this is the PATTERN_TYPE
slope_map {
[0 <0, 1>] // start at bottom and slope up
[0.5 <1, 1>] // halfway through reach top still climbing
[0.5 <1,-1>] // abruptly slope down
1 <0,-1>] // finish on down slope at bottom

}
}

The pattern function is evaluated and the result is a value from 0.0 to 1.0. The first entry says that at x=0 the
apparent height is 0 and the slope is 1. At x=0.5 we are at height 1 and slope is still up at 1. The third entry
also specifies that at x=0.5 (actually at some tiny fraction above 0.5) we have height 1 but slope -1 which is
downwards. Finally at x=1 we are at height 0 again and still sloping down with slope -1.

Although this example connects the points using straight lines the shape is actually a cubic spline. This example
creates a smooth sine wave.

normal {

gradient x // this is the PATTERN_TYPE

slope_map {
[0 <0.5, 1>] // start in middle and slope up
[0.25 <1.0, 0>] // flat slope at top of wave
[0.5 <0.5,-1>] // slope down at mid point
[0.75 <0.0, 0>] // flat slope at bottom
1 <0.5, 1>] // finish in middle and slope up

}

This example starts at height 0.5 sloping up at slope 1. At a fourth of the way through we are at the top of the
curve at height 1 with slope 0 which is flat. The space between these two is a gentle curve because the start and
end slopes are different. At half way we are at half height sloping down to bottom out at 3/4ths. By the end we

186 Textures

are climbing at slope 1 again to complete the cycle. There are more examplasianap.pov in the sample
scenes.

A slopemap may be used with any pattern exceptick, checker, object, hexagon, bumps, dents, ripples,
waves, wrinkles and bump_map.

You may declare and use slope map identifiers. For example:

#declare Fancy_Wave =

slope_map { // Now let’s get fancy
[0.0 <0, 1>] // Do tiny triangle here
[0.2 <1, 1>] // down
(0.2 <1,-1>1 // to
(0.4 <0,-1>] // here.
[0.4 <0, 0>] // Flat area
[0.5 <0, 0>] // through here.
[0.5 <1, 0>] // Square wave leading edge
[0.6 <1, 0>] // trailing edge
[0.6 <0, 0>] // Flat again
[0.7 <0, 0>] // through here.
[0.7 <0, 3>] // Start scallop
[0.8 <1, 0>] // flat on top
(0.9 <0,-3>] // finish here.
[0.9 <0, 0>] // Flat remaining through 1.0

}
object{ My_Object
pigment { White }
normal {
wood
slope_map { Fancy_Wave }
}
}

Normals, Accuracy

Surface normals that use patterns that were not designed for use with normals (anything other than bumps,
dents, waves, ripples, and wrinkles) usesl ae_map Whether you specify one or not. To create a perturbed
normal from a pattern, POV-Ray samples the pattern at four points in a pyramid surrounding the desired point
to determine the gradient of the pattern at the center of the pyramid. The distance that these points are from the
center point determines the accuracy of the approximation. Using points too close together causes floating-point
inaccuracies. However, using points too far apart can lead to artefacts as well as smoothing out features that
should not be smooth.

Usually, points very close together are desired. POV-Ray currently uses a delta or accuracy distance of 0.02.
Sometimes it is necessary to decrease this value to get better accuracy if you are viewing a close-up of the
texture. Other times, it is nice to increase this value to smooth out sharp edges in the normal (for example, when
using a 'solid’ crackle pattern). For this reason, a new propettyracy, has been added to normals. It only
makes a difference if the normal usesiape map (either specified or implied).

You can specify the value of this accuracy (which is the distance between the sample points when determining
the gradient of the pattern for slopeap) by addingiccuracy <float> to your normal. For all patterns, the
default is 0.02.

5.2 Normal 187

5.2.2 Normal Maps and Normal Lists

Most of the time you will apply single normal pattern to an entire surface but you may also create a pattern or
blend of normals using anormal map. The syntax for aormal_map is identical to apigment _map except you
specify a normal in each map entry. The syntax fesrmal map is as follows:

NORMAL_MAP:

normal_map { NORMAL_MAP_BODY }
NORMAL_MAP_BODY:

NORMAL_MAP_IDENTIFIER | NORMAL_MAP_ENTRY...
NORMAL_MAP_ENTRY:

[Value NORMAL_BODY]

WhereValue is a float value between 0.0 and 1.0 inclusive and é&ORMALBODY is anything which can
be inside aormal{...} statement. Theormal keyword and{} braces need not be specified.

Note: that the[] brackets are part of the actulORMALMAP_ENTRY They are not notational symbols
denoting optional parts. The brackets surround each entry in the normal map.

There may be from 2 to 256 entries in the map.
For example

normal {
gradient x //this is the PATTERN_TYPE
normal_map {
[0.3 Dbumps scale 2]
[0.3 dents]
[0.6 dents]
[0.9 marble turbulence 1]
}
}

When thegradient x function returns values from 0.0 to 0.3 then the scaled bumps normal is used. From 0.3
to 0.6 dents pattern is used. From 0.6 up to 0.9 a blend of dents and a turbulent marble is used. From 0.9 on up
only the turbulent marble is used.

Normal maps may be nested to any level of complexity you desire. The normals in a map may have slope maps
or normal maps or any type of normal you want.

A normal map is also used with theerage normal type. See "Average” for detalils.

Entire normals in a normal list may also be used with the block patterns sugh@&sr, hexagon andbrick.
For example...

normal {
checker
normal { gradient x scale .2 }
normal { gradient y scale .2 }

}
Note: in the case of block patterns thermal wrapping is required around the normal information.

You may not use normal_map Or individual normals with a bumpmap. See section "Texture Maps” for an
alternative way to do this.

188 Textures

You may declare and use normal map identifiers but the only way to declare a normal block pattern list is to
declare a normal identifier for the entire normal.

5.2.3 Bump Maps

When all else fails and none of the above normal pattern types meets your needs you camplsesto wrap
a 2-D bit-mapped bump pattern around your 3-D objects.

Instead of placing the color of the image on the shape likei e _map abump_map perturbs the surface normal

based on the color of the image at that point. The result looks like the image has been embossed into the surface.
By default, a bump map uses the brightness of the actual color of the pixel. Colors are converted to gray scale
internally before calculating height. Black is a low spot, white is a high spot. The image’s index values may be
used instead (see section "Usalex and UseColor” below).

Specifying a Bump Map

The syntax for @ump_map is:

BUMP_MAP:
normal
{
bump_map
{
BITMAP_TYPE "bitmap.ext"
[BUMP_MAP_MODS...]

}
[NORMAL_MODFIERS. . .]

}
BITMAP_TYPE:
gif | tga | iff | ppm | pgm | png | jpeg | tiff | sys
BUMP_MAP_MOD:
map_type Type | once | interpolate Type | use_color |
use_colour | bump_size Value

After the requiredBITMAP.TYPEkeyword is a string expression containing the name of a bitmapped bump file
of the specified type. Several optional modifiers may follow the file specification. The modifiers are described
below.

Note: earlier versions of POV-Ray allowed some modifiers beforeBifdVIAP_TYPEbut that syntax is being
phased out in favor of the syntax described here.

Note: sys format is a system-specific format such as BMP for Windows or Pict for Macintosh.

Filenames specified in themp_map statements will be searched for in the home (current) directory first and, if
not found, will then be searched for in directories specified by-angr Library Path options active. This
would facilitate keeping all your bump maps files in a separate subdirectory and givingrary_path option

to specify where your library of bump maps are. See "Library Paths” for details.

By default, the bump pattern is mapped onto the x-y-plane. The bump patigmjeéstedonto the object as
though there were a slide projector somewhere in the -z-direction. The pattern exactly fills the square area from
(x,y) coordinates (0,0) to (1,1) regardless of the pattern’s original size in pixels. If you would like to change this
default you may translate, rotate or scale the pigment or texture to map it onto the object’s surface as desired.

5.2 Normal 189

If you would like to change this default orientation you may translate, rotate or scale the pigment or texture to
map it onto the object’s surface as desired.

The file name is optionally followed by one or mo& TMAP_.MODIFIERS Thebump_size, use_color and
use_index modifiers are specific to bump maps and are discussed in the following sections. See section "Bitmap
Modifiers” for the generic bitmap modifiefgp_type, once and interpolate described in "Bitmap Modifiers”

Bump_Size

The relative bump size can be scaled usinguthe _size modifier. The bump size number can be any number
other than 0 but typical values are from about 0.1 to as high as 4.0 or 5.0.

normal {
bump_map {
gif "stuff.gif"
bump_size 5.0
}
}

Originally bump_size could only be used inside a bump map but it can now be used with any normal. Typically
it is used to override a previously defined size. For example:

normal {
My_Normal //this is a previously defined normal identifier
bump_size 2.0

}

Uselndex and UseColor

Usually the bump map converts the color of the pixel in the map to a gray scale intensity value in the range 0.0
to 1.0 and calculates the bumps based on that value. If you spegeifyindex, the bump map uses the color’s
palette number to compute as the height of the bump at that point. So, color number 0 would be low and color
number 255 would be high (if the image has 256 palette entries). The actual color of the pixels doesn’t matter
when using the index. This option is only available on palette based formatsis¥helor keyword may be
specified to explicitly note that the color methods should be used instead. The alternate spellifigur is

also valid. These modifiers may only be used inside-the map Statement.

5.2.4 Scaling normals

When scaling a normal, or when scaling an object after a normal is applied to it, the depth of the normal is
affected by the scaling. This is not always wanted. If you want to turn off bump scaling for a texture or normal,
you can do this by adding the keywote bump_scale to the texture’s or normal’s modifiers. This modifier will

get passed on to all textures or normals contained in that texture or normal. Think of this like the slzgtoov

gets passed on to objects contained in a CSG.

It is also important to note that if you add_bump_scale to a normal or texture that is contained within another
pattern (such as within exture map Or normal map), then the only scaling that will be ignored is the scaling

of that texture or normal. Scaling of the parent texture or normal or of the object will affect the depth of the
bumps, unlesso_bump_scale is specified at the top-level of the texture (or normal, if the normal is not wrapped
in a texture).

190 Textures

5.3 Finish

The finish properties of a surface can greatly affect its appearance. How does light reflect? What happens in
shadows? What kind of highlights are visible. To answer these questions you needa

The syntax forrinish is as follows:

FINISH:
finish { [FINISH_IDENTIFIER] [FINISH_ITEMS...] }
FINISH_ITEMS:
ambient COLOR | diffuse Amount | brilliance Amount |
phong Amount | phong_size Amount | specular Amount |
roughness Amount | metallic [Amount] | reflection COLOR |
crand Amount | conserve_energy BOOL_ON_OF |
reflection { Color_Reflecting_Min [REFLECTION_ITEMS...] }|
irid { Irid_Amount [IRID_ITEMS...] }
REFLECTION_ITEMS:
COLOR_REFLECTION_MAX | fresnel BOOL_ON_OFF |
falloff FLOAT_FALLOFF | exponent FLOAT_EXPONENT |
metallic FLOAT_METALLIC
IRID_ITEMS:
thickness Amount | turbulence Amount

The FINISH_IDENTIFIER is optional but should proceed all other items. Any items after RH¢ISH.-
IDENTIFIER modify or override settings given in tHNISH_IDENTIFIER If no identifier is specified then
the items modify the finish values in the current default texture.

Note: transformations are not allowed inside a finish because finish items cover the entire surface uniformly.
Each of theFINISH_ITEMSlisted above is described in sub-sections below.

In earlier versions of POV-Ray, th@fraction, ior, andcaustics keywords were part of thefinish state-

ment but they are now part of theterior statement. They are still supported underish for backward
compatibility but the results may not be 100% identical to previous versions. See "Why are Interior and Media
Necessary?” for details.

A finish statement is part of &xture specification. However it can be tedious to use&aure statement just
to add a highlights or other lighting properties to an object. Therefore you may attach a finish directly to an
object without explicitly specifying that it as part of a texture. For example instead of this:

object { My_Object texture { finish { phong 0.5 } } }
you may shorten it to:
object { My_Object finish { phong 0.5 } }

Doing so creates an entirexture structure with defaulpignent andnormal statements just as if you had
explicitly typed the full texture {...} around it.

Finish identifiers may be declared to make scene files more readable and to parameterize scenes so that changing
a single declaration changes many values. An identifier is declared as follows.

FINISH_DECLARATION:
#declare IDENTIFIER = FINISH |
#local IDENTIFIER = FINISH

WhereIDENTIFIER is the name of the identifier up to 40 characters long BISH is any validfinish
statement. See "#declare vs. #local” for information on identifier scope.

5.3 Finish 191

5.3.1 Ambient

The light you see in dark shadowed areas comes from diffuse reflection off of other objects. This light cannot
be directly modeled using ray-tracing. However we can use a trick cattdadent lightingto simulate the light
inside a shadowed area.

Ambient light is light that is scattered everywhere in the room. It bounces all over the place and manages to
light objects up a bit even where no light is directly shining. Computing real ambient light would take far too
much time, so we simulate ambient light by adding a small amount of white light to each texture whether or not
a light is actually shining on that texture.

This means that the portions of a shape that are completely in shadow will still have a little bit of their surface
color. Itis almost as if the texture glows, though the ambient light in a texture only affects the shape it is used
on.

Theambient keyword controls the amount of ambient light. Usually a single float value is specified even though
the syntax calls for a color. For example a float value .ofgets promoted to the full color vectoko.3,0.3,
0.3,0.3,0.3> which is acceptable because only the red, green and blue parts are used.

The default value is 0.1 which gives very little ambient light. The value can range from 0.0 to 1.0. Ambient
light affects both shadowed and non-shadowed areas so if you turn ugrthent value you may want to turn
down thediffuse andreflection values.

Note: that this method does not account for the color of surrounding objects. If you walk into a room that has
red walls, floor and ceiling then your white clothing will look pink from the reflected light. POV-Ray’s ambient
shortcut does not account for this. There is also no way to model specular reflected indirect illumination such
as the flashlight shining in a mirror.

You may color the ambient light using one of two methods. You may specify a color rather than a float after the
ambient keyword in each finish statement. For example

finish { ambient rgb <0.3,0.1,0.1> } //a pink ambient

You may also specify the overall ambient light source used when calculating the ambient lighting of an object
using the global ambient_l1ight setting. The formula is given byAmbient = FinishAmbient * Global-
AmbientLight SourceSee section "Ambient Light” for details.

5.3.2 Diffuse Reflection Items

When light reflects off of a surface the laws of physics say that it should leave the surface at the exact same
angle it came in. This is similar to the way a billiard ball bounces off a bumper of a pool table. This perfect
reflection is calledspecular reflection However only very smooth polished surfaces reflect light in this way.
Most of the time, light reflects and is scattered in all directions by the roughness of the surface. This scattering
is calleddiffuse reflectiorbecause the light diffuses or spreads in a variety of directions. It accounts for the
majority of the reflected light we see.

Diffuse

The keyworddiffuse is used in &inish statement to control how much of the light coming directly from any
light sources is reflected via diffuse reflection. For example

finish { diffuse 0.7 }

192 Textures

means that 70% of the light seen comes from direct illumination from light sources. The default valifis
0.6.

Brilliance

The amount of direct light that diffuses from an object depends upon the angle at which it hits the surface.
When light hits at a shallow angle it illuminates less. When it is directly above a surface it illuminates more.
Thebrilliance keyword can be used innish statement to vary the way light falls off depending upon the
angle of incidence. This controls the tightness of the basic diffuse illumination on objects and slightly adjusts
the appearance of surface shininess. Objects may appear more metallic by increasing their brilliance. The
default value is 1.0. Higher values from 5.0 to about 10.0 cause the light to fall off less at medium to low angles.
There are no limits to the brilliance value. Experiment to see what works best for a particular situation. This is
best used in concert with highlighting.

Crand Graininess

Very rough surfaces, such as concrete or sand, exhibit a dark graininess in their apparent color. This is caused
by the shadows of the pits or holes in the surface. dhed keyword can be added to &inish to cause a

minor random darkening in the diffuse reflection of direct illumination. Typical values rangecfrem 0.01

to crand 0.5 or higher. The default value is 0. For example:

finish { crand 0.05 }

This feature is carried over from the earliest versions of POV-Ray and is considered obsolete. This is because
the grain or noise introduced by this feature is applied on a pixel-by-pixel basis. This means that it will look the
same on far away objects as on close objects. The effect also looks different depending upon the resolution you
are using for the rendering.

Note: this should not be used when rendering animations. This is the one of a few truly random features in
POV-Ray and will produce an annoying flicker of flying pixels on any textures animated withavalue. For
these reasons it is not a very accurate way to model the rough surface effect.

5.3.3 Highlights

Highlights are the bright spots that appear when a light source reflects off of a smooth object. They are a
blend of specular reflection and diffuse reflection. They are specular-like because they depend upon viewing
angle and illumination angle. However they are diffuse-like because some scattering occurs. In order to exactly
model a highlight you would have to calculate specular reflection off of thousands of microscopic bumps called
micro facets. The more that micro facets are facing the viewer the shinier the object appears and the tighter the
highlights become. POV-Ray uses two different models to simulate highlights without calculating micro facets.
They are thespecularandPhongmodels.

Note: specular and Phong highlights aret mutually exclusive. Itis possible to specify both and they will both
take effect. Normally, however, you will only specify one or the other.

5.3 Finish 193

Phong Highlights

Thephong keyword in thefinish statement controls the amount of Phong highlighting on the object. It causes
bright shiny spots on the object that are the color of the light source being reflected.

The Phong method measures the average of the facets facing in the mirror direction from the light sources to
the viewer.

Phong's value is typically from 0.0 to 1.0, where 1.0 causes complete saturation to the light source’s color at the
brightest area (center) of the highlight. The defauling 0.0 gives no highlight.

The size of the highlight spot is defined by theng_size value. The larger the phong size the tighter, or smaller,
the highlight and the shinier the appearance. The smaller the phong size the looser, or larger, the highlight and
the less glossy the appearance.

Typical values range from 1.0 (very dull) to 250 (highly polished) though any values may be used. Default
phong size is 40 (plastic) ifohong_size is not specified. For example:

finish { phong 0.9 phong_size 60 }

If phong is not specifiedhong_size has no effect.

Specular Highlight

The specular keyword in afinish statement produces a highlight which is very similar to Phong highlighting
but it uses slightly different model. The specular model more closely resembles real specular reflection and
provides a more credible spreading of the highlights occurring near the object horizons.

The specular value is typically from 0.0 to 1.0, where 1.0 causes complete saturation to the light source’s color
at the brightest area (center) of the highlight. The defaigdtuiar 0.0 gives no highlight.

The size of the spot is defined by the value given theighness keyword. Typical values range from 1.0
(very rough - large highlight) to 0.0005 (very smooth - small highlight). The default value, if roughness is not
specified, is 0.05 (plastic).

It is possible to specify wrong values for roughness that will generate an error when you try to render the file.
Do not use 0 and if you get errors check to see if you are using a very, very small roughness value that may be
causing the error. For example:

finish { specular 0.9 roughness 0.02 }
If specular is not specifiedoughness has no effect.

Note: that when light is reflected by a surface such as a mirror, it is caledular reflectiorhowever such
reflection is not controlled by theecular keyword. The reflection keyword controls mirror-like specular
reflection.

Metallic Highlight Modifier
The keyworcthetallic may be used withhong Or specular highlights. This keyword indicates that the color
of the highlights will be calculated by an empirical function that models the reflectivity of metallic surfaces.

Normally highlights are the color of the light source. Adding this keyword filters the highlight so that white
light reflected from a metallic surface takes the color specified by the pigment

194 Textures

Thenretallic keyword may optionally be follow by a numeric value to specify the influence the amount of the
effect. If no keyword is specified, the default value is zero. If the keyword is specified without a value, the
default value is one. For example:
finish {
phong 0.9
phong_size 60
metallic

}

If phong Or specular keywords are not specified thes:allic has no effect.

5.3.4 Specular Reflection

When light does not diffuse and dtoesreflect at the same angle as it hits an object, it is cadieecular
reflection Such mirror-like reflection is controlled by theflection {...} blockin atinish statement.
Syntax:
finish {
reflection {
[COLOR_REFLECTION_MIN,] COLOR_REFLECTION_MAX
[fresnel BOOL_ON_OFF]
[falloff FLOAT_FALLOFF]
[exponent FLOAT_EXPONENT]
[metallic FLOAT_METALLIC]
}
}

[interior { ior IOR }]

The simplest use would be a perfect mirror:
finish { reflection {1.0} ambient 0 diffuse 0 }

This gives the object a mirrored finish. It will reflect all other elements in the scene. Usually a single float value
is specified after the keyword even though the syntax calls for a color. For example a float value of 0.3 gets
promoted to the full color vecto#0.3,0.3,0.3,0.3,0:3 which is acceptable because only the red, green and
blue parts are used.

The value can range from 0.0 to 1.0. By default there is no reflection.
Note:
» Adding reflection to a texture makes it take longer to render because an additional ray must be traced.

» The reflected light may be tinted by specifying a color rather than a float.
For example:
finish { reflection rgb <1,0,0> }
gives a red mirror that only reflects red light.

 Although such reflection is called specular it is not controlled bystheular keyword. That keyword
controls a specular highlight.

» The old syntax for simple reflectionréfiection coLorR” and "reflectionexponent Float” without braces
is still supported for backward compatibility.

5.3 Finish 195

falloff sets a falloff exponent in the variable reflection. This is the exponent telling how fast the reflectivity
will fall off, i.e. linear, squared, cubed, etc.

The netallic keyword is similar in function to the "metallic” keyword used for highlights in finishes: it
simulates the reflective properties of metallic surfaces, where reflected light takes on the colour of the surface.
Whenmetallic is used, the "reflection” color is multiplied by the pigment color at each point. You can specify
an optional float value, which is the amount of influence tbhea11ic keyword has on the reflected color.
metallic uses the Fresnel equation so that the color of the light is reflected at glancing angles, and the color of
the metal is reflected for angles close to the surface’s normal.

exponent

POV-Ray uses a limited light model that cannot distinguish between objects which are simply brightly colored
and objects which are extremely bright. A white piece of paper, a light bulb, the sun, and a supernova, all
would be modeled asgb<1, 1, 1> and slightly off-white objects would be only slightly darker. It is especially
difficult to model partially reflective surfaces in a realistic way. Middle and lower brightness objects typically
look too bright when reflected. If you reduce thef1ection value, it tends to darken the bright objects too
much. Therefore the optionakponent keyword has been added. It produces non-linear reflection intensities.
The default value of 1.0 produces a linear curve. Lower values darken middle and low intensities and keeps
high intensity reflections bright. This is a somewhat experimental feature designed for artistic use. It does not
directly correspond to any real world reflective properties.

Variable reflection

Many materials, such as water, ceramic glaze, and linoleum are more reflective when viewed at shallow angles.
This can be simulated by also specifying a minimum reflection inéfigection {...} statement.

For example:

finish { reflection { 0.03, 1 }}

uses the same function as the standard reflection, but the first parameter sets the minimum reflectivity. It could
be a color vector or a float (which is automatically promoted to a gray vector). This minimum value is how
reflective the surface will be when viewed from a direction parallel to its normal.

The second parameter sets the maximum reflectivity, which could also be a color vector or a float (which is
automatically promoted to a gray vector). This maximum parameter is how reflective the surface will be when
viewed at a 90-degree angle to its normal.

Note: You can make maximum reflection less than minimum reflection if you want, although the result is
something that does not occur in nature.

When adding therresnel keyword, the Fresnel reflectivity function is used instead of standard reflection.

It calculates reflectivity using the finish’s IOR. So with a fresnel reflectigre aninterior { ior IOR }
statement is required, even with opaque pigments. Remember that in real life many opaque objects have a
thin layer of transparent glaze on their surface, and it is the glaze (which -does- have an IOR) that is reflective.

5.3.5 Conserve Energy for Reflection

One of the features in POV-Ray is variable reflection, including realistic Fresnel reflection (see section "Variable
Reflection ”). Unfortunately, when this is coupled with constant transmittance, the texture can look unrealistic.
This unrealism is caused by the scene breaking the law of conservation of energy. As the amount of light
reflected changes, the amount of light transmitted should also change (in a give-and-take relationship).

This can be achieved by adding theserve_energy keyword to the object'sinish {}.
When conservenergy is enabled, POV-Ray will multiply the amount filtered and transmitted by what is left

196 Textures

over from reflection (for example, if reflection is 80%, filter/transmit will be multiplied by 20%).

5.3.6 Iridescence

Iridescence or Newton'’s thin film interference, simulates the effect of light on surfaces with a microscopic
transparent film overlay. The effect is like an oil slick on a puddle of water or the rainbow hues of a soap
bubble. This effect is controlled by therid statement specified insidefanish statement.

This parameter modifies the surface color as a function of the angle between the light source and the surface.
Since the effect works in conjunction with the position and angle of the light sources to the surface it does not
behave in the same ways as a procedural pigment pattern.

The syntax is:

IRID:

irid { Irid_Amount [IRID_ITEMS...] }
IRID_ITEMS:

thickness Amount | turbulence Amount

The requiredrid _Amount parameter is the contribution of the iridescence effect to the overall surface color.
As a rule of thumb keep to around 0.25 (25% contribution) or less, but experiment. If the surface is coming out
too white, try lowering the diffuse and possibly thembient values of the surface.

The thickness keyword represents the film’s thickness. This is an awkward parameter to set, since the thick-
ness value has no relationship to the object’s scale. Changing it affects the stalsyenessf the effect. A

very thin film will have a high frequency of color changes while a thick film will have large areas of color. The
default value is zero.

The thickness of the film can be varied with theirbulence keyword. You can only specify the amount of
turbulence with iridescence. The octaves, lambda, and omega values are internally set and are not adjustable by
the user at this time. This parameter varies only a single value: the thickness. Therefore the value must be a
single float value. It cannot be a vector as in other uses afith&lence keyword.

In addition, perturbing the object’s surface normal through the use of bump patterns will affect iridescence.

For the curious, thin film interference occurs because, when the ray hits the surface of the film, part of the light
is reflected from that surface, while a portion is transmitted into the film. Slisurfaceay travels through

the film and eventually reflects off the opaque substrate. The light emerges from the film slightly out of phase
with the ray that was reflected from the surface.

This phase shift creates interference, which varies with the wavelength of the component colors, resulting in
some wavelengths being reinforced, while others are cancelled out. When these components are recombined,
the result is iridescence. See also the global setting_Walelength”.

The concept used for this feature came from the Hawkdamentals of Three-Dimensional Computer Graphics
by Alan Watt (Addison-Wesley).

5.4 Halo

Earlier versions of POV-Ray used a feature calleth to simulate fine particles such as smoke, steam, fog, or
flames. Thehalo statement was part of thexture statement. This feature has been discontinued and replaced
by theinterior andmedia Statements which are object modifiers outside theture statement.

5.5 Patterned Textures 197

See "Why are Interior and Media Necessary?” for a detailed explanation on the reasons for the change. See
"Media” for details Onmedia.

5.5 Patterned Textures

Patterned textures are complex textures made up of multiple textures. The component textures may be plain
textures or may be made up of patterned textures. A plain texture has just one pigment, normal and finish
statement. Even a pigment with a pigment map is still one pigment and thus considered a plain texture as are
normals with normal map statements.

Patterned textures use eitheteature map Statement to specify a blend or pattern of textures or they use block
textures such asecker with a texture list or a bitmap similar to an image map calledaerial mapspecified
with amaterial map Statement.

The syntax is...

PATTERNED_TEXTURE:
texture
{
[PATTERNED_TEXTURE_ID]
[TRANSFORMATIONS...]
bl
texture
{
PATTERN_TYPE
[TEXTURE_PATTERN_MODIFIERS...]
b
texture
{
tiles TEXTURE tile2 TEXTURE
[TRANSFORMATIONS...]
b
texture
{
material_map
{
BITMAP_TYPE "bitmap.ext"
[BITMAP_MODS...] TEXTURE... [TRANSFORMATIONS...]
}
}
TEXTURE_PATTERN_MODIFIER:
PATTERN_MODIFIER | TEXTURE_LIST |
texture_map { TEXTURE_MAP_BODY }

There are restrictions on using patterned textures. A patterned texture may not be used as a default texture (see
section "The #default Directive”). A patterned texture cannot be used as a layer in a layered texture however
you may use layered textures as any of the textures contained within a patterned texture.

198 Textures

5.5.1 Texture Maps

In addition to specifying blended color with a color map or a pigment map you may create a blend of textures
usingtexture_map. The syntax for a texture map is identical to the pigment map except you specify a texture in
each map entry.

The syntax forexture map is as follows:

TEXTURE_MAP:
texture_map { TEXTURE_MAP_BODY }
TEXTURE_MAP_BODY:
TEXTURE_MAP_IDENTIFIER | TEXTURE_MAP_ENTRY...
TEXTURE_MAP_ENTRY :
[Value TEXTURE_BODY]

WhereValue is a float value between 0.0 and 1.0 inclusive and d8&eXTUREBODY is anything which can
be inside aexture{. ..} statement. Theexture keyword and{} braces need not be specified.

Note: the [] brackets are part of the actuAEXTUREMAP_ENTRY They are not notational symbols denoting
optional parts. The brackets surround each entry in the texture map.

There may be from 2 to 256 entries in the map.
For example:

texture {
gradient x //this is the PATTERN_TYPE
texture_map |
[0.3 pigment{Red} finish{phong 1}]
[0.3 T _Woodll] //this 1s a texture identifier
[0.6 T_Woodll]
[0.9 pigment{DMFWood4} finish{Shiny}]

}

When thegradient x function returns values from 0.0 to 0.3 the red highlighted texture is used. From 0.3 to
0.6 the texture identifier_wood11 is used. From 0.6 up to 0.9 a blend afwood11 and a shinywmrioods is used.
From 0.9 on up only the shiny wood is used.

Texture maps may be nested to any level of complexity you desire. The textures in a map may have color maps
or texture maps or any type of texture you want.

The blended area of a texture map works by fully calculating both contributing textures in their entirety and
then linearly interpolating the apparent colors. This means that reflection, refraction and lighting calculations
are done twice for every point. This is in contrast to using a pigment map and a normal map in a plain texture,
where the pigment is computed, then the normal, then reflection, refraction and lighting are calculated once for
that point.

Entire textures may also be used with the block patterns sucthasker, hexagon andorick. For example...

texture {
checker
texture { T_Woodl2 scale .8 }
texture {
pigment { White_Marble }
finish { Shiny }

5.5 Patterned Textures 199

scale .5
}
}
}

Note: that in the case of block patterns thexture wrapping is required around the texture information. Also
note that this syntax prohibits the use of a layered texture however you can work around this by declaring a
texture identifier for the layered texture and referencing the identifier.

A texture map is also used with theverage texture type. See "Average” for detalils.

You may declare and use texture map identifiers but the only way to declare a texture block pattern list is to
declare a texture identifier for the entire texture.

5.5.2 Tiles

Earlier versions of POV-Ray had a patterned texture calkddstexture It used theciles andtile2 keywords
to create a checkered pattern of textures.

TILES_TEXTURE:
texture
{
tiles TEXTURE tile2 TEXTURE
[TRANSFORMATIONS...]
}

Although it is still supported for backwards compatibility you should useeaker block texture pattern de-
scribed in section "Texture Maps” rather than tiles textures.

5.5.3 Material Maps

Thenaterial map patterned texture extends the concept of image maps to apply to entire textures rather than
solid colors. A material map allows you to wrap a 2-D bit-mapped texture pattern around your 3-D objects.

Instead of placing a solid color of the image on the shape like an image map, an entire texture is specified based
on the index or color of the image at that point. You must specify a list of textures to be used tikeuae
paletterather than the usual color palette.

When used with mapped file types such as GIF, and some PNG and TGA images, the index of the pixel is used
as an index into the list of textures you supply. For unmapped file types such as some PNG and TGA images
the 8 bit value of the red component in the range 0-255 is used as an index.

If the index of a pixel is greater than the number of textures in your list then the index is taken modulo N where
N is the length of your list of textures.

Note: The material map Statement has nothing to do with theaterial statement. Anaterial map iS nota
way to create patternediterial. See "Material” for explanation of this unrelated, yet similarly named, older
feature.

Specifying a Material Map

The syntax for aaterial map is:

200 Textures

MATERIAL_MAP:
texture

{

material_map
{
BITMAP_TYPE "bitmap.ext"
[BITMAP_MODS...] TEXTURE... [TRANSFORMATIONS...]
}
}
BITMAP_TYPE:
gif | tga | iff | ppm | pgm | png | jpeg | tiff | sys
BITMAP_MOD:
map_type Type | once | interpolate Type

After the requiredBITMAP_TYPEkeyword is a string expression containing the name of a bitmapped material
file of the specified type. Several optional modifiers may follow the file specification. The modifiers are
described below.

Note: earlier versions of POV-Ray allowed some modifiers beforeBifdVIAP_TYPEbut that syntax is being
phased out in favor of the syntax described here.

Note: sys format is a system-specific format such as BMP for Windows or Pict for Macintosh.

Filenames specified in thexterial map Statements will be searched for in the home (current) directory first
and, if not found, will then be searched for in directories specified by anyr Library_Path options active.
This would facilitate keeping all your material maps files in a separate subdirectory and giving-ary_Path
option to specify where your library of material maps are. See "Library Paths” for details.

By default, the material is mapped onto the x-y-plane. The materigirggectedonto the object as though

there were a slide projector somewhere in the -z-direction. The material exactly fills the square area from (x,y)
coordinates (0,0) to (1,1) regardless of the material’s original size in pixels. If you would like to change this
default you may translate, rotate or scale the texture to map it onto the object’s surface as desired.

The file name is optionally followed by one or moITMAP.MODIFIERS There are no modifiers which
are unigue to amaterial_map. It only uses the generic bitmap modifiergap_type, once and interpolate
described in "Bitmap Modifiers”.

Although interpolate is legal in material maps, the color index is interpolated before the texture is chosen. It
does not interpolate the final color as you might hope it would. In general, interpolation of material maps serves
no useful purpose but this may be fixed in future versions.

Next is one or moreexture Statements. Each texture in the list corresponds to an index in the bitmap file. For
example:

texture {
material_map {

png "povmap.png"

texture { //used with index 0
pigment {color red 0.3 green 0.1 blue 1}
normal {ripples 0.85 frequency 10 }
finish {specular 0.75}
scale 5

}

texture { //used with index 1
pigment {White}

5.5 Patterned Textures 201

finish {
ambient 0 diffuse 0
reflection 0.9 specular 0.75
}
}
// used with index 2
texture {pigment{NeonPink} finish{Luminous}}

texture { //used with index 3
pigment {

gradient y

color_map {
[0.00 rgb <1, 0, 0>]
[0.33 rgb <0, 0, 1>]
[0.66 rgb <0 , 1, 0>]
[1.00 rgb <1, 0, 0>]

}
}
finish{specular 0.75}
scale 8
}
}
scale 30
translate <-15, -15, 0>
}

After amaterial map Statement but still inside the texture statement you may apply any legal texture modifiers.
Note: no other pigment, normal, or finish statements may be added to the texture outside the material map.
The following is illegal:

texture {
material_map {
gif "matmap.gif"
texture {T1}
texture {T2}
texture {T3}
}
finish {phong 1.0}
}

The finish must be individually added to each texture. Earlier versions of POV-Ray allowed such specifications
but they were ignored. The above restrictions on syntax were necessary for various bug fixes. This means some
POV-Ray 1.0 scenes using material maps many need minor modifications that cannot be done automatically
with the version compatibility mode.

If particular index values are not used in an image then it may be necessary to supply dummy textures. It may
be necessary to use a paint program or other utility to examine the map file’s palette to determine how to arrange
the texture list.

The textures within a material map texture may be layered but material map textures do not work as part of a
layered texture. To use a layered texture inside a material map you must declare it as a texture identifier and
invoke it in the texture list.

202 Textures

5.6 Layered Textures

It is possible to create a variety of special effects using layered textures. A layered texture consists of several
textures that are partially transparent and are laid one on top of the other to create a more complex texture. The
different texture layers show through the transparent portions to create the appearance of one texture that is a
combination of several textures.

You create layered textures by listing two or more textures one right after the other. The last texture listed will
be the top layer, the first one listed will be the bottom layer. All textures in a layered texture other than the
bottom layer should have some transparency. For example:

object {
My_Object
texture {T1} // the bottom layer
texture {T2} // a semi-transparent layer
texture {T3} // the top semi-transparent layer

}
In this example T2 shows only where T3 is transparent and T1 shows only where T2 and T3 are transparent.

The color of underlying layers is filtered by upper layers but the results do not look exactly like a series of
transparent surfaces. If you had a stack of surfaces with the textures applied to each, the light would be filtered
twice: once on the way in as the lower layers are illuminated by filtered light and once on the way out. Layered
textures do not filter the illumination on the way in. Other parts of the lighting calculations work differently as
well. The results look great and allow for fantastic looking textures but they are simply different from multiple
surfaces. Seestones. inc in the standard include files directory for some magnificent layered textures.

Note: in versions predating POV-Ray 3.5,1ter used to work the same asansnit in layered textures. It has
been changed to work as filter should. This can change the appearance of "pre 3.5” textures atlatrskhe
directive can be used to get the "pre 3.5” behaviour.

Note: layered textures must use thexture wrapped around any pigment, normal or finish statements. Do not
use multiple pigment, normal or finish statements without putting them inside the texture statement.

Layered textures may be declared. For example

#declare Layered_Examp =
texture {T1}
texture {T2}
texture {T3}

may be invoked as follows:

object {
My_Object
texture {
Layer_Examp
// Any pigment, normal or finish here
// modifies the bottom layer only.
}
}

Note: No macros are allowed in layered textures. The problem is that if a macro would contain a declare the
parser could no longer guess that two or more texture identifiers are supposed to belong to the layered texture
and not some other declare.

5.7 UV Mapping 203

If you wish to use a layered texture in a block pattern, such:as:ker, hexagon, Orbrick, Orin @ material_-

map, You must declare it first and then reference it inside a single texture statement. A patterned texture cannot
be used as a layer in a layered texture however you may use layered textures as any of the textures contained
within a patterned texture.

5.7 UV Mapping

All textures in POV-Ray are defined in 3 dimensions. Even planar image mapping is done this way. However,

it is sometimes more desirable to have the texture defined for the surface of the object. This is especially true
for bicubic patch objects and mesh objects, that can be stretched and compressed. When the object is stretched
or compressed, it would be nice for the texture todgheed to the object’s surface and follow the object’s
deformations.

When uvmapping is used, then that object’s texture will be mapped to it using surface coordinates (u and v)
instead of spatial coordinates (x, y, and z). This is done by taking a slice of the object’s regular 3D texture from
the XY plane (Z=0) and wrapping it around the surface of the object, following the object’s surface coordinates.

Note: some textures should be rotated to fit the slice in the XY plane.

Syntax:

texture {

uv_mapping pigment {PIGMENT_BODY} | pigment{uv_mapping PIGMENT_BODY}
uv_mapping normal {NORMAL_BODY } | normal {uv_mapping NORMAL_BODY }

uv_mapping texture{TEXTURE_BODY} | texture{uv_mapping TEXTURE_BODY)
}

5.7.1 Supported Objects

Surface mapping is currently defined for the following objects:
* bicubic_patch : UV coordinates are based on the patch’s parametric coordinates. They stretch with the
control points. The default range is (0..1) and can be changed.

» mesh, mesh2 UV coordinates are defined for each vertex and interpolated between.

« lathe, sor: modified spherical mapping... the u coordinate (0..1) wraps around the y axis, while the v
coordinate is linked to the object’s control points (also ranging 0..1).
Surface of Revolution also has special disc mapping on the end caps if the object is not 'open’.

* sphere: boring spherical mapping.

» box: the image isvrappedaround the box, as shown below.

204 Textures

Figure 5.1: UV Boxmap

» parametric : In this case the map is not taken from a "fixed” set of coordinates but the map is taken from
the area defined by the boundaries of the uv-space, in which the parametric surface has to be calculated.

* torus : The map is taken from the are#,0><1,1> where the u-coordinate is wrapped around the major
radius and the the v-coordinate is wrapped around the minor radius.

5.7.2 UV Vectors

With the keyworduv_vectors, the UV coordinates of the corners can be controlled for bicubic patches and
standard triangle mesh.

For bicubic patches the UV coordinates can be specified for each of the four corners of the patch. This goes
right before the control points.
The syntax is:

uv_vectors <cornerl>, <corner2>,<corner3>, <cornerd>
with default
uv_vectors <0,0>,<1,0>,<1,1>,<0,1>

For standard triangle meshes (not mesh2) you can specify the UV coordinates for each of the threewertices
vectors <uvl>,<uv2>,<uv3> inside each mesh triangle. This goes right after the coordinates (or coordinates
& normals with smooth triangles) and right before the texture.

Example:

mesh {
triangle {
<0,0,0>, <0.5,0,0>, <0.5,0.5,0>
uv_vectors <0,0>, <1,0>, <1,1>
}
triangle {
<0,0,0>, <0.5,0.5,0>, <0,0.5,0>
uv_vectors <0,0>, <1,1>, <0,1>
}
texture {
uv_mapping pigment {
image_map {
sys "SomeImage"

5.8 Triangle Texture Interpolation 205

map_type 0
interpolate 0

}

5.8 Triangle Texture Interpolation

This feature is utilized in a number of visualization approaches: triangles with individual textures for each
vertex, which are interpolated during rendering.

Syntax:

MESH_TRIANGLE:

triangle {
<Corner_1>,
<Corner_2>,
<Corner_3>
[MESH_TEXTURE]

} \

smooth_triangle {
<Corner_1>, <Normal_1>,
<Corner_2>, <Normal_2>,
<Corner_3>, <Normal_ 3>
[MESH_TEXTURE]

}

MESH_TEXTURE:
texture { TEXTURE_IDENTIFIER } |
texture_list {
TEXTURE_IDENTIFIER TEXTURE_IDENTIFIER TEXTURE_IDENTIFIER

}

To specify three vertex textures for the triangle, simply ssgure_1ist instead of texture.

5.9 Interior Texture

Syntax:

object {
texture { TEXTURE_ITEMS... }
interior_texture { TEXTURE_ITEMS...}
}

All surfaces have an exterior and interior surface. Therior_texture simply allows to specify a separate

texture for the interior surface of the object. For objects with no well defined inside/outside (bpatbitg

triangle, ...) theinterior_texture is applied to the backside of the surface. Interior surface textures use exactly
the same syntax and should work in exactly the same way as regular surface textures, except that they use the
keywordinterior_texture instead oftexture

206 Textures

Note: Do not confuseinterior_texture {} with interior {}: the first one specifies surface properties, the
second one specifies volume properties.

5.10 Cutaway Textures

Syntax:

difference | intersection {
OBJECT_1_WITH_TEXTURES
OBJECT_2_WITH_NO_TEXTURE
cutaway_textures

}

When using a CSG difference or intersectiorctn away parts of an object, it is sometimes desirable to allow

the object to retain its original texture. Generally, however, the texture of the surface that was used to do the
cutting will be displayed.

Also, if the cutting object was not given a texture by the user, the default texture is assigned to it.

By using thecutaway_textures keyword in a CSG difference or intersection, you specify that you do not want

the default texture on the intersected surface, but instead, the textures of the parent objects in the CSG should
be used.

POV-Ray will determine which texture(s) to use by doing insidedness tests on the objects in the difference or
intersection. If the intersection point is inside an object, that object’s texture will be used (and evaluated at the
interior point).

If the parent object is a CSG of objects with different textures, then the textures on overlapping parts will be
averaged together.

5.11 Patterns

POV-Ray uses a method call¢dree-dimensional solid texturingp define the color, bumpiness and other
properties of an object. You specify the way that the texture varies over a surface by specifpaiteen
Patterns are used in pigments, normals and texture maps as well as media density.

All patterns in POV-Ray are three dimensional. For every point in space, each pattern has a unigue value.
Patterns do not wrap around a surface like putting wallpaper on an object. The patterns exist in 3d and the
objects are carved from them like carving an object from a solid block of wood or stone.

Consider a block of wood. It contains light and dark bands that are concentric cylinders being the growth rings
of the wood. On the end of the block you see these concentric circles. Along its length you see lines that are the
veins. However the pattern exists throughout the entire block. If you cut or carve the wood it reveals the pattern
inside. Similarly an onion consists of concentric spheres that are visible only when you slice it. Marble stone
consists of wavy layers of colored sediments that harden into rock.

These solid patterns can be simulated using mathematical functions. Other random patterns such as granite or
bumps and dents can be generated using a random number system and a noise function.

In each case, the X, y, z coordinate of a point on a surface is used to compute some mathematical function that
returns a float value. When used with color maps or pigment maps, that value looks up the color of the pigment
to be used. In normal statements the pattern function result modifies or perturbs the surface normal vector to

5.11 Patterns 207

give a bumpy appearance. Used with a texture map, the function result determines which combinations of entire
textures to be used. When used with media density it specifies the density of the particles or gasses.

The following sections describe each pattern. See the sections "Pigment”, "Normal” "Patterned Textures” and
"Density” for more details on how to use patterns. Unless mentioned otherwise, all patterns tse there

wave type by default but may use any wave type and may be usedith map, pigment map, normal_map,
slopemap, texture.map, density, anddensity_map.

Note: Some patterns have a built in default cafoap that does not result in a grey-scale pattern. This may
lead to unexpected results when one of these patterns is used without a user specifiethpolor example
in functions or media.

These patterns are:

® agate

® bozo

® brick

® checker

* mandel

® hexagon

* marble

® radial

* wood

5.11.1 Agate

Theagate pattern is a banded pattern similar to marble but it uses a specialized built-in turbulence function that
is different from the traditional turbulence. The traditional turbulence can be used as well but it is generally not
necessary because agate is already very turbulent. You may control the amount of the built-in turbulence by
adding the optionalagate_turb keyword followed by a float value. For example:

pigment {
agate
agate_turb 0.5
color_map {MyMap}
}

Theagate pattern has a default colanap built in that results in a brown and white pattern with smooth transi-
tions.

Agate as used in a normal:

normal {
agate [Bump_Size]
[MODIFIERS...]

208 Textures

5.11.2 Average

Technicallyaverage is not a pattern type but it is listed here because the syntax is similar to other patterns.
Typically a pattern type specifies how colors or normals are chosen fragmeént map, texture map, density_-

map, Ofnormal map , howevehverage tells POV-Ray to average together all of the patterns you specify. Average
was originally designed to be used in a normal statement witdrea1 map as a method of specifying more

than one normal pattern on the same surface. However average may be used in a pigment statement with a
pigment_map Of in & texture statement with @aexture map or media density withiensity_map to average colors

too.

When used with pigments, the syntax is:

AVERAGED_PIGMENT:
pigment
{
pigment_map
{
PIGMENT_MAP_ENTRY...
}
}
PIGMENT_MAP_ENTRY:
[[Weight] PIGMENT_BODY]

WhereWeight is an optional float value that defaults to 1.0 if not specified. This weight value is the rela-
tive weight applied to that pigment. EaBHGMENTBODY is anything which can be insidegagment{...}
statement. Theigment keyword and{} braces need not be specified.

Note: that the[] brackets are part of the actu®IGMENT.MAP_ENTRY They are not notational symbols
denoting optional parts. The brackets surround each entry i thent map.

There may be from 2 to 256 entries in the map.
For example

pigment {
average
pigment_map {
[1.0 Pigment_1]
[2.0 Pigment_2]
[0.5 Pigment_3]

}

All three pigments are evaluated. The weight values are multiplied by the resulting color. It is then divided by
the total of the weights which, in this example is 3.5. When used wéthure map Or densitymap it works
the same way.

When used with anormal_map in @ normal statement, multiple copies of the original surface normal are created
and are perturbed by each pattern. The perturbed normals are then weighted, added and normalized.

See the sections "Pigment Maps and Pigment Lists”, "Normal Maps and Normal Lists”, "Texture Maps”, and
"Density Maps and Density Lists” for more information.

5.11 Patterns 209

5.11.3 Boxed

Theboxed pattern creates a 2x2x2 unit cube centered at the origin. It is computedvhiue =1.0- min(1,
max(abs(X), abs(Y), abs(Z)}) starts at 1.0 at the origin and decreases to a minimum value of 0.0 as it ap-
proaches any plane which is one unit from the origin. It remains at 0.0 for all areas beyond that distance. This
pattern was originally created for use withio or media but it may be used anywhere any pattern may be used.

5.11.4 Bozo

The bozo pattern is a very smooth, random noise function that is traditionally used with some turbulence to
create clouds. Thespotted pattern is identical teozo but in early versions of POV-Ray spotted did not allow
turbulence to be added. Turbulence can now be added to any pattern so these are redundant but both are retained
for backwards compatibility. Theumps pattern is also identical t&zo when used anywhere except in@rmal

statement. When used as a normal patteriys uses a slightly different method to perturb the normal with a
similar noise function.

Thebozo noise function has the following properties:

1. Itis defined over 3D space i.e., it takes X, y, and z and returns the noise value there.

2. If two points are far apart, the noise values at those points are relatively random.

3. If two points are close together, the noise values at those points are close to each other.

You can visualize this as having a large room and a thermometer that ranges from 0.0 to 1.0. Each point in
the room has a temperature. Points that are far apart have relatively random temperatures. Points that are close
together have close temperatures. The temperature changes smoothly but randomly as we move through the
room.

Now let’s place an object into this room along with an artist. The artist measures the temperature at each point
on the object and paints that point a different color depending on the temperature. What do we get? A POV-Ray
bozo texture!

Thebozo pattern has a default colonap built in that results in a green, blue, red and white pattern with sharp
transitions.

Note: The appearance of the bozo pattern depends on the geisgrator used. The default type is 2. This may
be changed using theise_generator keyword (See section "Pattern Modifiers / Naigenerator”).

5.11.5 Brick

Thebrick pattern generates a pattern of bricks. The bricks are offset by half a brick length on every other row
in the x- and z-directions. A layer of mortar surrounds each brick. The syntax is given by

pigment {
brick COLOR_1, COLOR_2
[brick_size <Size>] [mortar Size]

}

whereCOLOR 1 is the color of the mortar anf@OLOR 2 is the color of the brick itself. If no colors are specified
a default deep red and dark gray are used. The default size of the brick and mortar toge& &, i4.5> units.

210 Textures

The default thickness of the mortar is 0.5 units. These values may be changed using the optieralize
andnortar pattern modifiers. You may also use pigment statements in place of the colors. For example:

pigment {
brick pigment{Jade}, pigment{Black_Marble}
}

This example uses normals:
normal { brick 0.5 }
The float value is an optional bump size. You may also use full normal statements. For example:

normal {
brick normal{bumps 0.2}, normal{granite 0.3}

}
When used with textures, the syntax is

texture {
brick texture{T_Gold_ 1A}, texture{Stonel2}
}

This is a block pattern which cannot use wave types]or_map, Or slope_map modifiers.

Thebrick pattern has a default colonap built in that results in red bricks and grey mortar.

5.11.6 Bumps

Thebumps pattern was originally designed only to be used as a normal pattern. It uses a very smooth, random
noise function that creates the look of rolling hills when scaled large or a bumpy orange peel when scaled small.
Usually the bumps are about 1 unit apart.

When used as a normal pattern, this pattern uses a specialized normal perturbation function. This means that
the pattern cannot be used withbrmal map, slope_map Or wave type modifiers in anormal statement.

When used as a pigment pattern or texture pattermuitie pattern is identical teozo or spotted and is similar
to normal bumps but is not identical as are most normals when compared to pigments.

Note: The appearance of the bumps pattern depends on the gisgator used. The default type is 2. This
may be changed using theise_generator keyword (See section "Pattern Modifiers / Naigenerator”).

5.11.7 Cells

Thecells pattern fills 3d space with unit cubes. Each cube gets a random value from 0 to 1.

cells is not very suitable as a normal as it has no smooth transitions of one grey value to another.

5.11.8 Checker

The checker pattern produces a checkered pattern consisting of alternating squares of two colors. The syntax
is:

pigment { checker [COLOR_1 [, COLOR_2]] [PATTERN_MODIFIERS...] }

5.11 Patterns 211

If no colors are specified then default blue and green colors are used.

The checker pattern is actually a series of cubes that are one unit in size. Imagine a bunch of 1 inch cubes made
from two different colors of modeling clay. Now imagine arranging the cubes in an alternating check pattern
and stacking them in layer after layer so that the colors still alternate in every direction. Eventually you would
have a larger cube. The pattern of checks on each side is what the POV-Ray checker pattern produces when
applied to a box object. Finally imagine cutting away at the cube until it is carved into a smooth sphere or any
other shape. This is what the checker pattern would look like on an object of any kind.

You may also use pigment statements in place of the colors. For example:
pigment { checker pigment{Jade}, pigment{Black_Marble} }
This example uses normals:
normal { checker 0.5 }
The float value is an optional bump size. You may also use full normal statements. For example:

normal {
checker normal{gradient x scale .2},
normal{gradient y scale .2}

}
When used with textures, the syntax is
texture { checker texture{T_Wood_3A},texture{Stonel2} }
Thechecker pattern has a default colonap built in that results in blue and green tiles.

This use of checker as a texture pattern replaces the special tiles texture in previous versions of POV-Ray. You
may still use tiles but it may be phased out in future versions so checker textures are best.

This is a block pattern which cannot use wave types]or_map, Of slope_map modifiers.

5.11.9 Crackle Patterns

Thecrackle pattern is a set of random tiled multifaceted cells.
There is a choice between different types:

Standard Crackle

Mathematically, the set crackle(p)=0 is a 3D Voronoi diagram of a field of semi random points and crackle(p)

0 is the distance from the set along the shortest path (a Voronoi diagram is the locus of points equidistant from
their two nearest neighbors from a set of disjoint points, like the membranes in suds are to the centers of the
bubbles).

With a large scale and no turbulence it makes a pretty good stone wall or floor.

With a small scale and no turbulence it makes a pretty good crackle ceramic glaze.

Using high turbulence it makes a good marble that avoids the problem of apparent parallel layers in traditional
marble.

Form

pigment {
crackle form <FORM_VECTOR>
[PIGMENT_ITEMS ...]

212 Textures

}

normal {
crackle [Bump_Size]
form <FORM_VECTOR>
[NORMAL_ITEMS ...]

}

Form determines the linear combination of distances used to create the pattern. Form is a vector.

The first component determines the multiple of the distance to the closest point to be used in determining the
value of the pattern at a particular point.

The second component determines the coefficient applied to the second-closest distance.

The third component corresponds to the third-closest distance.

The standard form isc-1,1,0> (also the default), corresponding to the difference in the distances to the closest
and second-closest points in the cell array. Another commonly-used fotr, 80>, corresponding to the
distance to the closest point, which produces a pattern that looks roughly like a random collection of intersecting
spheres or cells.

Other forms can create very interesting effects, but it is best to keep the sum of the coefficients low.

If the final computed value is too low or too high, the resultant pigment will be saturated with the color at the
low or high end of the.olor map. In this case, try multiplying the form vector by a constant.

Metric

pigment {
crackle metric METRIC_VALUE
[PIGMENT_ITEMS ...]

}

normal {
crackle [Bump_Size]
metric METRIC_VALUE
[NORMAL_ITEMS ...]

}

Changing the metric changes the function used to determine which cell center is closer, for purposes of de-
termining which cell a particular point falls in. The standard Euclidean distance function has a metric of 2.
Changing the metric value changes the boundaries of the cells. A metric value of 3, for example, causes the
boundaries to curve, while a very large metric constrains the boundaries to a very small set of possible orienta-
tions.

The default for metric is 2, as used by the standard crackle texture.

Metrics other than 1 or 2 can lead to substantially longer render times, as the method used to calculate such
metrics is not as efficient.

Offset

pigment {
crackle offset OFFSET_VALUE
[PIGMENT_ITEMS ...]

}

normal {
crackle [Bump_Size]
offset OFFSET_VALUE
[NORMAL_ITEMS ...]

}

The offset is used to displace the pattern from the standard xyz space along a fourth dimension.

5.11 Patterns 213

It can be used to round off the "pointy” parts of a cellular normal texture or procedural heightfield by keeping
the distances from becoming zero.

It can also be used to move the calculated values into a specific range if the result is saturated at one end of the
color-map.

The default offset is zero.

Solid

pigment {
crackle solid
[PIGMENT_ITEMS ...]
}
normal {
crackle [Bump_Size]
solid
[NORMAL_ITEMS ...]
}

Causes the same value to be generated for every point within a specific cell. This has practical applications in
making easy stained-glass windows or flagstones. There is no provision for mortar, but mortar may be created
by layering or texture-mapping a standard crackle texture with a solid one.

The default for this parameter is off.

5.11.10 Cylindrical

Thecylindrical pattern creates a one unit radius cylinder along the Y axis. It is computed/alyte = 1.0-

min(1, sqrt(X"2 + Z"2))it starts at 1.0 at the origin and decreases to a minimum value of 0.0 as it approaches
a distance of 1 unit from the Y axis. It remains at 0.0 for all areas beyond that distance. This pattern was
originally created for use withalo or media but it may be used anywhere any pattern may be used.

5.11.11 DensityFile

Thedensity_file pattern is a 3-D bitmap pattern that occupies a unit cube from locatp@,0> to <1,1,1>.
The data file is a raw binary file format created for POV-Ray called format. The syntax provides for the
possibility of implementing other formats in the future. This pattern was originally created for usenwith
Ormedia but it may be used anywhere any pattern may be used. The syntax is:

pigment
{
density_file df3 "filename.df3"
[interpolate Type] [PIGMENT_MODIFIERS...]
}

where"filename.df3" is a file name of the data file.
As a normal pattern, the syntax is

normal

{
density_file df3 "filename.df3" [, Bump_Size]
[interpolate Type]
[NORMAL_MODIFIERS...]

214 Textures

}
The optional floaBumpSize should follow the file name and any other modifiers follow that.

The density pattern occupies the unit cube regardless of the dimensions in voxels. It remains at 0.0 for all areas
beyond the unit cube. The data in the range of 0 to 255, in case of 8 bit resolution, are scaled into a float value
in the range 0.0 to 1.0.

Theinterpolate keyword may be specified to add interpolation of the data. The default value of zero specifies
no interpolation. A value of one specifies tri-linear interpolation, a value of two specifies tri-cubic interpolation

See the sample scenes for data fitelude\spiral.df3,and the scenes which use ikcenes\textures\
patterns\densfile.pov, scenes\interior\media\galaxy.pov for examples.

df3 file format

Header:
Thedf3 format consists of a 6 byte header of three 16-bit integers with high order byte first. These
three values give the x,y,z size of the data in pixels (or more appropriately vabteds).

Data:
The header is followed by x*y*z unsigned integer bytes of data with a resolution of 8, 16 or 32 bit.
The data are written with high order byte first (big-endian). The resolution of the data is determined
by the size of the df3-file. That is, if the file is twice (minus header, of course) as long as an 8 bit
file then it is assumed to contain 16 bit ints and if it is four times as long 32 bit ints.

5.11.12 Dents

Thedents pattern was originally designed only to be used as a normal pattern. It is especially interesting when
used with metallic textures. It gives impressions into the metal surface that look like dents have been beaten
into the surface with a hammer. Usually the dents are about 1 unit apart.

When used as a normal pattern, this pattern uses a specialized normal perturbation function. This means that
the pattern cannot be used withbrmal map, s1ope_map Or wave type modifiers in anormal Statement.

When used as a pigment pattern or texture patterniethe pattern is similar to normal dents but is not identical
as are most normals when compared to pigments.

5.11.13 Facets

normal {
facets [coords SCALE_VALUE | size FACTOR]
[NORMAL_ITEMS...]

}

The facets pattern is designed to be used as a normal, it is not suitable for use as a pigment: it will cause an
error.

There are two forms of the facets pattern. One is most suited for use with rounded surfaces, and one is most
suited for use with flat surfaces.

5.11 Patterns 215

If coords is specified, the facets pattern creates facets with a size on the same order as the specified SCALE
VALUE. This version of facets is most suited for use with flat surfaces, but will also work with curved surfaces.
The boundaries of the facets coincide with the boundaries of the cells in the standard crackle pattern. The coords
version of this pattern may be quite similar to a crackle normal pattern with solid specified.

If size is specified, the facets texture uses a different function that creates facets only on curved surfaces. The
FACTOR determines how many facets are created, with smaller values creating more facets, but it is not directly

related to any real-world measurement. The same factor will create the same pattern of facets on a sphere of
any size.

This pattern creates facets by snapping normal vectors to the closest vectors in a perturbed grid of normal

vectors. Because of this, if a surface has normal vectors that do not vary along one or more axes, there will be
no facet boundaries along those axes.

5.11.14 Fractal Patterns

Fractal patterns supported in POV-Ray:

» The Mandelbrot set with exponents up to 33.(The formula for thesgis1) = z(n) "p + ¢, wherep is
the correspondent exponent.)

» The equivalent Julia sets.

» The magnetl and magnet2 fractals (which are derived from some magnetic renormalization transforma-
tions; see the fractint help for more details).
Both 'Mandelbrot’ and 'Julia’ versions of them are supported.

For the Mandelbrot and Julia sets, higher exponents will be slower for two reasons:

1. For the exponents 2,3 and 4 an optimized algorithm is used. Higher exponents use a generic algorithm
for raising a complex number to an integer exponent, and this is a bit slower than an optimized version
for a certain exponent.

2. The higher the exponent, the slower it will be. This is because the amount of operations needed to raise a
complex number to an integer exponent is directly proportional to the exponent. This means that exponent
10 will be (very) roughly twice as slow as exponent 5.

Syntax:

MANDELBROT :
mandel ITERATIONS [, BUMP_SIZE]
[exponent EXPONENT]
[exterior EXTERIOR_TYPE, FACTOR]
[interior INTERIOR_TYPE, FACTOR]

JULIA:
julia COMPLEX, ITERATIONS [, BUMP_SIZE]
[exponent EXPONENT]
[exterior EXTERIOR_TYPE, FACTOR]
[interior INTERIOR_TYPE, FACTOR]

MAGNET MANDEL:
magnet MAGNET_TYPE mandel ITERATIONS [, BUMP_SIZE]
[exterior EXTERIOR_TYPE, FACTOR]
[interior INTERIOR_TYPE, FACTOR]

216 Textures

MAGNET JULIA:
magnet MAGNET_TYPE julia COMPLEX, ITERATIONS [, BUMP_SIZE]
[exterior EXTERIOR_TYPE, FACTOR]
[interior INTERIOR_TYPE, FACTOR]

Where:

ITERATIONS is the number of times to iterate the algorithm.

CoMPLEX iS a 2D vector denoting a complex number.

MAGNET_TYPE IS either 1 or 2.

exponent iS an integer between 2 and 33. If not given, the default is 2.

interior andexterior specify special coloring algorithms. You can specify one of them or both at the same
time. They only work with the fractal patterns.

EXTERIOR_TYPE and INTERIOR_TYPE are integer values between 0 and 6 (inclusive). When not specified, the
default value of INTERIORTYPE is 0 and for EXTERIORTYPE 1.

FACTOR is a float. The return value of the pattern is multipliedrlagTor before returning it. This can be used

to scale the value range of the pattern when using interior and exterior coloring (this is often needed to get the
desired effect). The default value of FACTOR is 1.

The different values of EXTERIOR YPE and INTERIORTYPE have the following meaning:
e 0: Returnsjust 1

» 1: For exterior: The number of iterations until bailout divided by ITERATIONS.
Note: this is not scaled by FACTOR (since it is internally scaled by 1/ITERATIONS instead).
For interior: The absolute value of the smallest point in the orbit of the calculated point

» 2: Real part of the last point in the orbit

» 3: Imaginary part of the last point in the orbit

* 4: Squared real part of the last point in the orbit

» 5: Squared imaginary part of the last point in the orbit

» 6 : Absolute value of the last point in the orbit
Example:

box {
<=2, =2, 0>, <2, 2, 0.1>
pigment {
julia <0.353, 0.288>, 30
interior 1, 1
color_map {
[0 rgb 0]
[0.2 rgb x]
0.4 rgb x+y]
rgb 1]
rgb 0]

5.11 Patterns 217

5.11.15 Function as pattern

Allows you to use a functio# } block as pattern.

pigment {
function { USER_DEFINED_FUNCTIONS }
[PIGMENT_MODIFIERS...]

}

Declaring a function:
By default a function takes three parameters (x,y,z) and you do not have to explicitly specify the parameter
names when declaring it. When using the identifier, the parameters must be specified.

#declare Foo = function { x + y + z}
pigment {
function { Foo(x, vy, z) }
[PIGMENT_MODIFIERS...]
}

On the other hand, if you need more or less than three parameters when declaring a function, you also have to
explicitly specify the parameter names.

#declare Foo = function(x,y,z,t) { x + y + z + t}
pigment {
function { Foo(x, vy, z, 4) }
[PIGMENT_MODIFIERS...]
}

Using function in a normal:

#declare Foo = function { x + y + z}
normal {
function { Foo(x, y, z) } [Bump_Size]
[MODIFIERS...]

What can be used

All float expressions and operators (see section "User-Defined Functions”) which are legal in POV-Ray. Of
special interest here is thettern option, that makes it possible to use patterns as functions

#declare FOO = function {
pattern {
checker
}
}

User defined functions (like equations).

Since pigments can be declared as functions, they can also be used in functions. They must be declared first.
When using the identifier, you have to specify which component of the color vector should be used. To do this,
the dot notation is used: Function(x,y,z).red

#declare FOO = function {pigment { checker } }
pigment {
function { FOO(x,y,z).green }

218 Textures

[PIGMENT_MODIFIERS...]
}

POV-Ray has a large amount of pre-defined functions. These are mainly algebraic surfaces but there is also a
mesh function and noise3d function. See section "Internal Functions” for a complete list and some explanation
on the parameters to use. These internal functions can be included through the functions.inc include file.

#include "functions.inc"

#declare FOO = function {pigment { checker } }

pigment {
function { FOO(x,y,z).green \& f_noise3d(x*2, y*3,z)}
[PIGMENT_MODIFIERS...]

5.11.16 Function Image

Syntax function Width, Height { FUNCTION_BODY }

Not a real pattern, but listed here for convenience. This keyword defines a new 'internal’ bitmap image type. The
pixels of the image are derived from the FunctiBady, with FunctionBody either being a regular function, a
pattern function or a pigment function. In case of a pigment function the output image will be in color, in case
of a pattern or regular function the output image will be grayscale. All variants of grayscale pigment functions
are available using the regular function syntax, too. In either case the image will use 16 bit per component

Note: functions are evaluated on the x-y plane. This is different from the pattern image type for the reason that
it makes using uv functions easier.

Width and Height specify the resolution of the resulting 'internal’ bitmap image. The image is taken from the
square regior:0,0,0>, <1,1,0>

The function Statement can be used wherever an image specifietdik@r png may be used. Some uses
include creating heightfields from procedural textures or wrapping a slice of a 3d texture or function around a
cylinder or extrude it along an axis.

Examples:

plane {
y, -1
pigment {
image_map {
function 10,10 {
pigment { checker 1,0 scale .5 }
}
}

rotate x*90

}

height_field {
function 200,200 {
pattern {
bozo

}

5.11 Patterns 219

translate -0.5

scale 10

pigment {rgb 1}
}

Note: that for height fields and other situations where color is not needed it is easier tards€on n,n
{pattern{...}} thanfunction n,n {pigment{...}}. The pattern functions are returning a scalar, not a color
vector, thus a pattern is grayscale.

5.11.17 Gradient

One of the simplest patterns is theadient pattern. It is specified as

pigment {
gradient <Orientation>
[PIGMENT_MODIFIERS...]
}

where<Orientation > is a vector pointing in the direction that the colors blend. For example

pigment { gradient x } // bands of color vary as you move
// along the "x" direction.

produces a series of smooth bands of color that look like layers of colors next to each other. Points at x=0 are
the first color in the color map. As the x location increases it smoothly turns to the last color at x=1. Then it
starts over with the first again and gradually turns into the last color at x=2. In POV-Ray versions older than
3.5 the pattern reverses for negative values of x. As per POV-Ray 3.5 this is not the case anymore [1]. Using
gradient y Or gradient z makes the colors blend along the y- or z-axis. Any vector may be used but x, y and

Z are most common.

As a normal pattern, gradient generates a saw-tooth or ramped wave appearance. The syntax is

normal {
gradient <Orientation> [, Bump_Size]
[NORMAL_MODIFIERS...]

}

where the vectoxOrientation > is a required parameter but the fl@impSize which follows is optional.
Note: the comma is required especiallygtimpSizeis negative.

[1] If only the range -1 to 1 was used of the old gradient, for examplesityaphere, it can be replaced by the
planar Of marble pattern and revert the colonap. Also rotate the pattern for other orientations thaf more
general solution is to useinction{abs (x) } as a pattern instead gfadient x and similar forgradient y and
gradient z.

5.11.18 Granite

Thegranite pattern uses a simple 1/f fractal noise function to give a good granite pattern. This pattern is used
with creative color maps iBtones. inc to create some gorgeous layered stone textures.

As a normal pattern it creates an extremely bumpy surface that looks like a gravel driveway or rough stone.

220 Textures

Note: The appearance of the granite pattern depends on the geismator used. The default type is 2. This
may be changed using theise_generator keyword (See section "Pattern Modifiers / Naigenerator”).

5.11.19 Hexagon

Thehexagon pattern is a block pattern that generates a repeating pattern of hexagons in the x-z-plane. In this
instance imagine tall rods that are hexagonal in shape and are parallel to the y-axis and grouped in bundles like
shown in the example image. Three separate colors should be specified as follows:

pigment {
hexagon [COLOR_1 [, COLOR_2 [, COLOR_3]1]]
[PATTERN_MODIFIERS...]

z

» color 1

e _ color 2

, > @ color3
2060

X

Figure 5.2: The hexagon pattern.

The three colors will repeat the hexagonal pattern with hexa@@L.OR 1 centered at the origitfOLOR2 in

the +z-direction an€OLOR3 to either side. Each side of the hexagon is one unit long. The hexagonal rods of
color extend infinitely in the +y- and -y-directions. If no colors are specified then default blue, green and red
colors are used.

You may also use pigment statements in place of the colors. For example:

pigment {
hexagon
pigment { Jade },
pigment { White_Marble },
pigment { Black_Marble }
}

This example uses normals:
normal { hexagon 0.5 }
The float value is an optional bump size. You may also use full normal statements. For example:

normal {
hexagon
normal { gradient x scale .2 },
normal { gradient y scale .2 },
normal { bumps scale .2 }

5.11 Patterns 221

When used with textures, the syntax is...

texture {
hexagon
texture { T_Gold_3A },
texture { T_Wood_3A },
texture { Stonel2 }
}

Thehexagon pattern has a default colonap built in that results in red, blue and green tiles.

This is a block pattern which cannot use wave types]or_map, Or slope_map modifiers.

5.11.20 Image Pattern

Instead of placing the color of the image on the object like an immagp an imaggattern specifies an entire
texture item (color, pigment, normal or texture) based on the gray value at that point.

This gray-value is checked against a list and the corresponding item is then used for the texture at that particular
point. For values between listed items, an averaged texture is calculated.

It takes a standard image specification and has one optiens1pha Which works similar touse_color or
use_index.

Syntax:

PIGMENT:
pigment {
IMAGE_PATTERN
color_map { COLOR_MAP_BODY } |
colour_map { COLOR_MAP_BODY } |
pigment_map { PIGMENT_MAP_BODY }

NORMAL:
normal {
IMAGE_PATTERN [Bump_Size]
normal_map { NORMAL_MAP_BODY }

TEXTURE :
texture {
IMAGE_PATTERN
texture_map { TEXTURE_MAP_BODY }

IMAGE_PATTERN
image_pattern {
BITMAP_TYPE "bitmap.ext"
[IMAGE_MAP_MODS...]
}
IMAGE_MAP_MOD:
map_type Type | once | interpolate Type | use_alpha
ITEM_MAP_BODY:
ITEM_MAP_IDENTIFIER | ITEM_MAP_ENTRY...

222 Textures

ITEM MAP_ENTRY:
[GRAY VALUE ITEM MAP ENTRY...]

It is also useful for creating texture "masks”, like the following:

texture {
image_pattern { tga "image.tga" use_alpha }
texture_map {
[0 Mytex]
[1 pigment { transmit 1 }]
}
}

Note: This pattern uses an image to get the gray values from. If you want exactly the same possibilities but
need to get gray values from a pigment, you can use the pigpstern.

5.11.21 Leopard

Leopard creates regular geometric pattern of circular spots. The formula usedus:= Sqr((sin(x)+sin(y)+sin(z))/3)

5.11.22 Marble

Thenarble pattern is very similar to theradient x pattern. The gradient pattern uses a defadilp_wave wave

type which means it uses colors from the color map from 0.0 up to 1.0 at location x=1 but then jumps back to the
first color for x> 1 and repeats the pattern again and again. Howevegrtbee pattern uses theriangle wave

wave type in which it uses the color map from 0 to 1 but then it reverses the map and blends from 1 back to
zero. For example:

pigment {
gradient x
color_map {
[0.0 color Yellow]
[1.0 color Cyan]
}
}

This blends from yellow to cyan and then it abruptly changes back to yellow and repeats. However replacing
gradient x With marble smoothly blends from yellow to cyan as the x coordinate goes from 0.0 to 0.5 and
then smoothly blends back from cyan to yellow by x=1.0.

Earlier versions of POV-Ray did not allow you to change wave types. Now that wave types can be changed for
most any pattern, the distinction betweenble andgradient x is only a matter of default wave types.

When used with turbulence and an appropriate color map, this pattern looks like veins of color of real marble,
jade or other types of stone. By default, marble has no turbulence.

Themarble pattern has a default colonap built in that results in a red, black and white pattern with smooth
and sharp transitions.

5.11 Patterns 223

5.11.23 Object Pattern

The object pattern takes an object as input. It generates a, two item, color list pattern. Whether a point is
assigned to one item or the other depends on whether it is inside the specified object or not.

Object’s used in thebject pattern cannot have a texture and must be solid - these are the same limitations as
for bounded_by andclipped_by.

Syntax:

object {
OBJECT_IDENTIFIER | OBJECT {}
LIST_ITEM A, LIST_ITEM B

}

Where OBJDENTIFIER is the target object (which must be declared), or use the full object syntax.LIST
ITEM_A and LISTITEM_B are the colors, pigments, or whatever the pattern is controlling. LTEM A is
used for all points outside the object, and LISITEM _B is used for all points inside the object.

Example:

pigment {
object {
myTextObject
color White
color Red

}
turbulence 0.15

}
Note: This is a block pattern which cannot use wave types, colap, or slopanap modifiers.

5.11.24 Onion

Theonion is a pattern of concentric spheres like the layers of an oni@ue = mod(sqrt(Sqr(X)+Sqr(Y)+Sqr(2)),
1.0) Each layer is one unit thick.

5.11.25 Pigment Pattern

Use any pigment as a pattern. Instead of using the pattern directly on the object, a ppgthert converts

the pigment to gray-scale first. For each point, the gray-value is checked against a list and the corresponding
item is then used for the texture at that particular point. For values between listed items, an averaged texture is
calculated.

Texture items can be color, pigment, normal or texture and are specified in antafompigmenimap, normal

map or texturemap.

It takes a standard pigment specification.

Syntax:

PIGMENT:
pigment {
pigment_pattern { PIGMENT_BODY }
color_map { COLOR_MAP_BODY } |

224 Textures

colour_map { COLOR_MAP_BODY } |
pigment_map { PIGMENT_MAP_BODY }
}

NORMAL:
normal {
pigment_pattern { PIGMENT_BODY } [Bump_Size]
normal_map { NORMAL_MAP_BODY }
}

TEXTURE:
texture {
pigment_pattern { PIGMENT_BODY }
texture_map { TEXTURE_MAP_BODY }
}

ITEM_MAP_BODY:
ITEM_MAP_IDENTIFIER | ITEM_MAP_ENTRY...
ITEM _MAP ENTRY:
[GRAY VALUE ITEM_MAP_ENTRY...]

This pattern is also useful when parent and children patterns need to be transformed independently from each
other. Transforming the pigmepattern will not affect the child textures. When any of the child textures should
be transformed, apply it to the specific MAENTRY.

This can be used with any pigments, ranging from a simple checker to very complicated nested pigments. For
example:

pigment {
pigment_pattern {
checker White, Black
scale 2
turbulence .5
}
pigment_map {
[0, checker Red, Green scale .5]
[1, checker Blue, Yellow scale .2]
}
}

Note: This pattern uses a pigment to get the gray values from. If you want to get the pattern from an image,
you should use the imagaattern.

5.11.26 Planar

The planar pattern creates a horizontal stripe plus or minus one unit above and below the X-Z plane. It is
computed by: value =1.0- min(1, abs(Y)l} starts at 1.0 at the origin and decreases to a minimum value of
0.0 as the Y values approaches a distance of 1 unit from the X-Z plane. It remains at 0.0 for all areas beyond
that distance. This pattern was originally created for use with or media but it may be used anywhere any
pattern may be used.

5.11 Patterns 225

5.11.27 Quilted

Thequilted pattern was originally designed only to be used as a normal pattern. The quilted pattern is so named
because it can create a pattern somewhat like a quilt or a tiled surface. The squares are actually 3-D cubes that
are 1 unitin size.

When used as a normal pattern, this pattern uses a specialized normal perturbation function. This means that
the pattern cannot be used withbrmal map, slope_map Or wave type modifiers in anormal statement.

When used as a pigment pattern or texture patterngtheed pattern is similar to normal quilted but is not
identical as are most normals when compared to pigments.

The two parametersntrol0 and controll are used to adjust the curvature of theamor gougearea between
thequilts.

The syntax is:

pigment { quilted [QUILTED_MODIFIERS...] }
QUILTED_MODIFIERS:
control0 Value_0 | controll Value_1l | PIGMENT_MODIFIERS

The values should generally be kept to around the 0.0 to 1.0 range. The default value is 1.0 if none is specified.
Think of this gouge between the tiles in cross-section as a sloped line.

Figure 5.3: Quilted pattern with cO=0 and different values for c1.

This straight slope can be made to curve by adjusting the two control values. The control values adjust the slope
at the top and bottom of the curve. A control values of 0 at both ends will give a linear slope, as shown above,
yielding a hard edge. A control value of 1 at both ends will give an "s” shaped curve, resulting in a softer, more
rounded edge.

The syntax for use as a normal is:

normal {
quilted [Bump_Size]
[QUILTED_MODIFIERS...]
}
QUILTED_MODIFIERS:
control0 Value_0 | controll Value_1 | PIGMENT_MODIFIERS

226 Textures

Figure 5.5: Quilted pattern with c0=0.67 and different values for c1.

Figure 5.6: Quilted pattern with cO=1 and different values for c1.

5.11 Patterns 227

5.11.28 Radial

The radial pattern is a radial blend that wraps around the +y-axis. The color for value 0.0 starts at the +x-
direction and wraps the color map around from east to west with 0.25 in the -z-direction, 0.5 in -x, 0.75 at +z
and back to 1.0 at +x. Typically the pattern is used with¢ gequency modifier to create multiple bands that
radiate from the y-axis. For example:

pigment {
radial color_map{[0.5 Black][0.5 White]}
frequency 10

}

creates 10 white bands and 10 black bands radiating from the y axis.

The radial pattern has a default colonap built in that results in a yellow, magenta and cyan pattern with
smooth transitions.

5.11.29 Ripples

Theripples pattern was originally designed only to be used as a normal pattern. It makes the surface look like
ripples of water. The ripples radiate from 10 random locations inside the unit cube:@j@®> to <1,1,1>.
Scale the pattern to make the centers closer or farther apart.

Usually the ripples from any given center are about 1 unit apart. Thepuency keyword changes the spacing
between ripples. Thephase keyword can be used to move the ripples outwards for realistic animation.

The number of ripple centers can be changed with the global parameter_giibay§numberof_waves Count

}

somewhere in the scene. This affects the entire scene. You cannot change the number of wave centers on
individual patterns. See section "Numb@f_Waves” for details.

When used as a normal pattern, this pattern uses a specialized normal perturbation function. This means that
the pattern cannot be used witlbrmal map, slope_map Or wave type modifiers in anormal statement.

When used as a pigment pattern or texture patternyiheles pattern is similar to normal ripples but is not
identical as are most normals when compared to pigments.

5.11.30 Slope

Theslope pattern uses the normal of a surface to calculate the slope at a given point. It then creates the pattern
value dependent on the slope and optionally the altitude. It can be used for pigments, normals and textures, but
not for media densities. For pigments the syntax is:

pigment {
slope {
<Direction> [, Lo_slope, Hi_slope]
[altitude <Altitude> [, Lo_alt, Hi_alt]]
}
[PIGMENT_MODIFIERS...]

228 Textures

The slope value at a given point is dependent on the angle betweemn the:-tion> vector and the normal of
the surface at that point. For example:

- When the surface normal points in the opposite direction oktiteection> vector (180 degrees), the slope
is 0.0.

- When the surface normal is perpendicular to #nerection> vector (90 degrees), the slope is 0.5.

- When the surface normal is parallel to theirection> vector (0O degrees), the slope is 1.0.

When using the simplest variant of the syntax:
slope { <Direction> }

the pattern value for a given point is the same as the slope vahigection> is a 3-dimensional vector and
will usually be<o, -1, 0> for landscapes, but any direction can be used.

By specifyingro_slope andsi_slope you get more control:
slope { <Direction>, Lo_slope, Hi_slope }

Lo_slope andHi_slope specifies which range of slopes are used, so you can control which slope values return
which pattern valuesLo_slope is the slope value that returns 0.0 ands1ope is the slope value that returns
1.0.

For example, if you have a heigfield and<pirection> is set to<0,-1, 0>, then the slope values would only
range from 0.0 to 0.5 because heidieids cannot have overhangs. If you do not spetify1ope andsi_slope,

you should keep in mind that the texture for the flat (horizontal) areas must be set at 0.0 and the texture for the
steep (vertical) areas at 0.5 when designing the textuap. The part from 0.5 up to 1.0 is not used then. But,

by settingro_slope andui_slope to 0.0 and 0.5 respectively, the slope range will be stretched over the entire
map, and the textureap can then be defined from 0.0 to 1.0.

By adding an optionakaltitude> vector:

slope {
<Direction>
altitude <Altitude>
}

the pattern will be influenced not only by the slope but also by a special gradientitude> is a 3-dimensional
vector that specifies the direction of the gradient. When i tude> is specified, the pattern value is a weighted
average of the slope value and the gradient value. The weights are the lengths of the«®ctorsion> and
<Altitude>. SO if <Direction> is much longer tharaltitude> it means that the slope has greater effect on
the results than the gradient. If on the other hamdtitude> is longer, it means that the gradient has more
effect on the results than the slope.

When adding the<a1titude> vector, the default gradient is defined from 0 to 1 units along the specified axis.
This is fine when your object is defined within this range, otherwise a correction is needed. This can be done
with the optionak.o_alt andui_alt parameters:

slope {

<Direction>

altitude <Altitude>, Lo_alt, Hi_alt
}

They define the range of the gradient along the axis defined by Mitude> vector.

For example, with arcaltitude> vector set to y and an object going from -3 to 2 on the y axisrthelt and
Hi_alt parameters should be set to -3 and 2 respectively.

5.11 Patterns 229

Note:

* You may use the turbulence keyword inside slope pattern definitions but it may cause unexpected results.
Turbulence is a 3-dimensional distortion of a pattern. Since slope is only defined on surfaces of objects,
a 3-dimensional turbulence is not applicable to the slope component. However, if you are using altitude,
the altitude component of the pattern will be affected by turbulence.

« If your object is larger than the range of altitude you have specified, you may experience unexpected
discontinuities. In that case it is best to adjustibe1t andui_alt values so they fit to your object.

» The slope pattern does not work for the sfghere, because the skphere is a background feature and
does not have a surface. similarly, it does not work for media densities.

5.11.31 Spherical

The spherical pattern creates a one unit radius sphere, with its center at the origin. It is computechlog
=1.0-min(1, sqrt(X"2 + Y"2 + Z"2))t starts at 1.0 at the origin and decreases to a minimum value of 0.0 as
it approaches a distance of 1 unit from the origin in any direction. It remains at 0.0 for all areas beyond that
distance. This pattern was originally created for use with or media but it may be used anywhere any pattern
may be used.

5.11.32 Spirall

Thespirall pattern creates a spiral that winds around the z-axis similar to a screw. When viewed sliced in the
x-y plane, it looks like the spiral arms of a galaxy. Its syntax is:

pigment
{
spirall Number_of_ Arms
[PIGMENT_MODIFIERS...]
}

TheNumber_of _Arms value determines how may arms are winding around the z-axis.
As a normal pattern, the syntax is

normal

{
spirall Number_of_ Arms [, Bump_Size]
[NORMAL_MODIFIERS...]

}

where thewnber_of_Arms Value is a required parameter but the flBainp Size which follows is optional.
Note: the comma is required especiallyBtimpSizeis negative.

The pattern uses theiangle_wave Wave type by default but may use any wave type.

5.11.33 Spiral2

Thespiral2 pattern creates a double spiral that winds around the z-axis simitatta11 except that it has
two overlapping spirals which twist in opposite directions. The result sometimes looks like a basket weave or

230 Textures

perhaps the skin of pineapple. The center of a sunflower also has a similar double spiral pattern. Its syntax is:

pigment
{
spiral2 Number_of_ Arms
[PIGMENT_MODIFIERS...]
}

TheNumber_of _Arms value determines how may arms are winding around the z-axis. As a normal pattern, the
syntax is

normal

{
spiral2 Number_of Arms [, Bump_Size]
[NORMAL_MODIFIERS...]

}

where thewnber_of_Arms vValue is a required parameter but the flBainp Size which follows is optional.

Note: the comma is required especial\BEimpSizeis negative. The pattern uses theangle_wave wave type
by default but may use any wave type.

5.11.34 Spotted

The spotted pattern is identical to theozo pattern. Early versions of POV-Ray did not allow turbulence to be
used with spotted. Now that any pattern can use turbulence there is no difference betweand spotted.
See section "Bozo” for details.

5.11.35 Waves

Thewaves pattern was originally designed only to be used as a normal pattern. It makes the surface look like
waves on water. Thewaves pattern looks similar to theipples pattern except the features are rounder and
broader. The effect is to make waves that look more like deep ocean waves. The waves radiate from 10 random
locations inside the unit cube are®,0,0> to <1,1,1>. Scale the pattern to make the centers closer or farther
apart.

Usually the waves from any given center are about 1 unit apart. Theuency keyword changes the spacing
between waves. Thehase keyword can be used to move the waves outwards for realistic animation.

The number of wave centers can be changed with the global parameter
global_settings { number_of_waves Count }

somewhere in the scene. This affects the entire scene. You cannot change the number of wave centers on
individual patterns. See section "Numb@f_Waves” for details.

When used as a normal pattern, this pattern uses a specialized normal perturbation function. This means that
the pattern cannot be used witlbrmal map, slope_map Or wave type modifiers in anormal statement.

When used as a pigment pattern or texture patternyihes pattern is similar to normal waves but is not
identical as are most normals when compared to pigments.

5.12 Pattern Modifiers 231

5.11.36 Wood

Thewood pattern consists of concentric cylinders centered on the z-axis. When appropriately colored, the bands
look like the growth rings and veins in real wood. Small amounts of turbulence should be added to make it look
more realistic. By default, wood has no turbulence.

Unlike most patterns, theood pattern uses thetriangle wave wave type by default. This means that like
marble, wood uses color map values 0.0 to 1.0 then repeats the colors in reverse order from 1.0 to 0.0. However
you may use any wave type.

The wood pattern has a default colonap built in that results in a light and dark brown pattern with sharp
transitions.

5.11.37 Wrinkles

Thewrinkles pattern was originally designed only to be used as a normal pattern. It uses a 1/f noise pattern sim-
ilar to granite but the features in wrinkles are sharper. The pattern can be used to simulate wrinkled cellophane
or foil. It also makes an excellent stucco texture.

When used as a normal pattern, this pattern uses a specialized normal perturbation function. This means that
the pattern cannot be used withbrmal map, s1ope_map Or wave type modifiers in anormal Statement.

When used as a pigment pattern or texture patternyithex1es pattern is similar to normal wrinkles but is not
identical as are most normals when compared to pigments.

Note: The appearance of the wrinkles pattern depends on the_geiserator used. The default type is 2. This
may be changed using theise_generator keyword (See section "Pattern Modifiers / Naigenerator”).

5.12 Pattern Modifiers

Pattern modifiers are statements or parameters which modify how a pattern is evaluated or tells what to do with
the pattern. The complete syntax is:

PATTERN_MODIFIER:
BLEND_MAP_MODIFIER | AGATE_MODIFIER | DENSITY_FILE_MODIFIER |
QUILTED_MODIFIER | BRICK_MODIFIER | SLOPE_MODIFIER |
noise_generator Number| turbulence <Amount> |
octaves Count | omega Amount | lambda Amount |
warp { [WARP_ITEMS...] } | TRANSFORMATION
BLEND_MAP_MODIFIER:
frequency Amount | phase Amount | ramp_wave | triangle_wave |
sine_wave | scallop_wave | cubic_wave | poly_wave [Exponent]
AGATE_MODIFIER:
agate_turb Value
BRICK_MODIFIER:
brick_size Size | mortar Size
DENSITY _FILE_MODIFIER:
interpolate Type
SLOPE_MODIFIERS:
<Altitude>
<Lo_slope, Hi_slope>

232 Textures

<Lo_alt,Hi_alt>
QUILTED_MODIFIER:
control0 Value | controll Value
PIGMENT_MODIFIER:
PATTERN_MODIFIER | COLOR_LIST | PIGMENT_LIST |
color_map { COLOR_MAP_BODY } | colour_map { COLOR_MAP_BODY } |
pigment_map{ PIGMENT_MAP_BODY } | quick_color COLOR |
quick_colour COLOR
COLOR NORMAL_MODIFIER:
PATTERN_MODIFIER | NORMAL_LIST |
normal_map { NORMAL_MAP_BODY } | slope_map{ SLOPE_MAP_BODY } |
bump_size Amount
TEXTURE_PATTERN_MODIFIER:
PATTERN_MODIFIER | TEXTURE_LIST |
texture_map{ TEXTURE_MAP_BODY }
DENSITY_MODIFIER:
PATTERN_MODIFIER | DENSITY_LIST | COLOR_LIST |
color_map { COLOR_MAP_BODY } | colour_map { COLOR_MAP_BODY } |
density_map { DENSITY_MAP_BODY }

Default values for pattern modifiers:

dist_exp
falloff
frequency
lambda
major_radius
map_type
noise_generator :
octaves
omega .5
orientation : <0,0,1>
phase : 0.0
poly_wave : 1.0
strength : 1.0
turbulence . <0,0,0>

O oD O DN DN O

The modifierPIGMENT.LIST, quick_color, and pigment_map apply only to pigments. See section "Pigment”
for details on these pigment-specific pattern modifiers.

The modifiersCOLORLIST andcolormap apply only to pigments and densities. See sections "Pigment” and
"Density” for details on these pigment-specific pattern modifiers.

The modifiers NORMALLIST, bump_size, slopemap and normal map apply only to normals. See section
"Normal” for details on these normal-specific pattern modifiers.

The TEXTURELIST andtexture_map modifiers can only be used with patterned textures. See section "Texture
Maps” for details.

The DENSITYLIST and density map modifiers only work withmedia{density{..}} statements. See "Den-
sity” for details.

Theagate_turb modifier can only be used with thegate pattern. See "Agate” for details.

The brick_size andmortar modifiers can only be used with therick pattern. See "Brick” for details.

5.12 Pattern Modifiers 233

The control0 andcontroll modifiers can only be used with theilted pattern. See "Quilted” for details.
The interpolate modifier can only be used with theensity_file pattern. See "Densit¥ile” for details.

The general purpose pattern modifiers in the following sections can be useghwitht, normal, texture, Or
density patterns.

5.12.1 Transforming Patterns

The most common pattern modifiers are the transformation modifieésslate, rotate, scale, transform,
andmatrix. For details on these commands see section "Transformations”.

These modifiers may be placed inside pigment, normal, texture, and density statements to change the position,
size and orientation of the patterns.

Transformations are performed in the order in which you specify them. However in general the order of
transformations relative to other pattern modifiers suchtasbulence, colormap and other maps is not
important. For example scaling before or after turbulence makes no difference. The turbulence is done first,
then the scaling regardless of which is specified first. However the order in which transformations are performed
relative towarp Statements is important. See "Warps” for details.

5.12.2 Frequency and Phase

The frequency andphase modifiers act as a type of scale and translate modifiers for various blend maps. They
only have effect when blend maps are used. Blend mapscarer _map, pigment map, normal map, slope_map,
density map, andtexture map. This discussion uses a color map as an example but the same principles apply to
the other blend map types.

The frequency keyword adjusts the number of times that a color map repeats over one cycle of a pattern. For
example gradient covers color map values 0 to 1 over the range from x=0 to x=1. By addigigiency 2.0

the color map repeats twice over that same range. The same effect can be achievedausings*x so the
frequency keyword is not that useful for patterns like gradient.

However the radial pattern wraps the color map around the +y-axis once. If you wanted two copies of the map
(or 3 or 10 or 100) you would have to build a bigger map. Addingequency 2.0 causes the color map to be
used twice per revolution. Try this:

pigment {
radial
color_map{[0.5 color Red] [0.5 color White]}
frequency 6

}
The result is six sets of red and white radial stripes evenly spaced around the object.

The float afterrrequency can be any value. Values greater than 1.0 causes more than one copy of the map to be
used. Values from 0.0 to 1.0 cause a fraction of the map to be used. Negative values reverses the map.

Thephase value causes the map entries to be shifted so that the map starts and ends at a different place. In the
example above if you render successive framesate 0 thenphase 0.1, phase 0.2, etc. you could create an
animation that rotates the stripes. The same effect can be easily achieved by rotating thepigment using

rotate y*Angle but there are other uses where phase can be handy.

234 Textures

Sometimes you create a great looking gradient or wood color map but you want the grain slightly adjusted in
or out. You could re-order the color map entries but that is a pain. A phase adjustment will shift everything but
keep the same scale. Try animatingsadel pigment for a color palette rotation effect.

These values work by applying the following formula
New Value = fmod (OldValue * Frequency + Phase, 1.0).

The frequency andphase modifiers have no effect on block patternsecker, brick, and hexagon nor do they
effect image_map, bump_map OF material_map. They also have no effect in normal statements when used with
bumps, dents, quilted OF wrinkles because these normal patterns cannot usgnal map OF slope map.

They can be used with normal pattemsples and waves even though these two patterns cannot usemal -

map OF slope_map either. When used withripples Orwaves, frequency adjusts the space between features and
phase can be adjusted from 0.0 to 1.0 to cause the ripples or waves to move relative to their center for animating
the features.

5.12.3 Waveforms

POV-Ray allows you to apply various wave forms to the pattern function before applying it to a blend map.
Blend maps aréolor_map, pigment_map, normal_map, slope_map, density_map, andtexture_ map.

Most of the patterns which use a blend map, use the entries in the map in order from 0.0 to 1.0. The effect can
most easily be seen when these patterns are used as normal patterns with no maps. Patterngraucknas

or onion generate a groove or slot that looks like a ramp that drops off sharply. This is callegd @ve wave

type and it is the default wave type for most patterns. Howeverdheand marble patterns use the map from

0.0 to 1.0 and then reverses it and runs it from 1.0 to 0.0. The result is a wave form which slopes upwards to a
peak, then slopes down again in#&iangle_wave. In earlier versions of POV-Ray there was no way to change

the wave types. You could simulate a triangle wave on a ramp wave pattern by duplicating the map entries in
reverse, however there was no way to use a ramp wave on wood or marble.

Now any pattern that takes a map can have the default wave type overridden. For example:
pigment { wood color_map { MyMap } ramp_wave }

Also available areine_wave, scallop_wave, cubic_wave andpoly wave types. These types are of most use in
normal patterns as a type of built-in slope map. Th&e_wave takes the zig-zag of a ramp wave and turns it
into a gentle rolling wave with smooth transitions. Th@llop_wave uses the absolute value of the sine wave
which looks like corduroy when scaled small or like a stack of cylinders when scaled largercithe_wave

is a gentle cubic curve from 0.0 to 1.0 with zero slope at the start and endpoTh&ave is an exponential
function. Itis followed by an optional float value which specifies exponent. For exampleave 2 starts low
and climbs rapidly at the end while1y wave 0.5 climbs rapidly at first and levels off at the end. If no float
value is specified, the default is 1.0 which produces a linear function identiealgorave.

Although any of these wave types can be used for pigments, normals, textures, or density the effect of many of
the wave types are not as noticeable on pigments, textures, or density as they are for normals.

Wave type modifiers have no effect on block patterfigcker, brick, object andhexagon nor do they effect
image_map, bump_map OF material_map. They also have no effect in normal statements when usedbwith,
dents, quilted, ripples, waves, Ofwrinkles because these normal patterns cannohb&el map OF slope.-
map.

5.12 Pattern Modifiers 235

5.12.4 Noise Generators

There are three noise generators implemented. Changingthe generator will change the appearance of
noise based patterns, like bozo and granite.

* noise_generator 1 the noise that was used in PCRay 3.1

* noise_generator 2 range corrected’ version of the old noise, it does not show the plateaus seen with
noise_generator 1

* noise_generator 3 generates Perlin noise
The default imoise_generator 2

Note: The noisegenerator can also be setgrobal settings

5.12.5 Turbulence

Theturbulence pattern modifier is still supported for compatibility issues, but it is better nowadays to use the
warp {turbulence} feature, which does not have turbulence’s limitation in transformation order (turbulence

is always applied first, before any scale, translate or rotate, whatever the order you specify). For a detailed
discussion see 'Turbulence versus Turbulence Warp’

The old-style turbulence is handled slightly differently when used with the agate, marble, spirall, spiral2, and
wood textures.

5.12.6 Warps

The warp statement is a pattern modifier that is similar to turbulence. Turbulence works by taking the pat-
tern evaluation point and pushing it about in a series of random steps. However warps push the point in very
well-defined, non-random, geometric ways. Thep statement also overcomes some limitations of traditional
turbulence and transformations by giving the user more control over the order in which turbulence, transforma-
tion and warp modifiers are applied to the pattern.

Currently there are seven types of warps but the syntax was designed to allow future expansion. The turbulence
warp provides an alternative way to specify turbulence. The others modify the pattern in geometric ways.

The syntax for using @arp Statement is:

WARP:
warp { WARP_ITEM }

WARP_ITEM:
repeat <Direction> [REPEAT_ITEMS...] |
black_hole <Location>, Radius [BLACK_HOLE_ITEMS...] |
turbulence <Amount> [TURB_ITEMS...]
cylindrical [orientation VECTOR | dist_exp FLOAT]
spherical [orientation VECTOR | dist_exp FLOAT]
toroidal [orientation VECTOR | dist_exp FLOAT |

major_radius FLOAT]

planar [VECTOR , FLOAT]

REPEAT_ITEMS:
offset <Amount> |

236 Textures

flip <Axis>
BLACK_HOLE_ITEMS:
strength Strength | falloff Amount | inverse |
repeat <Repeat> | turbulence <Amount>
TURB_ITEMS:
octaves Count | omega Amount | lambda Amount

You may have as many separate warp statements as you like in each pattern. The placement of warp statements
relative to other modifiers such asolor map Or turbulence iS not important. However placement of warp
statements relative to each other and to transformations is significant. Multiple warps and transformations are
evaluated in the order in which you specify them. For example if you translate, then warp or warp, then translate,
the results can be different.

Black Hole Warp

A black_hole warp is so named because of its similarity to real black holes. Just like the real thing, you cannot
actually see a black hole. The only way to detect its presence is by the effect it has on things that surround it.

Take, for example, a wood grain. Using POV-Ray’s normal turbulence and other texture modifier functions,
you can get a nice, random appearance to the grain. But in its randomness it is regular - it is regularly random!
Adding a black hole allows you to create a localized disturbance in a wood grain in either one or multiple
locations. The black hole can have the effect of eithekingthe surrounding texture into itself (like the real
thing) orpushingit away. In the latter case, applied to a wood grain, it would look to the viewer as if there were

a knothole in the wood. In this text we use a wood grain regularly as an example, because it is ideally suitable
to explaining black holes. However, black holes may in fact be used with any texture or pattern. The effect that
the black hole has on the texture can be specified. By defasii¢ckswvith the strength calculated exponentially
(inverse-square). You can change this if you like.

Black holes may be used anywhere a warp is permitted. The syntax is:

BLACK_HOLE_WARP:
warp
{
black_hole <Location>, Radius
[BLACK_HOLE_ITEMS...]
}
BLACK_HOLE_ITEMS:
strength Strength | falloff Amount | inverse | type Type |
repeat <Repeat> | turbulence <Amount>

The minimal requirement is the ack_hole keyword followed by a vectotLocation > followed by a comma
and a floaRadius . Black holes effect all points within the spherical region around the location and within the
radius. This is optionally followed by any number of other keywords which control how the texture is warped.

The ralloff keyword may be used with a float value to specify the power by which the effect of the black
hole falls off. The default is two. The force of the black hole at any given point, before applyirgthejth
modifier, is as follows.

First, convert the distance from the point to the center to a proportion (0 to 1) that the point is from the edge of
the black hole. A point on the perimeter of the black hole will be 0.0; a point at the center will be 1.0; a point
exactly halfway will be 0.5, and so forth. Mentally you can consider this to be a closeness factor. A closeness
of 1.0 is as close as you can get to the center (i.e. at the center), a closeness of 0.0 is as far away as you can

5.12 Pattern Modifiers 237

get from the center and still be inside the black hole and a closeness of 0.5 means the point is exactly halfway
between the two.

Call this value c. Raise c to the power specifieddmioft. By default Falloff is 2, so this is ¢"2 or ¢ squared.

The resulting value is the force of the black hole at that exact location and is used, after applyitig-then

scaling factor as described below, to determine how much the point is perturbed in space. For example, if c is
0.5 the force is 0.572 or 0.25. If c is 0.25 the force is 0.125. But if ¢ is exactly 1.0 the force is 1.0. Recall that
as c gets smaller the point is farther from the center of the black hole. Using the default power of 2, you can
see that as ¢ reduces, the force reduces exponentially in an inverse-square relationship. Put in plain English, it
means that the force is much stronger (by a power of two) towards the center than it is at the outside.

By increasingfalloff, you can increase the magnitude of the falloff. A large value will mean points towards

the perimeter will hardly be affected at all and points towards the center will be affected strongly. A value of 1.0

for ral1o0ff will mean that the effect is linear. A point that is exactly halfway to the center of the black hole will

be affected by a force of exactly 0.5. A valueraf 10££ of less than one but greater than zero means that as you

get closer to the outside, the force increases rather than decreases. This can have some uses but there is a side
effect. Recall that the effect of a black hole ceases outside its perimeter. This means that points just within the
perimeter will be affected strongly and those just outside not at all. This would lead to a visible border, shaped

as a sphere. A value foral1off of 0 would mean that the force would be 1.0 for all points within the black

hole, since any number larger O raised to the power of 0 is 1.0.

Thestrength keyword may be specified with a float value to give you a bit more control over how much a point
is perturbed by the black hole. Basically, the force of the black hole (as determined above) is multiplied by the
value ofstrength, which defaults to 1.0. If you set strength to 0.5, for example, all points within the black hole
will be moved by only half as much as they would have been. If you set it to 2.0 they will be moved twice as
much.

There is a rider to the latter example, though - the movement is clipped to a maximum of the original distance
from the center. That is to say, a point that is 0.75 units from the center may only be moved by a maximum
of 0.75 units either towards the center or away from it, regardless of the valueehgth. The result of this
clipping is that you will have an exclusion area near the center of the black hole where all points whose final
force value exceeded or equaled 1.0 were moved by a fixed amount.

If the inverse keyword is specified then the poinfishedaway from the center instead of being pulled in.

The repeat keyword followed by a vector, allows you to simulate the effect of many black holes without
having to explicitly declare them. Repeat is a vector that tells POV-Ray to use this black hole at multiple
locations. Usingepeat logically divides your scene up into cubes, the first being locatedddd,0> and going

to <Repeat >. Suppose your repeat vector was,5,2>. The first cube would be from0,0,0> to < 1,5,2>.

This cube repeats, so there would be one at,-5,-2>, <1,5,2>, <2,10,4> and so forth in all directions, ad
infinitum.

When you useepeat, the center of the black hole does not specify an absolute location in your scene but an
offset into each block. It is only possible to use positive offsets. Negative values will produce undefined results.

Suppose your center wad0.5,1,0.25 and the repeat vector i52,2,2>. This gives us a block at 0,0,0>
and<2,2,2>, etc. The centers of the black hole’s for these blocks woulet0®,0> + < 0.5,1.0,0.25, i. e.
<0.5,1.0,0.25, and< 2,2,2> + <0.5,1.0,0.25,,i. e. < 2,5,3.0,2.25..

Due to the way repeats are calculated internally, there is a restriction on the values you specify for the repeat
vector. Basically, each black hole must be totally enclosed within each block (or cube), with no part crossing
into a neighboring one. This means that, for each of the x, y and z dimensions, the offset of the center may not

238 Textures

be less than the radius, and the repeat value for that dimension musttbe center plus the radius since any
other values would allow the black hole to cross a boundary. Put another way, for each of x, y and z

Radius<= Offset or Centexk = Repeat - Radius.

If the repeat vector in any dimension is too small to fit this criteria, it will be increased and a warning message
issued. If the center is less than the radius it will also be moved but no message will be issued.

Note that none of the above should be read to mean that you cannot overlap black holes. You most certainly can
and in fact this can produce some most useful effects. The restriction only applies to elements ofdhéack

hole which is repeating. You can declare a second black hole that also repeats and its elements can quite happily
overlap the first and causing the appropriate interactions. It is legal for the repeat value for any dimension to be
0, meaning that POV-Ray will not repeat the black hole in that direction.

The turbulence can only be used in a black hole withepeat. It allows an element of randomness to be
inserted into the way the black holes repeat, to cause a more natural look. A good example would be an array
of knotholes in wood - it would look rather artificial if each knothole were an exact distance from the previous.

The turbulence vector is a measurement that is added to each individual black hole in an array, after each axis
of the vector is multiplied by a different random amount ranging from 0 to 1. The resulting actual position of
the black hole’s center for that particular repeat element is random (but consistent, so renders will be repeatable)
and somewhere within the above coordinates. There is a rider on the use of turbulence, which basically is the
same as that of the repeat vector. You cannot specify a value which would cause a black hole to potentially cross
outside of its particular block.

In summary: For each of x, y and z the offset of the center mustradius and the value of the repeat must
be >= center + radius + turbulence. The exception being that repeat may be 0 for any dimension, which means
do not repeat in that direction.

Some examples are given by

warp {
black_hole <0, 0, 0>, 0.5
}
warp {
black_hole <0.15, 0.125, 0>, 0.5
falloff 7
strength 1.0
repeat <1.25, 1.25, 0>
turbulence <0.25, 0.25, 0>
inverse
}
warp {
black_hole <0, 0, 0>, 1.0
falloff 2
strength 2
inverse

Repeat Warp

Therepeat Warp causes a section of the pattern to be repeated over and over. It takes a slice out of the pattern
and makes multiple copies of it side-by-side. The warp has many uses but was originally designed to make it

5.12 Pattern Modifiers 239

easy to model wood veneer textures. Veneer is made by taking very thin slices from a log and placing them
side-by-side on some other backing material. You see side-by-side nearly identical ring patterns but each will
be a slice perhaps 1/32th of an inch deeper.

The syntax for a repeat warp is

REPEAT_WARP:

warp { repeat <Direction> [REPEAT_ITEMS...] }
REPEAT_ITEMS:

offset <Amount> | flip <Axis>

Therepeat vector specifies the direction in which the pattern repeats and the width of the repeated area. This
vector must lie entirely along an axis. In other words, two of its three components must be 0. For example

pigment {
wood
warp { repeat 2*x }

}

which means that from x=0 to x=2 you get whatever the pattern usually is. But from x=2 to x=4 you get the
same thing exactly shifted two units over in the x-direction. To evaluate it you simply take the x-coordinate
modulo 2. Unfortunately you get exact duplicates which is not very realistic. The optienzk vector tells

how much to translate the pattern each time it repeats. For example

pigment {

wood

warp {repeat x*2 offset z*0.05}
}

means that we slice the first copy from x=0 to x=2 at z=0 but at x=2 to x=4 we offset to z=0.05. In the 4 to 6
interval we slice at z=0.10. At the n-th copy we slice at 0.05 n z. Thus each copy is slightly different. There are
no restrictions on the offset vector.

Finally the f1ip vector causes the pattern to be flipped or mirrored every other copy of the pattern. The first
copy of the pattern in the positive direction from the axis is not flipped. The next farther is, the next is not, etc.
The flip vector is a three component X, y, z vector but each component is treated as a boolean value that tells if
you should or should not flip along a given axis. For example

pigment {

wood

warp {repeat 2*x flip <1,1,0>}
}

means that every other copy of the pattern will be mirrored about the x- and y- axis but not the z-axis. A non-
zero value means flip and zero means do not flip about that axis. The magnitude of the values in the flip vector
does not matter.

Turbulence versus Turbulence Warp

The POV-Ray language contains an ambiguity and limitation on the way you speeifylence and trans-
formations such astranslate, rotate, scale, matrix, andtransform transforms. Usually the turbulence is

done first. Then all translate, rotate, scale, matrix, and transform operations are always done after turbulence
regardless of the order in which you specify them. For example this

240 Textures

pigment {
wood
scale .5
turbulence .2

}
works exactly the same as

pigment {
wood
turbulence .2
scale .5

}
The turbulence is always first. A better example of this limitation is with uneven turbulence and rotations.

pigment {
wood
turbulence 0.5*%y
rotate z*60
}
// as compared to
pigment {
wood
rotate z*60
turbulence 0.5*%y
}

The results will be the same either way even though you would think it should look different.

We cannot change this basic behavior in POV-Ray now because lots of scenes would potentially render differ-
ently if suddenly the order transformation vs. turbulence mattered when in the past, it did not.

However, by specifying our turbulence inside warp statement you tell POV-Ray that the order in which turbu-
lence, transformations and other warps are applied is significant. Here is an example of a turbulence warp.

warp { turbulence <0,1,1> octaves 3 lambda 1.5 omega 0.3 }
The significance is that this

pigment {
wood
translate <1,2,3> rotate x*45 scale 2
warp { turbulence <0,1,1> octaves 3 lambda 1.5 omega 0.3 }

}
producedifferent resultghan this...

pigment {
wood
warp { turbulence <0,1,1> octaves 3 lambda 1.5 omega 0.3 }
translate <1,2,3> rotate x*45 scale 2

}

You may specify turbulence without using a warp statement. However you cannot control the order in which
they are evaluated unless you put them in a warp.

The evaluation rules are as follows:

5.12 Pattern Modifiers 241

1. First any turbulence not inside a warp statement is applied regardless of the order in which it appears
relative to warps or transformations.

2. Next each warp statement, translate, rotate, scale or matrix one-by-one, is applied in the order the user
specifies. If you want turbulence done in a specific order, you simply specify it inside a warp in the proper
place.

Turbulence Warp

Inside thewarp statement, the keyworeirbulence followed by a float or vector may be used to stir up any
pigment, normal OF density. A number of optional parameters may be used with turbulence to control how it is
computed. The syntax is:

TURBULENCE_ITEM:
turbulence <Amount> | octaves Count |
omega Amount | lambda Amount

Typical turbulence values range from the default 0.0, which is no turbulence, to 1.0 or more, which is very
turbulent. If a vector is specified different amounts of turbulence are applied in the x-, y- and z-direction. For
example

turbulence <1.0, 0.6, 0.1>

has much turbulence in the x-direction, a moderate amount in the y-direction and a small amount in the z-
direction.

Turbulence uses a random noise function caldtbise This is similar to the noise used in thezo pattern

except that instead of giving a single value it gives a direction. You can think of it as the direction that the wind

is blowing at that spot. Points close together generate almost the same value but points far apart are randomly
different.

Turbulence useBNoiseto push a point around in several steps cafledives. We locate the point we want to
evaluate, then push it around a bit using turbulence to get to a different point then look up the color or pattern
of the new point.

It says in effect”"Do not give me the color at this spot... take a few random steps in different directions and
give me that color’ Each step is typically half as long as the one before. For example:

Figure 5.7: Turbulence random walk.

242 Textures

The magnitude of these steps is controlled by the turbulence value. There are three additional parameters which
control how turbulence is computed. They ateaves, lambda and omega. Each is optional. Each is followed
by a single float value. Each has no effect when there is no turbulence.

Octaves

Theoctaves keyword may be followed by an integer value to control the number of steps of turbulence that are
computed. Legal values range from 14d0. The default value of 6 is a fairly high value; you will not see

much change by setting it to a higher value because the extra steps are too small. Float values are truncated to
integer. Smaller numbers of octaves give a gentler, wavy turbulence and computes faster. Higher octaves create
more jagged or fuzzy turbulence and takes longer to compute.

Lambda

The 1ambda parameter controls how statistically different the random move of an octave is compared to its
previous octave. The default value is 2.0 which is quite random. Values close to lambda 1.0 will straighten out
the randomness of the path in the diagram above. The zig-zag steps in the calculation are in nearly the same
direction. Higher values can look mosevirly under some circumstances.

Omega

The omega value controls how large each successive octave step is compared to the previous value. Each
successive octave of turbulence is multiplied by the omega value. The defaylto .5 means that each octave

is 1/2 the size of the previous one. Higher omega values mean that 2nd, 3rd, 4th and up octaves contribute more
turbulence giving a sharpesrinkly look while smaller omegas give a fuzzy kind of turbulence that gets blurry

in places.

Mapping using warps

Syntax:

CYLINDRICAL_WARP:

warp { cylindrical [CYLINDRICAL_ITEMS...]}
CYLINDRICAL_ITEMS:

orientation VECTOR | dist_exp FLOAT
SPHERICAL_WARP:

warp { spherical [SPHERICAL_ITEMS...]}
SPHERICAL_ITEMS:

orientation VECTOR | dist_exp FLOAT
TOROIDAL_WARP:

warp { toroidal [TOROIDAL_ITEMS...]}
TOROIDAL_ITEMS:

orientation VECTOR | dist_exp FLOAT | major_radius FLOAT
PLANAR_WARP:

warp { planar [VECTOR , FLOAT]}

5.12 Pattern Modifiers 243

With thecylindrical, spherical andtoroidal warps you can wrap checkers, bricks and other patterns around
cylinders, spheres, toruses and other objects. In essence, these warps use the same mapping as the image maps
use.

However it does 3D mapping and some concession had to be made on depth. This is controbabte-ky
(distance exponent). In the default of 0, imagine a b@0> to <1,1> (actually it is<0,0>, <dist"dist_exp,
dist“dist_exp>>) stretching to infinity along the orientation vector. The warp takes its points from that box.

For a sphereaiistance is distance from origin, cylinder is distance from y-axis, torus is distance from major
radius. (or distance is minor radius if you prefer to look at it that way)

Defaults: orientation <0,0,1>
dist_exp 0
major_radius 1

Examples:

torus {
1, 0.5
pigment {
hexagon
scale 0.1
warp |
toroidal
orientation y
dist_exp 1
major_radius 1

}
sphere {
0,1
pigment {
hexagon
scale <0.5/pi,0.25/pi, 1>*0.1
warp {
spherical
orientation y
dist_exp 1

}
cylinder {
R
pigment {
hexagon
scale <0.5/pi, 1, 1>*0.1
warp {
cylindrical
orientation y
dist_exp 1

244 Textures

}

The planar warp was made to make a pattern act like an imagg, of infinite size and can be useful in
combination with other mapping-warps. By default the pigment in the XY-plane is extruded along the Z-axis.
The pigment can be taken from an other plane, by specifying the optional vector (normal of the plane) and float
(distance along the normal). The result, again, is extruded along the Z-axis.

5.12.7 Bitmap Modifiers

A bitmap modifier is a modifier used inside amage_map, bump_map OF material_map tO specify how the 2-D

bitmap is to be applied to the 3-D surface. Several bitmap modifiers apply to specific kinds of maps and they
are covered in the appropriate sections. The bitmap modifiers discussed in the following sections are applicable
to all three types of bitmaps.

The once Option

Normally there are an infinite number of repeating image maps, bump maps or material maps created over every
unit square of the x-y-plane like tiles. By adding thee keyword after a file name you can eliminate all other
copies of the map except the one at (0,0) to (1,1). In image maps, areas outside this unit square are treated as
fully transparent. In bump maps, areas outside this unit square are left flat with no normal modification. In
material maps, areas outside this unit square are textured with the first texture of the texture list.

For example:

image_map {
gif "mypic.gif"
once

The map_type Option

The default projection of the image onto the x-y-plane is callgdicamar map typeThis option may be changed
by adding the map_type keyword followed by an integer number specifying the way to wrap the image around
the object.

A map_type 0 gives the default planar mapping already described.

A map_type 1 gives a spherical mapping. It assumes that the object is a sphere of any size sitting at the origin.
The y-axis is the north/south pole of the spherical mapping. The top and bottom edges of the image just touch
the pole regardless of any scaling. The left edge of the image begins at the positive x-axis and wraps the image
around the sphere from west to east in a -y-rotation. The image covers the sphere exactly oncg.celhe
keyword has no meaning for this mapping type.

With map_type 2 you get a cylindrical mapping. It assumes that a cylinder of any diameter lies along the y-axis.
The image wraps around the cylinder just like the spherical map but the image remains one unit tall from y=0
to y=1. This band of color is repeated at all heights unlessdhe: keyword is applied.

Finally map_type 5 is a torus or donut shaped mapping. It assumes that a torus of major radius one sits at the
origin in the x-z-plane. The image is wrapped around similar to spherical or cylindrical maps. However the top
and bottom edges of the map wrap over and under the torus where they meet each other on the inner rim.

5.12 Pattern Modifiers 245

Types 3 and 4 are still under development.
Note: that the map_type option may also be applied t@unp_map andmaterial map Statements.
For example:

sphere{<0,0,0>,1
pigment{
image_map {
gif "world.gif"
map_type 1
}

The interpolate Option

Adding theinterpolate keyword can smooth the jagged look of a bitmap. When POV-Ray checks a color for
an image map or a bump amount for a bump map, it often checks a point that is not directly on top of one pixel
but sort of between several differently colored pixels. Interpolations return an in-between value so that the steps
between the pixels in the map will look smoother.

Althoughinterpolate is legal in material maps, the color index is interpolated before the texture is chosen. It
does not interpolate the final color as you might hope it would. In general, interpolation of material maps serves
no useful purpose but this may be fixed in future versions.

There are currently two types of interpolationinterpolate 2 gives bilinear interpolation whilenterpolate
4 gives normalized distance. For example:

image_map {
gif "mypic.gif"
interpolate 2

}

Default is no interpolation. Normalized distance is the slightly faster of the two, bilinear does a better job of
picking the between color. Normally bilinear is used.

If your map looks jaggy, try using interpolation instead of going to a higher resolution image. The results can
be very good.

246 Textures

Chapter 6

Interior & Media & Photons

6.1 Interior

Introduced in POV-Ray 3.1 is an object modifier statement callecerior. The syntax is:

INTERIOR:
interior { [INTERIOR_IDENTIFIER] [INTERIOR_ITEMS...] }
INTERIOR_ITEM:
ior Value | caustics Value | dispersion Value |
dispersion_samples Samples | fade_distance Distance |
fade_power Power | fade_color <Color>
MEDIA...

Interior default values:

ior

caustics
dispersion
dispersion_samples
fade_distance .0
fade_power : 0.0
fade_color . <0,0,0>

O O 39 O
o

The interior contains items which describe the properties of the interior of the object. This is in contrast to
the texture andinterior_texture which describe the surface properties only. The interior of an object is only
of interest if it has a transparent texture which allows you to see inside the object. It also applies only to solid
objects which have a well-defined inside/outside distinction.

Note: the open keyword, orclipped_ by modifier also allows you to see inside but interior features may not
render properly. They should be avoided if accurate interiors are required.

Interior identifiers may be declared to make scene files more readable and to parameterize scenes so that chang-
ing a single declaration changes many values. An identifier is declared as follows.

INTERIOR_DECLARATION:
#declare IDENTIFIER = INTERIOR |
#local IDENTIFIER = INTERIOR

248 Interior & Media & Photons

WherelDENTIFIERIs the name of the identifier up to 40 characters longl&tERIORIs any validinterior
statement. See "#declare vs. #local” for information on identifier scope.

6.1.1 Why are Interior and Media Necessary?

In previous versions of POV-Ray, most of the items inthe:rior statement were previously part of thvish
statement. Also thealo statement which was once part of thecture statement has been discontinued and
has been replaced by thedia statement which is part ahterior.

You are probably asking/HY? As explained earlier, thenterior contains items which describe the properties
of the interior of the object. This is in contrast to thexture which describes the surface properties only.
However this is not just a philosophical change. There were serious inconsistencies in the old model.

The main problem arises when:axture map or other patterned texture is used. These features allow you to
create textures that are a blend of two textures and which vary the entire texture from one point to another. It
does its blending by fully evaluating the apparent color as though only one texture was applied and then fully
reevaluating it with the other texture. The two final results are blended.

It is totally illogical to have a ray enter an object with one index or refraction and then recalculate with another
index. The result is not an average of the two ior values. Similarly it makes no sense to have a ray enter at
one ior and exit at a different ior without transitioning between them along the way. POV-Ray only calculates
refraction as the ray enters or leaves. It cannot incrementally compute a changing ior through the interior of
an object. Real world objects such as optical fibers or no-line bifocal eyeglasses can have variable iors but
POV-Ray cannot simulate them.

Similarly thehalo calculations were not performed as the syntax implied. Using ain such multi-textured

objects did not vary thealo through the interior of the object. Rather, it computed two separate halos through
the whole object and averaged the results. The new desigiadox which replaceshalo makes it possible to

have media that varies throughout the interior of the object according to a pattern but it does so independently
of the surface texture. Because there are other changes in the design of this feature which make it significantly
different, it was not only moved to theiterior but the name was changed.

During our development, someone asked if we will create patterned interiors or a hypotheticabr map
feature. We will not. That would defeat the whole purpose of moving these features in the first place. They
cannot be patterned and have logical or self-consistent results.

6.1.2 Empty and Solid Objects

It is very important that you know the basic concept behind empty and solid objects in POV-Ray to fully
understand how features like interior and translucency are used. Objects in POV-Ray can either be solid, empty
or filled with (small) particles.

A solid object is made from the material specified by its pigment and finish statements (and to some degree its
normal statement). By default all objects are assumed to be solid. If you assign a stone texture to a sphere you
will get a ball made completely of stone. It is like you had cut this ball from a block of stone. A glass ball is a
massive sphere made of glass. You should be aware that solid objects are conceptual things. If you clip away
parts of the sphere you will clearly see that the interior is empty and it just has a very thin surface.

This is not contrary to the concept of a solid object used in POV-Ray. It is assumed that all space inside the
sphere is covered by the sphereisterior. Light passing through the object is affected by attenuation and

6.1 Interior 249

refraction properties. However there is no room for any other particles like those used by fog or interior media.

Empty objects are created by adding thelow keyword (see "Hollow”) to the object statement. An empty (or
hollow) object is assumed to be made of a very thin surface which is of the material specified by the pigment,
finish and normal statements. The object’s interior is empty, it normally contains air molecules.

An empty object can be filled with particles by adding fog or atmospheric media to the scene or by adding an
interior media to the object. It is very important to understand that in order to fill an object with any kind of
particles it first has to be made hollow.

There is a pitfall in the empty/solid object implementation that you have to be aware of.

In order to be able to put solid objects inside a media or fog, a test has to be made for every ray that passes
through the media. If this ray travels through a solid object the media will not be calculated. This is what anyone
will expect. A solid glass sphere in a fog bank does not contain fog.

The problem arises when the camera ray is inside any non-hollow object. In this case the ray is already traveling
through a solid object and even if the media’s container object is hit and it is hollow, the media will not be
calculated. There is no way of telling between these two cases.

POV-Ray has to determine whether the camera is inside any object prior to tracing a camera ray in order to be
able to correctly render medias when the camera is inside the container object. There is no way around doing
this.

The solution to this problem (that will often happen with infinite objects like planes) is to make those objects
hollow too. Thus the ray will travel through a hollow object, will hit the container object and the media will be
calculated.

6.1.3 Scaling objects with an interior

All the statements that can be putin an interior represent aspects of the matter that an object is made of. Scaling
an object, changing its size, does not change its matter. Two pieces of the same quality steel, one twice as big
as the other, both have the same density. The bigger piece is quite a bit heavier though.

So, in POV-Ray, if you design a lens from a glass with an ior of 1.5 and you scale it bigger, the focal distance of
the lens will get longer as the ior stays the same. For light attenuation it means that an object will be "darker”
after being scaled up. The light intensity decreases a certain amount per pov-unit. The object has become bigger,
more pov-units, so more light is faded. Thele distance, fade_power themselves have not been changed.

The same applies to media. Imagine media as a density of particles, you specify 100 particles per cubic pov-
unit. If we scale a 1 cubic pov-unit object to be twice as big in every direction, we will have a total of 800
particles in the object. The object will look different, as we have more particles to look through. Yet the objects
density is still 100 particles per cubic pov-unit. In media this "particle density” is set by the coloe@ftet on,
absorption, Or in theéscattering Statement

#version 3.5;
global_settings {assumed_gamma 1.0}
camera {location <0, 0,-12.0> look_at 0 angle 30 }
#declare Container_T= texture {
pigment {rgbt <1,1,1,1>}
finish {ambient 0 diffuse 0}
}

#declare Scale=2;

250 Interior & Media & Photons

box { //The reference
<-1,-1,0>,<1,1,.3>
hollow
texture {Container_T}
interior {
media {
intervals 1
samples 1,1
emission 1

}
translate <-2.1,0,0>

box { //Object scaled twice as big
<-1,-1,0»,<1,1,.3> //looks different but same
hollow //particle density
texture {Container_T}
interior {
media {
intervals 1
samples 1,1
emission 1

}
scale Scale
translate<0,0,12>

box { //Object scaled twice as big
<-1,-1,0>,<1,1,.3> //looks the same but particle
hollow //density scaled down
texture {Container_T}
interior {
media {
intervals 1
samples 1,1
emission 1/Scale

}

scale Scale

translate<0,0,12>

translate<4.2,0,0>
}

The third object in the scene above, shows what to do, if you want to scale the ahjaetnt it to keep the
same look as before. The interior feature has to be divided by the same amount, that the object was scaled by.
This is only possible when the object is scaled uniform.

In general, the correct approach is to scale the media density proportionally to the change in container volume.
For non-uniform scaling to get an unambiguous result, that can be explained in physical terms, we need to do:

Density*sqrt (3) /vlength (Scale)

6.1 Interior 251

where Density is your original media density and Scale is the scaling vector applied to the container.

Note: the density modifiers inside thensity{} statement are scaled along with the object.

6.1.4 Refraction

When light passes through a surface either into or out of a dense medium the path of the ray of light is bent.
Such bending is calledefraction The amount of bending or refracting of light depends upon the density of
the material. Air, water, crystal and diamonds all have different densities and thus refract differenityd&he

of refractionor ior value is used by scientists to describe the relative density of substances:rKeyword is

used in POV-Ray in thenterior to turn on refraction and to specify the ior value. For example:

object { MyObject pigment {Clear } interior { ior 1.5 } }

The default ior value of 1.0 will give no refraction. The index of refraction for air is 1.0, water is 1.33, glass is
1.5 and diamond is 2.4.

Normally transparent or semi-transparent surfaces in POV-Ray do not refract light. Earlier versions of POV-Ray
required you to use therefraction keyword in thefinish statement to turn on refraction. This is no longer
necessary. Any non-zetar value now turns refraction on.

In addition to turning refraction on or off, the oldfraction keyword was followed by a float value from 0.0

to 1.0. Values in between 0.0 and 1.0 would darken the refracted light in ways that do not correspond to any
physical property. Many POV-Ray scenes were created with intermediate refraction values before this bug was
discovered so the feature has been maintained. A more appropriate way to reduce the brightness of refracted
light is to change theilter or transmit value in the colors specified in the pigment statement or to use the
fade_power andfade_distance keywords. See "Attenuation”.

Note: neither theior nor refraction keywords cause the object to be transparent. Transparency only occurs if
there is a non-zeroilter Or transmit value in the color.

The refraction and ior keywords were originally specified ininish but are now properly specified in
interior. They are accepted innish for backward compatibility and generate a warning message.

6.1.5 Dispersion

For all materials with a ior different from 1.0 the refractive index is not constant throughout the spectrum. It
changes as a function of wavelength. Generally the refractive index decreases as the wavelength increases.
Therefore light passing through a material will be separated according to wavelength. This is known as chro-
matic dispersion.

By default POV-Ray does not calculate dispersion as light travels through a transparent object. In order to get a
more realistic effect theispersion anddispersion_samples keywords can be added to thecerior{} block.
They will simulate dispersion by creating a prismatic color effect in the object.

Thedispersion value is the ratio of refractive indices for violet to red. It controls the strength of dispersion
(how much the colors are spread out) used. A DISPERSV@NUE of 1 will give no dispersion, good values
are 1.01to 1.1.

Note: there will be no dispersion, unless the- keyword has been specified iAterior{ }. Anior of 1is
legal. The ior has no influence on the dispersion strength, only on the angle of refraction.

252 Interior & Media & Photons

As POV-Ray does not use wavelengths for raytracing, a spectrum is simulatedi shhesion_samples value
controls the amount of color-steps and smoothness in the spectrum. The default value is 7, the minimum is 2.
Values up to 100 or higher may be needed to get a very smooth result.

Dispersion & Caustics

Dispersion only affects the interior of an object and has no effect on faked caustics (See "Faked Caustics”).
To see the effects of dispersion in caustics, photon mapping is needed (See the sections "Photons” and "Disper-
sion & Photons”).

6.1.6 Attenuation

Light attenuation is used to model the decrease in light intensity as the light travels through a transparent object.
The keywordsade power, fade_distance andfade_color are specified in thenterior statement.

The fade_distance value determines the distance the light has to travel to reach half intensity whiledthe
power Value determines how fast the light will fall offade_color colorizes the attenuation. For realistic effects
a fade power of 1 to 2 should be used. Default values{es_power andfade_distance is 0.0 which turns this
feature off. Default forrade_color is <0,0,0>, if fade_color is <1,1,1> there is no attenuation. The actual
colors give colored attenuatior.1, 0, 0> looks red, not cyan as in media.

The attenuation is calculated by a formula similar to that used for light source attenuation.

attenuation=

fade_power
ﬁiﬁﬁﬁﬁéﬁ&)

1+(g

Table 6.1:

If you set fadepower in the interior of an object at 1000 or above, a realistic exponential attenuation function
will be used:

Attenuation = exp(-depth/fade_dist)

The fade_power andfade_distance keywords were originally specified irinish but are now properly specified
in interior. They are accepted ifinish for backward compatibility and generate a warning message.

6.1.7 Simulated Caustics

Caustics are light effects that occur if light is reflected or refracted by specular reflective or refractive surfaces.
Imagine a glass of water standing on a table. If sunlight falls onto the glass you will see spots of light on the
table. Some of the spots are caused by light being reflected by the glass while some of them are caused by light
being refracted by the water in the glass.

Since it is a very difficult and time-consuming process to actually calculate those effects (though it is not
impossible, see the sections "Photons”) POV-Ray uses a quite simple method to simulate caustics caused by
refraction. The method calculates the angle between the incoming light ray and the surface normal. Where they
are nearly parallel it makes the shadow brighter. Where the angle is greater, the effect is diminished. Unlike

6.2 Media 253

real-world caustics, the effect does not vary based on distance. This caustic effect is limited to areas that are
shaded by the transparent object. You will get no caustic effects from reflective surfaces nor in parts that are not
shaded by the object.

Thecaustics Power keyword controls the effect. Values typically range from 0.0 to 1.0 or higher. Zero is the
default which is no caustics. Low, non-zero values give broad hot-spots while higher values give tighter, smaller
simulated focal points.

The caustics keyword was originally specified infinish but is now properly specified ibnterior. Itis
accepted in finish for backward compatibility and generates a warning message.

6.1.8 Object-Media

The interior Statement may contain one or mar&iia statements. Media is used to simulate suspended
particles such as smoke, haze, or dust. Or visible gasses such as steam or fire and explosions. When used with
an object interior, the effect is constrained by the object’'s shape. The calculations begin when the ray enters
an object and ends when it leaves the object. This section only discusses media when used with object interior.
The complete syntax and an explanation of all of the parameters and optiarsiferis given in the section

"Media”.

Typically the object itself is given a fully transparent texture however media also works in partially transparent
objects. The texture pattern itself does not effect the interior media except perhaps to create shadows on it. The
texture pattern of an object applies only to the surface shell. Any interior media patterns are totally independent
of the texture.

In previous versions of POV-Ray, this feature was called o and was part of thetexture specification along
with pigment, normal, andfinish. See "Why are Interior and Media Necessary?” for an explanation of the
reasons for the change.

Media may also be specified outside an object to simulate atmospheric media. There is no constraining object
in this case. If you only want media effects in a particular area, you should use object media rather than only

relying upon the media pattern. In general it will be faster and more accurate because it only calculates inside
the constraining object. See "Atmospheric Media” for details on unconstrained uses of media.

You may specify more than onedia statement perinterior Statement. In that case, all of the media partici-
pate and where they overlap, they add together.

Any object which is supposed to have media effects inside it, whether those effects are object media or atmo-
spheric media, must have theliow on keyword applied. Otherwise the media is blocked. See "Empty and
Solid Objects” for details.

6.2 Media

Themedia Statement is used to specify particulate matter suspended in a medium such air or water. It can
be used to specify smoke, haze, fog, gas, fire, dust etc. Previous versions of POV-Ray had two incompatible
systems for generating such effects. One was for effects enclosed in a transparent or semi-transparent
object. The other was:mosphere for effects that permeated the entire scene. This duplication of systems was
complex and unnecessary. Bottulo andatmosphere have been eliminated. See "Why are Interior and Media
Necessary?” for further details on this change. See "Object Media” for details on howrteddsevith objects.

See "Atmospheric Media” for details on usingdia for atmospheric effects outside of objects. This section

254 Interior & Media & Photons

and the sub-sections which follow explains the details of the varigetts a options which are useful for either
object media or atmospheric media.

Media works by sampling the density of particles at some specified number of points along the ray’s path. Sub-
samples are also taken until the results reach a specified confidence level. POV-Ray provides three methods of
sampling. When used in an object’snterior Statement, sampling only occurs inside the object. When used

for atmospheric media, the samples run from the camera location until the ray strikes an object. Therefore for
localized effects, it is best to use an enclosing object even though the density pattern might only produce results
in a small area whether the media was enclosed or not.

The complete syntax forsedia statement is as follows:

MEDIA:
media { [MEDIA_ IDENTIFIER] [MEDIA_ ITEMS...] }
MEDIA_ITEMS:
method Number | intervals Number | samples Min, Max |
confidence Value | variance Value | ratio Value |
absorption COLOR | emission COLOR | aa_threshold Value |
aa_level Value |
scattering {
Type, COLOR [eccentricity Value] [extinction Value]
P
density {
[DENSITY_IDENTIFIER] [PATTERN_TYPE] [DENSITY MODIFIER...]
} \
TRANSFORMATIONS
DENSITY_ MODIFIER:
PATTERN_MODIFIER | DENSITY LIST | COLOR_LIST |
color_map { COLOR_MAP_BODY } | colour_map { COLOR_MAP_BODY } |
density_map { DENSITY_MAP_BODY }

Media default values:

aa_level 4
aa_threshold : 0.1
absorption . <0,0,0>
confidence : 0.9
emission : <0,0,0>
intervals : 10
method H}
ratio : 0.9
samples : Min 1, Max 1
variance : 1/128
SCATTERING
COLOR : <0,0,0>
eccentricity : 0.0
extinction : 1.0

If a media identifier is specified, it must be the first item. All other media items may be specified in any order.
All are optional. You may have multipleensity statements in a singledia statement. See "Multiple Density

vs. Multiple Media” for details. Transformations apply only theisity statements which have been already
specified. Anydensity after a transformation is not affected. If theiia has nodensity Statements and none

was specified in any media identifier, then the transformation has no effect. All other media items except for
density and transformations override default values or any previously set values faethisstatement.

6.2 Media 255

Note: some media effects depend upon light sources. However the participation of a light source depends
upon themedia_interaction andmedia_attenuation keywords. See "Atmospheric Media Interaction” and
"Atmospheric Attenuation” for details.

Note: In the POV-Ray 3.1 documentation it said: "Note a strange design side-effect was discovered during
testing and it was too difficult to fix. If the enclosing object usessmit rather tharilter for transparency,

then themedia casts no shadows.” This is not the case anymore since POV-Ray 3.5. Whether you specify
transmit OF filter tO create a transparent container objectpth a will always cast a shadow. If a shadow is

not desired, use the_shadow keyword for the container object.

6.2.1 Media Types

There are three types of particle interactioméaia: absorbing, emitting, and scattering. All three activities

may occur in a single media. Each of these three specifications requires a color. Only the red, green, and blue
components of the color are used. The filter and transmit values are ignored. For this reason it is permissible
to use one float value to specify an intensity of white color. For example the following two lines are legal and
produce the same results:

emission 0.75
emission rgb<0.75,0.75,0.75>

Absorption

The absorption keyword specifies a color of light which is absorbed when looking through the media. For
exampleabsorption rgb<0,1,0> blocks the green light but permits red and blue to get through. Therefore a
white object behind the media will appear magenta.

The default value isgb<0, 0, 0> which means no light is absorbed — all light passes through normally.

Emission

Theenission keyword specifies a color of the light emitted from the particles. Although we say they "emit”
light, this only means that they are visible without any illumination shining on them. They do not really emit
light that is cast on to nearby objects. This is similar to an object with highent values. The default value is
rgb<0, 0, 0> which means no light is emitted.

Scattering

The syntax of acattering Statement is:

SCATTERING:
scattering {
Type, COLOR [eccentricity Value] [extinction Value]

}

The first float value specifies the type of scattering. This is followed by the color of the scattered light. The
default value if no scattering Statement is given isgb<0, 0, 0> which means no scattering occurs.

256 Interior & Media & Photons

The scattering effect is only visible when light is shining on the media from a light source. This is similar to
diffuse reflection off of an object. In addition to reflecting light, a scattering media also absorbs light like
an absorption media. The balance between how much absorption occurs for a given amount of scattering
is controlled by the optionalextinction keyword and a single float value. The default value of 1.0 gives an
extinction effect that matches the scattering. Values sucixt@siction 0.25 give 25% the normal amount.
Using extinction 0.0 turns it off completely. Any value other than the 1.0 default is contrary to the real
physical model but decreasing extinction can give you more artistic flexibility.

The integer value Type specifies one of five different scattering phase functions representing the different
models: isotropic, Mie (haze and murky atmosphere), Rayleigh, and Henyey-Greenstein.

Type 1,isotropic scatterings the simplest form of scattering because it is independent of direction. The amount
of light scattered by particles in the atmosphere does not depend on the angle between the viewing direction and
the incoming light.

Types 2 and 3 ardlie hazeand Mie murkyscattering which are used for relatively small particles such as
minuscule water droplets of fog, cloud particles, and particles responsible for the polluted sky. In this model
the scattering is extremely directional in the forward direction i.e. the amount of scattered light is largest when
the incident light is anti-parallel to the viewing direction (the light goes directly to the viewer). It is smallest
when the incident light is parallel to the viewing direction. The haze and murky atmosphere models differ in
their scattering characteristics. The murky model is much more directional than the haze model.

The light is coming from here
=4
=

0.0 05 1.0

Figure 6.1: The Mie haze scattering function

Type 4Rayleigh scatteringnodels the scattering for extremely small particles such as molecules of the air. The
amount of scattered light depends on the incident light angle. It is largest when the incident light is parallel
or anti-parallel to the viewing direction and smallest when the incident light is perpendicular to the viewing
direction. You should note that the Rayleigh model used in POV-Ray does not take the dependency of scattering
on the wavelength into account.

Type 5 is theHenyey-Greenstein scatterimgodel. It is based on an analytical function and can be used to
model a large variety of different scattering types. The function models an ellipse with a given eccentricity e.
This eccentricity is specified by the optional keywoedcentricity which is only used for scattering type five.

The default eccentricity value of zero defines isotropic scattering while positive values lead to scattering in the
direction of the light and negative values lead to scattering in the opposite direction of the light. Larger values
of e (or smaller values in the negative case) increase the directional property of the scattering.

6.2 Media

257

The light is coming from here

Figure 6.2: The Mie murky scattering function.

The light is coming from here

Figure 6.3: The Rayleigh scattering function.

The light is coming from here

Figure 6.4: The Henyey-Greenstein scattering function for different eccentricity values.

0.5

0.0 0.5 1.0

0.5

0.0

-0 -0.5 0.0 05 1.0

1.00
0.50
T T T TS -
0.00 3 \
<
e=-06
~0.50 ----e=-0.3
e=00
——-e=03
—-—e=06
-1.00
1.0 05 0.0 05 1.0

258 Interior & Media & Photons

6.2.2 Sampling Parameters & Methods

Media effects are calculated by sampling the media along the path of the ray. It uses a methodlcatéed

Carlo integration. The intervals keyword may be used to specify the integer number of intervals used to
sample the ray. The default number of intervals is 10. For object media the intervals are spread between the
entry and exit points as the ray passes through the container object. For atmospheric media, the intervals spans
the entire length of the ray from its start until it hits an object. For media types which interact with spotlights

or cylinder lights, the intervals which are not illuminated by these light types are weighted differently than the
illuminated intervals when distributing samples.

Theratio keyword distributes intervals differently between lit and unlit areas. The default value af 0.9

means that lit intervals get more samples than unlit intervals. Note that the total number of intervals must
exceed the number of illuminated intervals. If a ray passes in and out of 8 spotlights but you have only specified
5 intervals then an error occurs.

Thesamples Min, Max keyword specifies the minimum and maximum number of samples taken per interval.
The default values ar@mples 1,1.

As each interval is sampled, the variance is computed. If the variance is below a threshold value, then no more
samples are needed. Theriance andconfidence keywords specify the permitted variance allowed and the
confidence that you are within that variance. The exact calculations are quite complex and involve chi-squared
tests and other statistical principles too messy to describe here. The default values are= 1.0/128 and
confidence 0.9. For slower more accurate results, decrease the variance and increase the confidence.

Note: the maximum number of samples limits the calculations even if the proper variance and confidence are
never reached.

Themethod keyword lets you specify what sampling method is used, POV-Ray provides thteed 1 is the
method described above.

Samplermethod 2 distributes samples evenly along the viewing ray or light ray. The latter can make things look
smoother sometimes. If you specify a max samples higher than the minimum samples, POV will take additional
samples, but they will be random, just like in method 1. Therefore, it is suggested you set the max samples
equal to the minimum samplesitter will cause method 2 to look similar to method 1. It should be followed

by a float, and a value of 1 will stagger the samples in the full range between samples.

Samplerethod 3 uses adaptive sampling (similar to adaptive anti-aliasing) which is very much like the sampling
method used in POV-Ray 3.0’s atmosphere. This code was written from the ground-up to work with media,
however. Adaptive sampling works by taking another sample between two existing samples if there is too much
variance in the original two samples. This leads to fewer samples being taken in areas where the effect from the
media remains constant. The adaptive sampling is only performed if the minimum samples are set to 3 or more.

You can specify the anti-aliasing recursion depth usingathesve1 keyword followed by an integer. You can
specify the anti-aliasing threshold by using thethreshold followed by a float. The default fata_1evel is 4

and the defaulta_threshold is 0.1.jitter also works with method 3. Sample method 3 ignores the maximum
samples value. It is usually best to only use one interval with method 3. Too many intervals can lead to artefacts,
and POV will create more intervals if it needs them.

6.2.3 Density

Particles of media are normally distributed in constant density throughout the media. Howeversthe
statement allows you to vary the density across space using any of POV-Ray’s pattern functions such as those

6.2 Media 259

used in textures. If naensity statement is given then the density remains a constant value of 1.0 throughout
the media. More than ongnsity may be specified pefedia statement. See "Multiple Density vs. Multiple
Media”. The syntax foBensity is:

DENSITY:
density
{
[DENSITY_IDENTIFIER]
[DENSITY_TYPE]
[DENSITY_MODIFIER...]
}
DENSITY_TYPE:
PATTERN_TYPE | COLOR
DENSITY_ MODIFIER:
PATTERN_MODIFIER | DENSITY_LIST | color_map { COLOR_MAP_BODY } |
colour_map { COLOR_MAP_BODY } | density_map { DENSITY_MAP_BODY }

Thedensity Statement may begin with an optional density identifier. All subsequent values modify the defaults
or the values in the identifier. The next item is a pattern type. This is any one of POV-Ray’s pattern functions
such asozo, wood, gradient, waves, etc. Of particular usefulness are th@erical, planar, cylindrical, and

boxed patterns which were previously available only for use with our discontinaed feature. All patterns

return a value from 0.0 to 1.0. This value is interpreted as the density of the media at that particular point. See
"Patterns” for details on particular pattern types. Although a B ORpattern is legal, in general it is used

only when thedensity statement is inside @&nsity_map.

General Density Modifiers

A density statement may be modified by any of the general pattern modifiers such as transformations,
turbulence and warp. See "Pattern Modifiers” for details. In addition there are several density-specific
modifiers which can be used.

Density with color_map

Typically amedia uses just one constant color throughout. Even if you vary the density, it is usually just one
color which is specified by th&sorption, emission, OF scattering keywords. However when usirgission

to simulate fire or explosions, the center of the flame (high density area) is typically brighter and white or yellow.
The outer edge of the flame (less density) fades to orange, red, or in some cases deep blue. To model the density-
dependent change in color which is visible, you may specifycaor map. The pattern function returns a value

from 0.0 to 1.0 and the value is passed to the color map to compute what color or blend of colors is used. See
"Color Maps” for details on how pattern values work withior map. This resulting color is multiplied by the
absorption, emission and scattering color. Currently there is no way to specify different color maps for each
media type within the samedia statement.

Consider this example:

media{
emission 0.75
scattering {1, 0.5}
density { spherical
color_map {
[0.0 rgb <0,0,0.5>]

260 Interior & Media & Photons

[0.5 rgb <0.8, 0.8, 0.4>]
[1.0 rgb <1,1,1>]
}
}
}

The color map ranges from white at density 1.0 to bright yellow at density 0.5 to deep blue at density 0. Assume
we sample a point at density 0.5. The emission is 0<1%8,0.8,0.4- or <0.6,0.6,0.3-. Similarly the scattering
color is 0.5%0.8,0.8,0.4> or <0.4,0.4,0.2..

For block pattern typesnecker, hexagon, and brick you may specify a color list such as this:

density{
checker
density {rgb<l1,0,0>}
density {rgb<0,0,0>}
}

See "Color List Pigments” which describes hewment uses a color list. The same principles apply when
using them withdensity.

Density Maps and Density Lists

In addition to specifying blended colors with a color map you may create a blend of densities using:a_-
map. The syntax for a density map is identical to a color map except you specify a density in each map entry
(and not a color).

The syntax fordensity_map is as follows:

DENSITY MAP:

density_map { DENSITY_MAP_BODY }
DENSITY MAP_BODY:

DENSITY MAP_IDENTIFIER | DENSITY MAP ENTRY...
DENSITY MAP_ENTRY:

[Value DENSITY_BODY]

WhereVvalue is a float value between 0.0 and 1.0 inclusive and €é3eNSITYBODY is anything which can
be inside ajensity{...} statement. Theensity keyword and{} braces need not be specified.

Note: the [1 brackets are part of the actuBIENSITYMAP_ENTRY They are not notational symbols denoting
optional parts. The brackets surround each entry in the density map.

There may be from 2 to 256 entries in the map.

Density maps may be nested to any level of complexity you desire. The densities in a map may have color maps
or density maps or any type of density you want.

Entire densities may also be used with the block patterns suchhascer, hexagon andorick. For example...

density {
checker
density { Flame scale .8 }
density { Fire scale .5 }

}

6.2 Media 261

Note: in the case of block patterns thensity wrapping is required around the density information.
A density map is also used with theerage density type. See "Average” for details.

You may declare and use density map identifiers but the only way to declare a density block pattern list is to
declare a density identifier for the entire density.

Multiple Density vs. Multiple Media

It is possible to have more than oneiia specified per object and it is legal to have more thandeneity per
nedia. The effects are quite different. Consider this example:

object {
MyObject
pigment { rgbf 1 }
interior {
media {
density { Some_Density }
density { Another_Density }
}
}
}

As the media is sampled, calculations are performed for each density pattern at each sample point. The re-
sulting samples are multiplied together. Suppose one density retugneds, .8, . 4> and the other returned
rgb<.25,.25,0>. The resulting color isrgb<.2,.2,0>.

Note: in areas where one density returns zero, it will wipe out the other density. The end result is that only
density areas which overlap will be visible. This is similar to a CSG intersection operation. Now consider

object {
MyObject
pigment { rgbf 1 }
interior {
media {
density { Some_Density }
}
media {
density { Another_Density }
}
}
}

In this case each media is computed independently. The resulting colors are added together. Suppose one
density and media returnedgb<.8, .8, .4> and the other returnedrgb<.25, .25,0>. The resulting color

iS rgb<1.05,1.05,.4>. The end result is that density areas which overlap will be especially bright and all
areas will be visible. This is similar to a CSG union operation. See the samplesseeng€\interior\media\
mediad.pov for an example which illustrates this.

262 Interior & Media & Photons

6.3 Photons

6.3.1 Overview

The basic goal of this implementation of the photon map is to render true reflective and refractive caustics. The
photon map was first introduced by Henrik Wann Jensen (see Suggested Reading).

Photon mapping is a technique which uses a forward ray-tracing pre-processing step to render refractive and
reflective caustics realistically. This means that mirrors can reflect light rays and lenses can focus light.

Photon mapping works by shooting packets of light (photons) from light sources into the scene. The photons
are directed towards specific objects. When a photon hits an object after passing through (or bouncing off of)
the target object, the ray intersection is stored in memory. This data is later used to estimate the amount of light
contributed by reflective and refractive caustics.

Examples

Figure 6.5: Reflective caustics

This image shows refractive caustics from a sphere and a cylinder. Both use an index of refraction of
Also visible is a small amount of reflective caustics from the metal sphere, and also from the clear cylinder and
sphere.

Here we have three lenses and three light sources. The middle lens has photon mapping turned off. You can also
see some reflective caustics from the brass box (some light reflects and hits the blue box, other light bounces
through the nearest lens and is focused in the lower left corner of the image).

6.3.2 Using Photon Mapping in Your Scene

When designing a scene with photons, it helps to think of the scene objects in two categories. Objects in the first
category will show photon caustics when hit by photons. Objects in the second category cause photon caustics
by reflecting or refracting photons. Some objects may be in both categories, and some objects may be in neither
category.

Category 1 - Objects that show photon caustics

6.3 Photons 263

Figure 6.6: Photons used for lenses and caustics

By default, all objects are in the first category. Whenever a photon hits an object, the photon is stored and will
later be used to render caustics on that object. This means that, by default, caustics from photons can appear
on any surface. To speed up rendering, you can take objects out of this category. You do this with the line:
photons{collect off}. If you use this syntax, caustics from photons will not appear on the object. This will
save both memory and computational time during rendering.

Category 2 - Objects that cause photon caustics

By default, there are no objects in the second category. If you want your object to cause caustics, you need to
do two things. First, make your object into a "target.” You do this withihejet keyword. This enables light
sources to shoot photons at your object. Second, you need to specify if your object reflects photons, refracts
photons, or both. This is done with theflection on andrefraction on keywords. To allow an object to

reflect and refract photons, you would use the following lines of code inside the object:

photons{
target
reflection on
refraction on

}

Generally speaking, you do not want an object to be in both categories. Most objects that cause photon caustics
do not themselves have much color or brightness. Usually they simply refract or reflect their surroundings. For
this reason, it is usually a waste of time to display photon caustics on such surfaces. Even if computed, the
effects from the caustics would be so dim that they would go unnoticed.

Sometimes, you may also wish to agithtons{collect off} to other clear or reflective objects, even if they
are not photon targets. Again, this is done to prevent unnecessary computation of caustic lighting.

Finally, you may wish to enable photon reflection and refraction for a surface, even if it is not a target. This
allows indirect photons (photons that have already hit a target and been reflected or refracted) to continue their
journey after hitting this object.

Photon Global Settings

global_photon_block:
photons {

264

Interior & Media & Photons

}

spacing <photon_spacing> | count <photons_to_shoot>

[gather <min_gather>, <max_gather>]

[media <max_steps> [,<factor>]]

[jitter <jitter_amount>]

[max_trace_level <photon_trace_level>]

[adc_bailout <photon_adc_bailout>]

[save_file "filename" | load_file "filename"]

[autostop <autostop_fraction>]

[expand_thresholds <percent_increase>, <expand_min>]

[radius <gather_radius>,<multiplier>,
<gather_radius_media>, <multiplier>]

All photons default values:

Global :
expand_min . 40
gather : 20, 100
jitter : 0.4
media : 0
Object :
collect :oon
refraction : off
reflection : off
split_union : on
target : 1.0

Light_source:

area_light . off
refraction . off
reflection . off

To specify photon gathering and storage options you need to add a photons block to thesgttihgs section
of your scene.

For example:

global_settings {
photons {
count 20000
autostop 0
jitter .4

}

The number of photons generated can be set using either the spacing or count keywords:

« If spacing is used, it specifies approximately the average distance between photons on surfaces. If you
cut the spacing in half, you will get four times as many surface photons, and eight times as many media

photons.

« If count is used, POV-Ray will shoot the approximately number of photons specified. The actual number
of photons that result from this will almost always be at least slightly different from the number specified.

6.3 Photons 265

Still, if you double the photonso_shoot value, then twice as many photons will be shot. If you cut the
value in half, then half the number of photons will be shot.

— It may be less, because POV shoots photons at a target object’s bounding box, which means that
some photons will miss the target object.

— On the other hand, may be more, because each time one object hits an object that has both reflection
and refraction, two photons are created (one for reflection and one for refraction).

— POV will attempt to compensate for these two factors, but it can only estimate how many photons
will actually be generated. Sometimes this estimation is rather poor, but the feature is still usable.

The keywordgather allows you to specify how many photons are gathered at each point during the regular
rendering step. The first number (default 20) is the minimum number to gather, while the second number
(default 100) is the maximum number to gather. These are good values and you should only use different ones
if you know what you are doing.

The keywordmedia turns on media photons. The parameiet_steps specifies the maximum number of
photons to deposit over an interval. The optional parameter factor specifies the difference in media spacing
compared to surface spacing. You can increase factor and decreasgapsxf too many photons are being
deposited in media.

The keywordjitter specifies the amount of jitter used in the sampling of light rays in the pre-processing step.
The default value is good and usually does not need to be changed.

The keywordsnax_trace_level andadc_bailout allow you to specify these attributes for the photon-tracing
step. If you do not specify these, the values for the primary ray-tracing step will be used.

The keywordssave_file andload_file allow you to save and load photon maps. If you load a photon map, no
photons will be shot. The photon map file contains all surface (caustic) and media photons.

radius is used for gathering photons. The larger the radius, the longer it takes to gather photons. But if you
use too small of a radius, you might not get enough photons to get a good estimate. Therefore, choosing a good
radius is important. Normally POV-Ray looks through the photon map and uses some ad-hoc statistical analysis
to determine a reasonable radius. Sometimes it does a good job, sometimes it does not. The radius keyword lets
you override or adjust POV-Ray’s guess.

radius parameters (all are optional):

1. Manually set the gather radius for surface photons. If this is either zero or if you leave it out, POV-Ray
will analyze and guess.

2. Adjust the radius for surface photons by setting a multiplier. If POV-Ray, for example, is picking a radius
that you think is too big (render is too slow), you can us&iius ,0.5” to lower the radius (multiply by
0.5) and speed up the render at the cost of quality.

3. Manually set the gather radius for media photons.
4. Adjust the radius for media photons by setting a multiplier.

The keywordsiutost op andexpand_thresholds Will be explained later.

Shooting Photons at an Object

object_photon_block:
photons {

266 Interior & Media & Photons

[target [<spacing_multiplier>]]
[refraction on|off]
[reflection on|off]
[collect onloff]
[pass_through]
}

To shoot photons at an object, you need to tell POV that the object receives photons. To do this pereate a
{ } block within the object. For example:

object {
MyObject
photons {
target
refraction on
reflection on
collect off
}
}

In this example, the object both reflects and refracts photons. Either of these options could be turned off (by
specifying reflection off, for example). By using this, you can have an object with a reflective finish which does
not reflect photons for speed and memory reasons.

The keyword-arget makes this object a target.

The density of the photons can be adjusted by specifyingthe ng multiplier. If, for example, you specify
aspacingmultiplier Oof 0.5, then the spacing for photons hitting this object will be 1/2 of the distance of the
spacing for other objects.

Note: This means four times as many surface photons, and eight times as many media photons.

The keywordcollect off causes the object to ignore photons. Photons are neither deposited nor gathered on
that object.

The keywordbass_through causes photons to pass through the ohjeeffectedon their way to a target object.
Once a photon hits the target object, it will ignore thes_through flag. This is basically a photon version of the
no_shadow keyword, with the exception that media within the object will still be affected by the photons (unless
that media specifies collect off). If you use theshadow keyword, the object will be tagged @sss_through
automatically. You can then turn affss_through if necessary by simply usinghotons { pass_through off

1.

Note: Photons will not be shot at an object unless you specify thget keyword. Simply turning refraction
on will not suffice.

When shooting photons at a CSG-union, it may sometimes be of advantagesta usenion off inside the
union. POV-Ray will be forced to shoot at the whole object, instead of splitting it up and shooting photons at its
compound parts.

Photons and Light Sources

light_photon_block:
photons {
[refraction on | off]

6.3 Photons 267

[reflection on | off]
[area_light]
}

Example:

light_source {
MyLight
photons {
refraction on
reflection on
}
}

Sometimes, you want photons to be shot from one light source and not another. In that case, you can turn photons
on for an object, but specifyhotons { reflection off refraction off }inthe light source’s definition. You
can also turn off only reflection or only refraction for any light source.

Photons and Media

global_settings {
photons {
count 10000
media 100
}
}

Photons also interact fully with media. This means that volumetric photons are stored in scattering media. This
is enabled by using the keyword media within the photons block.

To store photons in media, POV deposits photons as it steps through the media during the photon-tracing phase
of the render. It will deposit these photons as it traces caustic photons, so the number of media photons is
dependent on the number of caustic photons. As a light ray passes through a section of media, the photons are
deposited, separated by approximately the same distance that separates surface photons.

You can specify a factor as a second optional parameter to the media keyword. If, for example, factor is set to
2.0, then photons will be spaced twice as far apart as they would otherwise have been spaced.

Sometimes, however, if a section of media is very large, using these settings could create a large number
of photons very fast and overload memory. Therefore, following the media keyword, you must specify the
maximum number of photons that are deposited for each ray that travels through each section of media. A
setting of 100 should probably work in most cases.

You can putcollect off into media to make that media ignore photons. Photons will neither be deposited nor
gathered in a media that is ignoring them. Photons will also not be gathered nor deposited in non-scattering
media. However, if multiple medias exist in the same space, and at least one does not ignore photons and is
scattering, then photons will be deposited in that interval and will be gathered for use with all media in that
interval.

6.3.3 Photons FAQ

I made an object with IOR 1.0 and the shadows look weird.

268 Interior & Media & Photons

If the borders of your shadows look odd when using photon mapping, do not be alarmed. This is an unfortunate
side-effect of the method. If you increase the density of photons (by decreasing spacing and gather radius) you
will notice the problem diminish. We suggest not using photons if your object does not cause much refraction
(such as with a window pane or other flat piece of glass or any objects with an IOR very close to 1.0).

My scene takes forever to render.

When POV-Ray builds the photon maps, it continually displays in the status bar the number of photons that
have been shot. Is POV-Ray stuck in this step and does it keep shooting lots and lots of photons?

yes

If you are shooting photons at an infinite object (like a plane), then you should expect this. Either be patient or
do not shoot photons at infinite objects.

Are you shooting photons at a CSG difference? Sometimes POV-Ray does a bad job creating bounding boxes
for these objects. And since photons are shot at the bounding box, you could get bad results. Try manually
bounding the object. You can also try the autostop featurea(trystop 0). See the docs for more info on
autostop.

no
Does your scene have lots of glass (or other clear objects)? Glass is slow and you need to be patient.
My scene has polka dots but renders really quickly. Why?

You should increase the number of photons (or decrease the spacing).

The photons in my scene show up only as small, bright dots. How can I fix this?

The automatic calculation of the gather radius is probably not working correctly, most likely because there are
many photons not visible in your scene which are affecting the statistical analysis.

You can fix this by either reducing the number of photons that are in your scene but not visible to the camera
(which confuse the auto-computation), or by specifying the initial gather radius manually by using the keyword
radius. If you must manually specify a gather radius, it is usually best to also use spacing instead of count, and
then set radius and spacing to a 5:1 (radius:spacing) ratio.

Adding photons slowed down my scene a lot, and | see polka dots.

This is usually caused by having both high- and low-density photons in the same scene. The low density ones
cause polka dots, while the high density ones slow down the scene. It is usually best if the all photons are
on the same order of magnitude for spacing and brightness. Be careful if you are shooting photons objects
close to and far from a light source. There is an optional parameter to the target keyword which allows you to

adjust the spacing of photons at the target object. You may need to adjust this factor for objects very close to or
surrounding the light source.

| added photons, but | do not see any caustics.

When POV-Ray builds the photon maps, it continually displays in the status bar the number of photons that
have been shot. Did it show any photons being shot?

no
Try avoidingautostop, Or you might want to bound your object manually.
Try increasing the number of photons (or decreasing the spacing).

yes

6.3 Photons 269

Were any photons stored (the number afteel in the rendering message as POV-Ray shoots photons)?
no

Itis possible that the photons are not hitting the target object (because another object is between the light source
and the other object).

yes

The photons may be diverging more than you expect. They are probably there, but you cannot see them since
they are spread out too much

The base of my glass object is really bright.
Usecollect off with that object.
Will area lights work with photon mapping?

Photons do work with area lights. However, normally photon mapping ignores all area light options and treats
all light sources as point lights. If you would like photon mapping to use your area light options, you must
specify the "aredight” keyword within thephotons { } block in your light source’s code. Doing this will not
increase the number of photons shot by the light source, but it might cause regular patterns to show up in the
rendered caustics (possibly splotchiness).

What do the stats mean?

In the statsphotons shot means how many light rays were shot from the light sourggs.ons stored means
how many photons are deposited on surfaces in the scene. If you turn on reflection and refraction, you could
get more photons stored than photons shot, since the each ray can get split into two.

6.3.4 Photon Tips

— Usecollect off in objects that photons do not hit. Just pubtons { collect off } in the ob-
ject’s definition.

— Usecollect off in glass objects.
— Useautostop unless it causes problems.

— A big tip is to make sure that all of the final densities of photons are of the same general magnitude.
You do not want spots with really high density photons and another area with really low density pho-
tons. You will always have some variation (which is a good thing), but having really big differences
in photon density is what causes some scenes to take many hours to render.

6.3.5 Advanced Techniques
Autostop

To understand theutostop option, you need to understand the way photons are shot from light sources. Photons
are shot in a spiral pattern with uniform angular density. Imagine a sphere with a spiral starting at one of the
poles and spiraling out in ever-increasing circles to the equator. Two angles are involved here. The first, phi, is
the how far progress has been made in the current circle of the spiral. The second, theta, is how far we are from
the pole to the equator. Now, imagine this sphere centered at the light source with the pole where the spiral

270 Interior & Media & Photons

Bounding Box Bounding Sphere

Light Source ,é

Radial Spiral Pattern

Target Object

Figure 6.7: Example of the photon autostop option

starts pointed towards the center of the object receiving photons. Now, photons are shot out of the light in this
spiral pattern.

Normally, POV does not stop shooting photons until the target object’s entire bounding box has been thoroughly
covered. Sometimes, however, an object is much smaller than its bounding box. At these times, we want to
stop shooting if we do a complete circle in the spiral without hitting the object. Unfortunately, some objects
(such as copper rings), have holes in the middle. Since we start shooting at the middle of the object, the photons
just go through the hole in the middle, thus fooling the system into thinking that it is done. To avoid this, the
autostop keyword lets you specify how far the system must go before this auto-stopping feature kicks in. The
value specified is a fraction of the object’s bounding box. Valid values are 0.0 through 1.0 (0% through 100%).
POV will continue to shoot photons until the spiral has exceeded this value or the bounding box is completely
covered. If a complete circle of photons fails to hit the target object after the spiral has passed the autostop
threshold, POV will then stop shooting photons.

The autostop feature will also not kick in until at least one photon has hit the object. This allows you to use
autostop 0 even with objects that have holes in the middle.

Note:lf the light source is within the object’s bounding box, the photons are shot in all directions from the light
source.

Adaptive Search Radius

Unless photons are interacting with media, POV-Ray uses an adaptive search radius while gathering photons. If
the minimum number of photons is not found in the original search radius, the radius is expanded and searched
again. Using this adaptive search radius can both decrease the amount of time it takes to render the image, and
sharpen the borders in the caustic patterns.

Sometimes this adaptive search technique can create unwanted artefacts at borders. To remove these artefacts,
a few thresholds are used, which can be specifieekbynd_thresholds. For example, if expanding the radius
increases the estimated density of photons by too much (threshold is peoesse, default is 20%, or 0.2),

the expanded search is discarded and the old search is used instead. However, if too few photons are gathered
in the expanded searchxpand nin, default is 40), the new search will be used always, even if it means more

than a 20% increase in photon density.

6.3 Photons 271

Photons and Dispersion

When dispersion is specified for interior of a transparent object, photons will make use of that and show
"colored” caustics.

Saving and Loading Photon Maps

It is possible to save and load photon maps to speed up rendering. The photon map itself is view-independent,
so if you want to animate a scene that contains photons and you know the photon map will not change during
the animation, you can save it on the first frame and then load it for all subsequent frames.

To save the photon map, put the line
save_file "myfile.ph"
into thephotons { } block inside thejlobal_settings section.

Loading the photon map is the same, but withd_file instead ofsave_file. You cannot both load and save

a photon map in the POV file. If you load the photon map, it will load all of the photons. No photons will be
shot if the map is loaded from a file. All other options (such as gather radius) must still be specified in the POV
scene file and are not loaded with the photon map.

When can you safely re-use a saved photon map?
» Moving the camera ialwayssafe.
» Moving lights that do not cast photonsabvayssafe.

» Moving objects that do not have photons shot at them, that do not receive photons, and would not receive
photons in the new location @wayssafe.

» Moving an object that recieves photons to a new location where it does not receive phctomeisnes
safe.

» Moving an object to a location where it recieves photonsissafe
» Moving an object that has photons shot at in@t safe

» Moving a light that casts photonsn®t safe.

» Changing the texture of an object that recieves photons is safe.

» Changing the texture of an object that has photons shot at it produces results that are not realistic, but can
be useful sometimes.

In general, changes to the scene geometry require photons to be re-shot. Changing the camera parameters or
changing the image resolution does not.

272 Interior & Media & Photons

Chapter 7

Include Files

The "Standard Include File” section describes the include files that can be found in every standard distribution of
POV-Ray. Itis supposed to be used as a reference for looking up things. It does not contain detailed explanations
on how scenes are written or how POV-Ray is used. It just explains all features, their syntax, applications, limits,
drawbacks, etc.

7.1 arrays.inc

This file contains macros for manipulating arrays.

Rand_Array_Item(Array, Stream). Randomly Picks an item from a 1D array.
Parameters:

» Array = The array from which to choose the item.
* Stream = A random number stream.

Resize Array (Array, NewSize). Resize a 1D array, retaining its contents.
Parameters:

e Array = The array to be resized.
* NewSize = The desired new size of the array.

Reverse Array (Array). Reverses the order of items in a 1D array.
Parameters:

e Array = The array to be reversed.

Sort_Compare (Array, IdxA, IdxB). This macro is used by th!brtj—\rray () andSort,PartialJ-\rray () macros.

The given macro works for 1D arrays of floats, but you can redefine it in your scene file for more complex
situations, arrays of vectors or multidimensional arrays for example. Just make sure your macro returns true if
the item at IdxA< the item at IdxB, and otherwise returns false.

Parameters:

e Array = The array containing the data being sorted.

274 Include Files

» IdxA, IdxB = The array offsets of the data elements being compared.

Sort_Swap-Data (Array, IdxA, IdxB). This macro is used by theortArray() and Sort_Partial_Array ()
macros. The given macro works for 1D arrays only, but you can redefine it in your scene file to handle
multidimensional arrays if needed. The only requirement is that your macro swaps the data at IdxA with that at
IdxB.

Parameters:

e Array = The array containing the data being sorted.
e IdxA, IdxB = The array offsets of the data elements being swapped.

Sort_Array (Array). This macro sorts a 1D array of floats, though you can redefinedhecompare () and
Sort_Swap_Data () macros to handle multidimensional arrays and other data types.
Parameters:

* Array = The array to be sorted.

Sort_Partial Array (Array, FirstInd, LastInd). This macro is likesort aArray (), but sorts a specific range
of an array instead of the whole array.
Parameters:

* Array = The array to be sorted.

e FirstInd, LastInd = The start and end indices of the range being sorted.

7.2 chars.inc

This file includes 26 upper-case letter and other characters defined as objects. The size of all charactersis 4 * 5
* 1. The center of the bottom side of a character face is set to the origin, so you may need to translate a character
appropriately before rotating it about the x or z axes.

Letters:

char A, char_B, char.C,
char.D, char_E, char.F,
char_G, char_H, char_I,
char_J, char_K, char_L,
charM, char.N, char.O,
char_P, char_Q, charR,
char_S, char.T, char.U,
char_V, char_W, char.X,
char_Y, char_Z

Numerals:
char_0, char_1,
char_2, char._3,
char_4, char.5,
char_6, char_.7,
char_8, char_9

7.3 colors.inc 275

Symbols:

char_Dash, char_Plus, char_ExclPt,
char_Amps, char_Num, char_Dol,
char_Perc, char_Astr, char_Hat,
char_LPar, char_RPar, char_AtSign,
char_LSqu, char_RSqu

Usage:

#include "chars.inc"
object {char A ...}
7.3 colors.inc
This file is mainly a list of predefined colors, but also has a few color manipulation macros.

7.3.1 Predefined colors

Color Red Color Green Color Blue

)

Color Yellow Color Cyan Color Magenta

il
1]

Color Clear Color White Color Black

Table 7.1: Primary colors

7.3.2 Color macros

In POV-Ray all colors are handled in RGB color space with a component for the amount of red, green and blue
light. However, not everybody thinks this is the most intuitive way to specify colors. For your convenience
there are macros included in colors.inc that converts between a few different types of color spaces.

The three supported color spaces:

* RGB = < Red, Green, Blue, Filter, Transmit
* HSL = < Hue, Saturation, Lightness, Filter, Transrmsit

» Hsv = < Hue, Saturation, Value, Filter, Transmit

276 Include Files

Color Gray05 Color Gray10 Color Gray15

Color Gray20 Color Gray25 Color Gray30

Color Gray35 Color Gray40 Color Gray45

Color Gray50 Color Gray55 Color Gray60

— —)

Color Gray65 Color Gray70 Color Gray75

— ——)

Color Gray80 Color Gray85 Color Gray90

S—

Color Gray95

Table 7.2: Shades of gray...from 5% to 95%, in 5% increments

CHSL2RGB (Color). Converts a color given iasL space to one iRcs space.
Parameters:

e Color = HSL color to be converted.

CRGB2HSL (Color). Converts a color given irce space to one iRsL space.
Parameters:

* Color =RGB color to be converted.

CHSV2RGB (Color). Converts a color given iasv space to one iRGe space.
Parameters:

¢ Color = HSV color to be converted.

CRGB2HSV (Color). Converts a color given irce space to one insv space.
Parameters:

¢ Color =RGB color to be converted.

Convert _Color (SourceType, DestType, Color). Converts a color from one color space to another. Color spaces
available arercg, HsL, andHsv.

7.3 colors.inc 277

O
=3
o
=
.
«Q
=y
—
©
B
<

O
=}
S
o
c
@
<
=
@
—

(@] (@) .0

=3 =2 =3

S S S

® < o

o . 5

E Es a
9 &
<

(@]

=3

]

0

)

=R

Color CornflowerBlue Color DarkOliveGreen

Color DarkSlateGray

O
=)
o
=
W)
QD
=
~
o
=
o
=
o

Color DarkTurquoise

el
Color Gray
el
Color Aguamarine
P
Color CadetBlue
—
Color DarkGreen
—
Color DarkSlateBlue
—
qu_or Firebrick
el
Color Goldenrod
-—)
i Color Khaki
P
Color LimeGreen
S—
Color MediumBIlue
—

Color LightSteelBlue

Color MediumAguamarine

@) @) @) 0O . 0O 0O
=} o o =} el =}
o) o o o o o
= = = = = =
< < < . ® iy
D D [«Q = o
o o = > o o
= = o — D
c c o ™ S a
3 3 S c ;D< ®
wn T 5} o =
@D o o
@
D @ s S
D =
S o
o}
=

) =
=k
o
=
<
D
o
c
3
@
=4
o
D
>
=
o
o

Color MediumOrchid

Table 7.3: Misc. colors - plate 1

278

Include Files

Color MediumSlateBlue

Color MediumVioletRed

Color NavyBlue

D
Color MidnightBlue
)
Color Orange
)
Color PaleGreen
—
Color Salmon
— c—r
i Color SkyBlue
—
Color SteelBlue
quor Turquoise
Color Wheat
—
Color RichBlue
PN
Color Bronze

Color SpringGreen

h

Q) (@) (@) 0O
S S S S
S S S S
S 2 S 3
i) 3 o 7
S @ =
@ 3 3)
- g o

o0 o

Z

b

Color MediumSpringGreen

Color MediumTurquoise

(@) (@) (@) (@) (@) (@)
S S S S s s
= = = = = =
— wn wn U prd
2) o = 5‘? sn
@ o) =~ 5 é

© G Q@

c g 2

@ o 3

o

0
=
o
=
<
=
]
—

(@) (@) (@)
=3 =3 =3
9 9 9
m™ o <
S 3 s
N w E
Q,)
N -

@D

@D

>

Table 7.4: Misc. colors - plate 2

7.3 colors.inc

279

0O 0O » 0O O O O @) O g
=} =} el =} S oS =} oS
Q Q Q Q Q Q Q S
@) prd wn =2 O Z T 9]
Q (9] D D o (9%} @ =z
= 3 3 o =} o o) S
w = 5 c) 2 4] =
5 @ 9] 5 T o
g = % % S =1 2
S @ 8 -8 =~

O -~

5 o

o

3]

Color DkGreenCopper

0 0 0
S S S
e e e
o o
= = 5
8 21 =
5 < -
< 2 5
3 2
@D D

Color Very_Light_Purple

(@) (@) .. O .
=] =] el
S S =
4 H VE
c =.
S 2 S
U ~ =
c (@)
- =]
5 o
(@) . O (@) (@)
=] el =] =]
S S S =
. Z < O
g e 5 g
=) S Y o)
a1 °F g
c
o)
8 ®

Color MandarinOrange

0O 0
=] =]
o (@]
- -
w O
)]
3 =
=

7 =
O o
> o
o o
o

Color NewMidnightBlue

Color SpicyPink

Color VeryDarkBrown

Color Light Purple

Table 7.5: Misc. colors - plate 3

280 Include Files

Parameters:
* SourceType = Color space of input color.
* DestType = Desired output color space.

* Color = Color to be converted, in SourceType color space.

7.4 consts.inc

This file defines a number of constants, including things such as mapping types and ior definitions.

7.4.1 Vector constants

0=<0,0, 0> (origin)

xy:<l,l,0>
yz=<0,1,]>
xz=<1,0, I>

7.4.2 Map type constants

PlaneMap =0
Sphere Map = 1
Cylinder Map =2

Torus_Map =5

7.4.3 Interpolation type constants
Bi =2
Norm = 4

7.4.4 Fog type constants

Uniform_Fog =1

Ground_Fog = 2

7.4 consts.inc

281

7.4.5 Focal blur hexgrid constants

Hex Blurl =7
Hex_Blur2 =19

Hex_Blur3 = 37

7.4.6 IORs

Air_Tor = 1.000292
Amethyst_Ior = 1.550
Apatite_Tor =1.635
Aquamarine_Tor = 1.575
Beryl_Ior = 1.575
Citrine_Ior = 1.550
Crown-Glass_Ior = 1.51
Corundum_Tor = 1.765
Diamond-Tor = 2.47
Emerald_Tor = 1.575

Flint_Glass_Ior =1.71

Flint_Glass_Heavy_Tor = 1.8
Flint_Glass_Medium_Tor = 1.63

Flint_Glass_Light_Tor = 1.6

Fluorite_Tor = 1.434
Gypsum_Ior = 1.525
Ice_Tor =1.31
Plexiglas_Ior = 1.5
Quartz_Tor = 1.550
Quartz_Glass_Tor = 1.458
Ruby_Tor = 1.765
Salt_Ior =1.544
Sapphire_Tor = 1.765
Topaz_Tor = 1.620
Tourmaline_Tor = 1.650

Water_Ior = 1.33

282 Include Files

7.4.7 Dispersion amounts

Quartz_Glass_Dispersion = 1.012
Water_Dispersion = 1.007
Diamond_Dispersion = 1.035

Sapphire Dispersion =1.015

7.4.8 Scattering media type constants

ISOTROPIC_SCATTERING = 1;
MIE_HAZY_SCATTERING = 2;
MIE_MURKY_SCATTERING = 3;
RAYLEIGH_SCATTERING = 4;

HENYEY_GREENSTEIN_SCATTERING = 5;

7.5 debug.inc

This file contains a set of macros designed to make debugging easier. It also functions like the old debug.inc,
with the exception that you have to call the Deldag_Stack() macro to get the include stack output.

Debug_Inc_Stack (). Activates include file tracking, each included file will send a debug message when it is
included.
Parameters: None.

Set_Debug (Bool). Activate or deactivate the debugging macros.
Parameters:

* Bool = A boolean (true/false) value.

Debug_Message (Str). If debugging, sends the message to the debug stream.
Parameters:

» str = The desired message.

Debug (Condition, Message)

Warning (Condition, Message)

Error (Condition, Message)

These macros send a message to the #debug, #warning, and #error streams depending on a given condition.
They are just a shortcut for anf () ... #end block, intended to make scenes easier to read.

Parameters:

* Condition = Any boolean expression.

* Message = The message to be sent if Condition evaluates as "true”.

7.6 finish.inc 283

7.6 finish.inc

This file contains some predefined finishes.

Dull
Dull, with a large, soft specular highlight.
Shiny
Shiny, with a small, tight specular highlight.
Glossy
Very shiny with very tight specular highlights and a fair amount of reflection.
Phong_Dull

Dull, with a large, soft phong highlight.

Phong_Shiny
Shiny, with a small, tight phong highlight.

Phong_Glossy
Very shiny with very tight phong highlights and a fair amount of reflection.

Luminous
A glowing surface, unaffected by liglstources.

Mirror
A perfectly reflective surface, no highlights or shading.

7.7 functions.inc

This include file contains interfaces to internal functions as well as several predefined functions. The ID’s used
to access the internal functions through calls to "internal(XX)”, are not guaranteed to stay the same between
POV-Ray versions, so users are encouraged to use the functions declared here.

The number of required parameters and what they control are also given in the include file, this chapter gives
more information.
For starter values of the parameters, check thiatérnal.pov” demo file.

Syntax to be used:

#include "functions.inc"
isosurface {
function { f_torus_gumdrop(x,y,z, P0) }

}

pigment {
function { f_cross_ellipsoids(x,y,z, PO, P1l, P2, P3) }
COLOR_MAP ...

)

Some special parameters are found in several of these functions. These are described in the next section and
later referred to as "Cross section type”, "Field Strength”, "Field Limit", "SOR” parameters.

284 Include Files

7.7.1 Common Parameters

Cross Section Type:
In the helixes and spiral functions, the 9th parameter is the cross section type.
Some shapes are:

0:
square

0.0 to 1.0:
rounded squares

circle

1.0 to 2.0:
rounded diamonds

diamond

2.0 to 3.0:
partially concave diamonds

concave diamond

Field Strength

The numerical value at a point in space generated by the function is multiplied by the Field Strength. The set of
points where the function evaluates to zero are unaffected by any positive value of this parameter, so if you are
just using the function on its own with threshold = 0, the generated surface is still the same.

In some cases, the field strength has a considerable effect on the speed and accuracy of rendering the surface. In
general, increasing the field strength speeds up the rendering, but if you set the value too high the surface starts
to break up and may disappear completely.

Setting the field strength to a negative value produces the inverse of the surface, like making the function
negative.

Field Limit

This will not make any difference to the generated surface if you are using threshold that is within the field limit
(and will kill the surface completely if the threshold is greater than the field limit). However, it may make a
huge difference to the rendering times.

If you use the function to generate a pigment, then all points that are a long way from the surface will have the
same color, the color that corresponds to the numerical value of the field limit.

SOR Switch

If greater than zero, the curve is swept out as a surface of revolution (SOR).
If the value is zero or negative, the curve is extruded linearly in the Z direction.

7.7 functions.inc 285

SOR Offset

If the SOR switch is on, then the curve is shifted this distance in the X direction before being swept out.

SOR Angle

If the SOR switch is on, then the curve is rotated this number of degrees about the Z axis before being swept
out.

Invert Isosurface

Sometimes, when you render a surface, you may find that you get only the shape of the container. This could
be caused by the fact that some of the build in functions are defined inside out.

We can invert the isosurface by negating the whole function:

- (function) - threshold

7.7.2 Internal Functions

Here is a list of the internal functions in the order they appear in the "functions.inc” include file

f_algbr_cyll(x,vy,z, PO, P1, P2, P3, P4). An algebraic cylinderis what you get if you take any 2d curve and
plotitin 3d. The 2d curve is simply extruded along the third axis, in this case the z axis.

With the SOR Switch switched on, the figure-of-eight curve will be rotated around the Y axis instead of being
extruded along the Z axis.

» p0 : Field Strength
* p1: Field Limit

* p2: SOR Switch

* p3: SOR Offset

* p4: SOR Angle

falgbrcyl2(x,y,z, PO, P1, P2, P3, P4). Analgebraic cylinder is what you get if you take any 2d curve and
plotitin 3d. The 2d curve is simply extruded along the third axis, in this case the z axis.

With the SOR Switch switched on, the cross section curve will be rotated around the Y axis instead of being
extruded along the Z axis.

 p0 : Field Strength (Needs a negative field strength or a negated function)
 p1: Field Limit

* p2: SOR Switch

* p3: SOR Offset

e P4 : SOR Angle

286 Include Files

falgbr_cyl3(x,y,z, PO, P1, P2, P3, P4). Analgebraic cylinderis what you get if you take any 2d curve and
plotitin 3d. The 2d curve is simply extruded along the third axis, in this case the Z axis.

With the SOR Switch switched on, the cross section curve will be rotated around the Y axis instead of being
extruded along the Z axis.

* p0 : Field Strength (Needs a negative field strength or a negated function)
* p1: Field Limit

* p2: SOR Switch

* p3: SOR Offset

* p4: SOR Angle

f_algbr_cyl4(x,y,z, PO, P1, P2, P3, P4). Analgebraic cylinderis what you get if you take any 2d curve and
plotitin 3d. The 2d curve is simply extruded along the third axis, in this case the z axis.

With the SOR Switch switched on, the cross section curve will be rotated around the Y axis instead of being
extruded along the Z axis.

* p0 : Field Strength (Needs a negative field strength or a negated function)
 p1: Field Limit
* p2: SOR Switch
* p3: SOR Offset
* p4: SOR Angle
fbicorn(x,y,z, PO, P1). The surface is a surface of revolution.
 p0 : Field Strength (Needs a negative field strength or a negated function)

» p1: Scale. The mathematics of this surface suggest that the shape should be different for different values
of this parameter. In practice the difference in shape is hard to spot. Setting the scale to 3 gives a surface
with a radius of about 1 unit

fbifolia(x,y,z, PO, P1). The bifolia surface looks something like the top part of a a paraboloid bounded
below by another paraboloid.

» p0 : Field Strength (Needs a negative field strength or a negated function)

» p1: Scale. The surface is always the same shape. Changing this parameter has the same effect as adding
a scale modifier. Setting the scale to 1 gives a surface with a radius of about 1 unit

fblob(x,y,z, PO, P1, P2, P3, P4). This function generates blobs that are similar to a CSG blob with two
spherical components. This function only seems to work with negative threshold settings.

» p0 : X distance between the two components
* p1: Blob strength of component 1

» p2: Inverse blob radius of component 1

* p3: Blob strength of component 2

* p4: Inverse blob radius of component 2

fblob2(x,y,z, PO, P1, P2, P3). The surface is similar to a CSG blob with two spherical components.

7.7 functions.inc 287

* p0 : Separation. One blob component is at the origin, and the other is this distance away on the X axis
 p1: Inverse size. Increase this to decrease the size of the surface
» p2: Blob strength

» p3: Threshold. Setting this parameter to 1 and the threshold to zero has exactly the same effect as setting
this parameter to zero and the threshold to -1

f boy_surface(x,y,z, P0, P1).Forthissurface, it helps if the field strength is set low, otherwise the surface has
a tendency to break up or disappear entirely. This has the side effect of making the rendering times extremely
long.

 p0 : Field Strength (Needs a negative field strength or a negated function)

» p1: Scale. The surface is always the same shape. Changing this parameter has the same effect as adding
a scale modifier

f_comma (x,v,z, P0). The ’comma’ surface is very much like a comma-shape.
* p0: Scale

f_cross_ellipsoids(x,y,z, PO, P1, P2, P3). The 'cross ellipsoids’ surface is like the union of three crossed
ellipsoids, one oriented along each axis.

 p0: Eccentricity. When less than 1, the ellipsoids are oblate, when greater than 1 the ellipsoids are prolate,
when zero the ellipsoids are spherical (and hence the whole surface is a sphere)

» p1: Inverse size. Increase this to decrease the size of the surface
» p2 : Diameter. Increase this to increase the size of the ellipsoids

» p3: Threshold. Setting this parameter to 1 and the threshold to zero has exactly the same effect as setting
this parameter to zero and the threshold to -1

f_crossed_trough(x,y,z, PO)
 p0 : Field Strength (Needs a negative field strength or a negated function)

f_cubic_saddle (x,y,z, PO). For this surface, it helps if the field strength is set quite low, otherwise the surface
has a tendency to break up or disappear entirely.

» p0 : Field Strength (Needs a negative field strength or a negated function)
f_cushion(x,y,z, P0)

* p0 : Field Strength (Needs a negative field strength or a negated function)
f_devils_curve(x,y,z, PO)

» p0 : Field Strength (Needs a negative field strength or a negated function)

f_devils_curve 2d(x,y,z, PO, P1, P2, P3, P4, P5). Thef_devils_curve_2d curve can be extruded along the
Z axis, or using the SOR parameters it can be made into a surface of revolution. The X and Y factors control the
size of the central feature.

» p0 : Field Strength (Needs a negative field strength or a negated function)
» p1: X factor

e p2: Y factor

288 Include Files

* P3: SOR Switch
» P4 : SOR Offset
* p5: SOR Angle
f_dupin_cyclid(x,y,z, PO, P1, P2, P3, P4, P5)
 p0 : Field Strength (Needs a negative field strength or a negated function)
* p1: Major radius of torus
» p2 : Minor radius of torus
» p3: X displacement of torus
» p4: Y displacement of torus
 p5: Radius of inversion

fellipsoid(x,y,z, PO, P1, P2). fellipsoid generates spheres and ellipsoids. Needs "threshold 1”.
Setting these scaling parameters to 1/n gives exactly the same effect as performing a scale operation to increase
the scaling by n in the corresponding direction.

e P0: X scale (inverse)
» p1:Y scale (inverse)
» p2: Z scale (inverse)
f_enneper (x,y,z, P0)
» p0 : Field Strength (Needs a negative field strength or a negated function)
f_flange_cover (x,y,z, PO, P1, P2, P3)
» p0 : Spikiness. Set this to very low values to increase the spikes. Setitto 1 and you get a sphere

» p1: Inverse size. Increase this to decrease the size of the surface. (The other parameters also drastically
affect the size, but this parameter has no other effects)

» p2: Flange. Increase this to increase the flanges that appear between the spikes. Set it to 1 for no flanges

» p3: Threshold. Setting this parameter to 1 and the threshold to zero has exactly the same effect as setting
this parameter to zero and the threshold to -1

f_folium_surface(x,y,z, PO, P1, P2). A’folium surface’ looks something like a paraboloid glued to a plane.
» p0 : Field Strength (Needs a negative field strength or a negated function)

» p1 : Neck width factor - the larger you set this, the narrower the neck where the paraboloid meets the
plane

» p2: Divergence - the higher you set this value, the wider the paraboloid gets

f_folium_surface_2d(x,y,z, PO, P1, P2, P3, P4, P5). Thef_folium_surface_2d curve can be rotated around
the X axis to generate the same 3d surface as theium_surface, Or it can be extruded in the Z direction (by
switching the SOR switch off)

 p0 : Field Strength (Needs a negative field strength or a negated function)

 p1: Neck width factor - same as the 3d surface if you are revolving it around the Y axis

7.7 functions.inc 289

p2 : Divergence - same as the 3d surface if you are revolving it around the Y axis
P3 : SOR Switch
p4 : SOR Offset
p5 : SOR Angle

f_glob(x,y,z, P0). One part of this surface would actually go off to infinity if it were not restricted by the
containedby shape.

p0 : Field Strength (Needs a negative field strength or a negated function)

f_heart (x,y,z, PO)

p0 : Field Strength (Needs a negative field strength or a negated function)

f_helical_torus(x,y,z, PO, P1, P2, P3, P4, P5, P6, P7, P8, P9). With some sets of parameters, it looks
like a torus with a helical winding around it. The winding optionally has grooves around the outside.

PO : Major radius
P1 : Number of winding loops

P2 : Twistiness of winding. When zero, each winding loop is separate. When set to one, each loop twists
into the next one. When set to two, each loop twists into the one after next

p3 : Fatness of winding?

P4 : Threshold. Setting this parameter to 1 and the threshold to zero has s similar effect as setting this
parameter to zero and the threshold to 1

p5 : Negative minor radius? Reducing this parameter increases the minor radius of the central torus.
Increasing it can make the torus disappear and be replaced by a vertical column. The value at which the
surface switches from one form to the other depends on several other parameters

p6 : Another fatness of winding control?
p7 : Groove period. Increase this for more grooves
pg : Groove amplitude. Increase this for deeper grooves

P9 : Groove phase. Set this to zero for symmetrical grooves

f_helixl(x,y,z, PO, P1, P2, P3, P4, P5, P6)

p0 : Number of helixes - e.g. 2 for a double helix

p1 : Period - is related to the number of turns per unit length

P2 : Minor radius (major radius- minor radius)

P3 : Major radius

P4 : Shape parameter. If this is greater than 1 then the tube becomes fatter in the y direction
p5 : Cross section type

p6 . Cross section rotation angle (degrees)

f_helix2(x,y,z, PO, P1, P2, P3, P4, P5, P6). Needs a negated function

p0 : Not used

290 Include Files

» p1: Period - is related to the number of turns per unit length
 p2 : Minor radius (minor radius>- major radius)

* p3: Major radius

» p4: Notused

» p5: Cross section type

» p6 : Cross section rotation angle (degrees)

f_hex_x(x,y,z, P0). This creates a grid of hexagonal cylinders stretching along the z-axis. The fatness is
controlled by the threshold value. When this value equals 0.8660254 or cos(30) the sides will touch, because
this is the distance between centers. Negating the function will inverse the surface and create a honey-comb
structure. This function is also useful as pigment function.

» 20 : No effect (but the syntax requires at least one parameter)

fhex_y(x,y,z, P0). Thisis function forms a lattice of infinite boxes stretching along the z-axis. The fatness is
controlled by the threshold value. These boxes are rotated 60 degrees around centers, which are 0.8660254 or
cos(30) away from each other. This function is also useful as pigment function.

0 : No effect (but the syntax requires at least one parameter)

f_heteromf (x,y,z, PO, P1, P2, P3, P4, P5). f_heteromf (x,0,z) makes multifractal height fields and pat-
terns of "1/f’ noise

"Multifractal’ refers to their characteristic of having a fractal dimension which varies with altitude. Built from
summing noise of a number of frequencies, the hetafparameters determine how many, and which frequen-
cies are to be summed.

An advantage to using these instead of a hefgdd {} from an image (a number of height field programs
output multifractal types of images) is that the heterbfunction domain extends arbitrarily far in the x and

z directions so huge landscapes can be made without losing resolution or having to tile a height field. Other
functions of interest are_.ridged.mf andf_ridge.

» p0 : His the negative of the exponent of the basis noise frequencies used in building these functions (each
frequency f's amplitude is weighted by the factor f - H). In landscapes, and many natural forms, the
amplitude of high frequency contributions are usually less than the lower frequencies.

When H is 1, the fractalization is relatively smooth ("1/f noise”).
As H nears 0, the high frequencies contribute equally with low frequencies as in "white noise”.

 p1: Lacunarity’ is the multiplier used to get from one 'octave’ to the next. This parameter affects the size
of the frequency gaps in the pattern. Make this greater than 1.0

» P2 : Octaves is the number of different frequencies added to the fractal. Each 'Octave’ frequency is the
previous one multiplied by 'Lacunarity’, so that using a large number of octaves can get into very high
frequencies very quickly.

» p3: Offset is the 'base altitude’ (sea level) used for the heterogeneous scaling

» p4: T scales the 'heterogeneity’ of the fractal. T=0 gives 'straight 1/f’ (no heterogeneous scaling). T=1
suppresses higher frequencies at lower altitudes

» p5: Generator type used to generate the noise3d. 0, 1, 2 and 3 are legal values.
f_hunt_surface(x,y,z, PO)

 p0 : Field Strength (Needs a negative field strength or a negated function)

7.7 functions.inc 291

f_hyperbolic_torus(x,y,z, PO, P1, P2)
 p0 : Field Strength (Needs a negative field strength or a negated function)
» p1: Major radius: separation between the centers of the tubes at the closest point
 p2 : Minor radius: thickness of the tubes at the closest point

f_isect_ellipsoids(x,y,z, PO, P1, P2, P3). The ’'isect ellipsoids’ surface is like the intersection of three
crossed ellipsoids, one oriented along each axis.

* p0: Eccentricity. When less than 1, the ellipsoids are oblate, when greater than 1 the ellipsoids are prolate,
when zero the ellipsoids are spherical (and hence the whole surface is a sphere)

» p1: Inverse size. Increase this to decrease the size of the surface
» p2 : Diameter. Increase this to increase the size of the ellipsoids

» p3: Threshold. Setting this parameter to 1 and the threshold to zero has exactly the same effect as setting
this parameter to zero and the threshold to -1

f_kampyle_of eudoxus (x,y,z, PO, P1, P2). The '’kampyle of eudoxus’is like two infinite planes with a dimple
at the center.

» p0 : Field Strength (Needs a negative field strength or a negated function)

» p1: Dimple: When zero, the two dimples punch right through and meet at the center. Non-zero values
give less dimpling

* p2: Closeness: Higher values make the two planes become closer

f_kampyle_of eudoxus_2d(x,y,z, PO, P1, P2, P3, P4, P5)The 2d curve that generates the above surface can
be extruded in the Z direction or rotated about various axes by using the SOR parameters.

 p0 : Field Strength (Needs a negative field strength or a negated function)

e p1: Dimple: When zero, the two dimples punch right through and meet at the center. Non-zero values
give less dimpling

» p2: Closeness: Higher values make the two planes become closer

* P3: SOR Switch

* P4 : SOR Offset

* p5: SOR Angle
f kleinbottle(x,y,z, PO)

 p0 : Field Strength (Needs a negative field strength or a negated function)
f_kummer_surface_vl (x,y,z, P0). The Kummer surface consists of a collection of radiating rods.

 p0 : Field Strength (Needs a negative field strength or a negated function)

f_kummer_surfacev2(x,y,z, PO, P1, P2, P3). Version 2 of the kummer surface only looks like radiating rods
when the parameters are set to particular negative values. For positive values it tends to look rather like a
superellipsoid.

 p0 : Field Strength (Needs a negative field strength or a negated function)

292 Include Files

» p1: Rod width (negative): Setting this parameter to larger negative values increases the diameter of the
rods

* p2: Divergence (negative): Setting this number to -1 causes the rods to become approximately cylindrical.
Larger negative values cause the rods to become fatter further from the origin. Smaller negative numbers
cause the rods to become narrower away from the origin, and have a finite length

» p3: Influences the length of half of the rods. Changing the sign affects the other half of the rods. 0 has
no effect

f_lemniscate_of_gerono(x,y,z, P0). The "Lemniscate of Gerono” surface is an hourglass shape. Two
teardrops with their ends connected.

» p0 : Field Strength (Needs a negative field strength or a negated function)

f_lemniscate_of_gerono_2d(x,vy,z, PO, P1, P2, P3, P4, P5). The 2d version of the Lemniscate can be ex-
truded in the Z direction, or used as a surface of revolution to generate the equivalent of the 3d version, or
revolved in different ways.

» p0 : Field Strength (Needs a negative field strength or a negated function)
 p1: Size: increasing this makes the 2d curve larger and less rounded
 p2: Width: increasing this makes the 2d curve fatter

* p3: SOR Switch

* P4 : SOR Offset

* p5: SOR Angle

fmeshl(x,y,z, PO, P1, P2, P3, P4) The overall thickness of the threads is controlled by the isosurface
threshold, not by a parameter. If you render a meshl with zero threshold, the threads have zero thickness
and are therefore invisible. Parameters P2 and P4 control the shape of the thread relative to this threshold
parameter.

 po : Distance between neighboring threads in the x direction
« p1: Distance between neighboring threads in the z direction
* p2 : Relative thickness in the x and z directions

» p3: Amplitude of the weaving effect. Set to zero for a flat grid
 p4 : Relative thickness in the y direction

fmitre(x,vy,z, P0). The 'Mitre’ surface looks a bit like an ellipsoid which has been nipped at each end with a
pair of sharp nosed pliers.

» p0 : Field Strength (Needs a negative field strength or a negated function)

f nodal_cubic(x,y,z, P0). The '’Nodal Cubic’is something like what you would get if you were to extrude the
Stophid2D curve along the X axis and then lean it over.

* p0 : Field Strength (Needs a negative field strength or a negated function)
f_noise3d(x,vy,z)
f_noise_generator(x,y,z, PO)

0 : Noise generator number

7.7 functions.inc 293

f odd(x,y,z, P0O)
 p0 : Field Strength (Needs a negative field strength or a negated function)
f_ovals_of_cassini(x,y,z, PO, P1, P2, P3). The Ovals of Cassini are a generalization of the torus shape.
» p0 : Field Strength (Needs a negative field strength or a negated function)
» p1: Major radius - like the major radius of a torus

» p2 : Filling. Set this to zero, and you get a torus. Set this to a higher value and the hole in the middle
starts to heal up. Set it even higher and you get an ellipsoid with a dimple

 p3: Thickness. The higher you set this value, the plumper is the result

f_paraboloid(x,y,z, P0). This paraboloid is the surface of revolution that you get if you rotate a parabola
about the Y axis.

» p0 : Field Strength (Needs a negative field strength or a negated function)
f_parabolic_torus(x,y,z, P0, P1, P2)

 p0 : Field Strength (Needs a negative field strength or a negated function)

e P1: Major radius

* p2 : Minor radius

fph(x,y,z) = atan2(sqri(x*x + z*z),y)

When used alone, the "PH” function gives a surface that consists of all points that are at a particular latitude,
i.e. a cone. If you use a threshold of zero (the default) this gives a cone of width zero, which is invisible. Also
look atf_th andf_r

fpillow(x,y,z, PO)
 p0 : Field Strength

fpiriform(x,y,z, P0). The piriform surface looks rather like half a lemniscate.
* p0 : Field Strength

fpiriform2d(x,y,z, PO, P1, P2, P3, P4, P5, P6). The 2d version of the "Piriform” can be extruded in the
Z direction, or used as a surface of revolution to generate the equivalent of the 3d version.

* p0 : Field Strength (Needs a negative field strength or a negated function)

 p1: Size factor 1: increasing this makes the curve larger

 p2: Size factor 2: making this less negative makes the curve larger but also thinner
 p3: Fatness: increasing this makes the curve fatter

* p4: SOR Switch

* p5: SOR Offset

* p6: SOR Angle

fpoly4d(x,y,z, PO, P1, P2, P3, P4). Thisf poly4 can be used to generate the surface of revolution of any
polynomial up to degree 4.

To put it another way: If we call the parameters A, B, C, D, E; then this function generates the surface of
revolution formed by revolving "x = A + By + Cy2 + Dy3 + Ey4” around the Y axis.

294 Include Files

* p0 : Constant

» p1:Y coefficient
» P2 : Y2 coefficient
* p3: Y3 coefficient
» p4: Y4 coefficient

f_polytubes(x,y,z, PO, P1, P2, P3, P4, P5). The 'Polytubes’ surface consists of a number of tubes. Each
tube follows a 2d curve which is specified by a polynomial of degree 4 or less. If we look at the parameters,
then this function generates "P0” tubes which all follow the equation ” x = P1 + P2y + P3y2 + P4y3 + P5y4 "
arranged around the Y axis.

This function needs a positive threshold (fatness of the tubes).

* 0 : Number of tubes
» p1: Constant
» p2: Y coefficient
* p3: Y2 coefficient
» p4: Y3 coefficient
* p5: Y4 coefficient
f_quantum(x,y,z, P0). It resembles the shape of the electron density cloud for one of the d orbitals.
» p0: Not used, but required
f_quartic_paraboloid(x,y,z, P0). The 'Quartic Paraboloid’ is similar to a paraboloid, but has a squarer shape.
» p0 : Field Strength (Needs a negative field strength or a negated function)
f_quartic_saddle(x,y,z, P0). The 'Quartic saddle’is similar to a saddle, but has a squarer shape.
» p0 : Field Strength

f_quartic_cylinder (x,y,z, PO, P1, P2). The 'Quartic cylinder’ looks a bit like a cylinder that is swallowed
an egg.

 p0 : Field Strength (Needs a negative field strength or a negated function)
 p1: Diameter of the "egg”
 p2: Controls the width of the tube and the vertical scale of the "egg”

fr(x,y,z) =SqQrt(X*X + y*y + z*z)
When used alone, the "R” function gives a surface that consists of all the points that are a specific distance
(threshold value) from the origin, i.e. a sphere. Also look gt andf_th

f_ridge (x,v,z, PO, P1, P2, P3, P4, P5). This function is mainly intended for modifying other surfaces as
you might use a height field or to use as pigment function. Other functions of intereshareronf and
f_ridgedmf.

e p0: Lambda
e p1: Octaves

* p2: Omega

7.7 functions.inc 295

» p3: Offset
* p4: Ridge
» p5: Generator type used to generate the noise3d. 0, 1, 2 and 3 are legal values.

f_ridged.mf (x,y,z, PO, P1, P2, P3, P4, P5). The "Ridged Multifractal” surface can be used to create mul-
tifractal height fields and patterns. 'Multifractal’ refers to their characteristic of having a fractal dimension
which varies with altitude. They are built from summing noise of a number of frequencies._ridgetl mf
parameters determine how many, and which frequencies are to be summed, and how the different frequencies
are weighted in the sum.

An advantage to using these instead akaght _field{} from an image is that the ridgedf function domain

extends arbitrarily far in the x and z directions so huge landscapes can be made without losing resolution or
having to tile a height field. Other functions of interest are:tero_nf andf_ridge.

» p0 : His the negative of the exponent of the basis noise frequencies used in building these functions (each
frequency f's amplitude is weighted by the factor fE- H). When H is 1, the fractalization is relatively
smooth. As H nears 0, the high frequencies contribute equally with low frequencies

» p1: Lacunarity is the multiplier used to get from one "octave” to the next in the "fractalization”.
This parameter affects the size of the frequency gaps in the pattern. (Use values greater than 1.0)

» p2 : Octaves is the number of different frequencies added to the fractal. Each octave frequency is the
previous one multiplied by "Lacunarity”. So, using a large number of octaves can get into very high
frequencies very quickly

» p3: Offset gives a fractal whose fractal dimension changes from altitude to altitude. The high frequencies
at low altitudes are more damped than at higher altitudes, so that lower altitudes are smoother than higher
areas

 p4: Gain weights the successive contributions to the accumulated fractal result to make creases stick up
as ridges

 p5: Generator type used to generate the noise3d. 0, 1, 2 and 3 are legal values.

f_rounded_box (x,y,z, P0, P1, P2, P3). The Rounded Box is defined in a cube freml, -1, -1> to <1, 1,
1>. By changing the ” Scale” parameters, the size can be adjusted, without affecting the Radius of curvature.

« p0 : Radius of curvature. Zero gives square corners, 0.1 gives corners that match Epheg”
* p1: Scale x
» p2: Scaley
* p3: Scalez
f_sphere (x,y,z, PO)
« p0: radius of the sphere
f_spikes(x,y,z, PO, P1, P2, P3, P4)
» 0 : Spikiness. Set this to very low values to increase the spikes. Setitto 1 and you get a sphere
» p1: Hollowness. Increasing this causes the sides to bend in more
» p2: Size. Increasing this increases the size of the object

» p3: Roundness. This parameter has a subtle effect on the roundness of the spikes

296

Include Files

 p4: Fatness. Increasing this makes the spikes fatter

f_spikes_2d(x,y,z, PO, P1, P2, P3) =2-Dfunction:f=f(x,z)-y

PO :

P1:

P2

P31

Height of central spike
Frequency of spikes in the X direction
Frequency of spikes in the Z direction

Rate at which the spikes reduce as you move away from the center

f_spiral (x,y,z, PO, P1, P2, P3, P4, P5)

PO :

P1:

P2

P3:

P4

P5:

Distance between windings

Thickness

Outer diameter of the spiral. The surface behaves as if it is conthip@dsphere of this diameter
Not used

Not used

Cross section type

f_steiners_roman(x,y,z, P0). The "Steiners Roman” is composed of four identical triangular pads which
together make up a sort of rounded tetrahedron. There are creases along the X, Y and Z axes where the pads

meet.

» p0 : Field Strength (Needs a negative field strength or a negated function)

f_strophoid(x,y,z, PO, P1, P2, P3). The "Strophoid” is like an infinite plane with a bulb sticking out of it.

» p0 : Field Strength (Needs a negative field strength or a negated function)

» p1: Size of bulb. Larger values give larger bulbs. Negative values give a bulb on the other side of the
plane

» p2: Sharpness. When zero, the bulb is like a sphere that just touches the plane. When positive, there is a
crossover point. When negative the bulb simply bulges out of the plane like a pimple

» p3: Flatness. Higher values make the top end of the bulb fatter

f_strophoid.2d(x,y,z, PO, P1, P2, P3, P4, P5, P6). The 2d strophoid curve can be extruded in the Z direc-
tion or rotated about various axes by using the SOR parameters.

 p0: Field Strength

P1:

Size of bulb. Larger values give larger bulbs. Negative values give a bulb on the other side of the

plane

p2 : Sharpness. When zero, the bulb is like a sphere that just touches the plane. When positive, there is a
crossover point. When negative the bulb simply bulges out of the plane like a pimple

P3:

P4

P5:

P6 .

Fatness. Higher values make the top end of the bulb fatter
SOR Switch
SOR Offset
SOR Angle

7.7 functions.inc 297

f_superellipsoid(x,y,z, PO, P1). Needs a negative field strength or a negated function.
* PO : east-west exponentx
* P1: north-south exponent

fth(x,y,z) =atan2(x, z)

f_th() is a function that is only useful when combined with other surfaces.

It produces a value which is equal to the "theta” angle, in radians, at any point. The theta angle is like the
longitude coordinate on the Earth. It stays the same as you move north or south, but varies from east to west.
Also look atf_ph andf_r

f_torus(x,y,z, PO, P1)
* p0 : Major radius
e p1: Minor radius

f_torus2(x,y,z, PO, P1, P2). This is different from the torus function which just has the major and minor
radii as parameters.

 p0: Field Strength (Needs a negative field strength or a negated function)
 P1: Major radius
* p2: Minor radius

f_torus_gumdrop (x,y,z, P0). The "Torus Gumdrop” surface is something like a torus with a couple of gum-
drops hanging off the end.

 p0 : Field Strength (Needs a negative field strength or a negated function)
f_umbrella(x,y,z, PO)
» p0 : Field Strength (Needs a negative field strength or a negated function)

fwitch_of_agnesi(x,y,z, PO, P1, P2, P3, P4, P5). The "Witch of Agnesi” surface looks something like a
witches hat.

» p0 : Field Strength (Needs a negative field strength or a negated function)
« p1: Controls the width of the spike. The height of the spike is always about 1 unit

fwitch_of_agnesi_2d(x,vy,z, PO, P1, P2, P3, P4, P5). The 2d version of the "Witch of Agnesi” curve can
be extruded in the Z direction or rotated about various axes by use of the SOR parameters.

* p0 : Field Strength (Needs a negative field strength or a negated function)
 p1: Controls the size of the spike

 p2: Controls the height of the spike

* p3: SOR Switch

* p4: SOR Offset

e p5: SOR Angle

298 Include Files

7.7.3 Pre defined functions

eval_pigment (Pigm, Vect), This macro evaluates the color of a pigment at a specific point. Some pigments
require more information than simply a point, slope pattern based pigments for example, and will not work with
this macro. However, most pigments will work fine.

Parameters:

* vect = The point at which to evaluate the pigment.

* pign = The pigment to evaluate.
f_snoise3d(x, y, z).Justlike fnoise3d(), but returns values in the range [-1, 1].
f_sine_wave (val, amplitude, frequency). TUrns aramping waveform into a sine waveform.

f_scallop_wave (val, amplitude, frequency). TUrns aramping waveform into a "scallepave” waveform.

Pattern functions

Predefined pattern functions, useful for building custom function patterns or performing "displacement map-
ping” on isosurfaces. Many of them are not really useful for these purposes, they are simply included for
completeness.

Some are not implemented at all because they require special parameters that must be specified in the definition,
or information that is not available to pattern functions. For this reason, you probably would want to define your
own versions of these functions.

All of these functions take three parameters, the XYZ coordinates of the point to evaluate the pattern at.
f_agate(x, y, z)
f boxed(x, vy, z)
f bozo(x, vy, 2z)
f brick(x, y, 2z)
f bumps (x, vy, 2z)
f_checker(x, vy, z)

f_crackle(x, vy, z)
This pattern has many more options, this function uses the defaults.

f_cylindrical(x, y, z)
f_dents(x, vy, 2z)
f_gradientX(x, y, z)
f_gradientY(x, y, z)
f_gradientZ(x, y, z)
f_granite(x, vy, z)
f_hexagon(x, y, 2z)

f_leopard(x, y, z)

7.8 glass.inc, glassld.inc 299

fmandel (x, vy, z)
Only the basic mandel pattern is implemented, its variants and the other fractal patterns are not
implemented.

fmarble(x, vy, 2z)
f_onion(x, vy, 2z)

f planar(x, vy, z)
f_radial(x, vy, 2z)
f_ripples(x, vy, z)
f_spherical (x, y, z)
f_spirall(x, y, z)
f_spiral2(x, y, z)
f_spotted(x, vy, z)
f_waves (x, y, z)
fwood(x, y, 2z)

fwrinkles(x, y, z)

7.8 glass.inc, glassld.inc

This file contains glass materials using new features introduced in POV 3.1 and 3.5. The old glass.inc file is
still included for backwards compatibility (it is named gladd.inc, and is included by glass.inc, so you do not
need to change any scenes), but these materials will give more realistic results.

7.8.1 Glass colors (with transparency)

Col_Glass_Beerbottle Col_Glass_General Col_Glass_Ruby
Col_Glass_Bluish Col_Glass_Green Col_Glass_Vicksbottle
Col_Glass_Clear Col_Glass_Old Col_Glass_Winebottle
Col_Glass_Dark_Green Col_Glass_Orange Col_Glass_Yellow

Table 7.6: glass.inc glass colors with transparency

7.8.2 Glass colors (without transparency, for fadecolor)

7.8.3 Glass finishes

F_Glassb5, ..., F_Glassl0

Include Files

Col_Amber_ 01
Col_Amber_02
Col_Amber_03
Col_Amber_04
Col_Amber_05

Col Apatite 01
Col Apatite_02
Col Apatite_03
Col_Apatite_04
Col Apatite_05

Col_Beerbottle
Col_Blue_01
Col_Blue_02
Col_Blue_03
Col_Blue_04

Col Fluorite_02
Col_Fluorite_03
Col_Fluorite_04
Col_Fluorite_05
Col_Fluorite_06

Col_Gypsum-03
Col_Gypsum_04
Col_Gypsum_05
Col_Gypsum_06
Col_Orange

Col_Sapphire_01
Col_Sapphire_02
Col_Sapphire_03
Col_Topaz_01
Col_Topaz-02

Col_Yellow 01
Col_Yellow_02
Col_Yellow_03
Col_Yellow_04

Col_Amber_06
Col_Amber_07
Col_Amber_08
Col_Amber_09
Col_Amethyst_01

Col_Aguamarine_01

Col_Aquamarine_02
Col_Aquamarine_03
Col_Aquamarine_04
Col_Aquamarine_05

Col Citrine_01
Col_Dark_Green
Col_Emerald. 01
Col_Emerald_02
Col_Emerald_ 03

Col Fluorite_07
Col Fluorite_08
Col Fluorite_09
Col_Green
Col_Green 01

Col Red._01
Col_Red._02
Col_Red-03
Col_Red_04
Col_Ruby

Col_Topaz_03
Col_Tourmaline_ 01
Col_Tourmaline_02
Col_Tourmaline_03
Col_Tourmaline_04

Col_Amethyst_02
Col_Amethyst_03
Col_Amethyst_04
Col_Amethyst_05
Col_Amethyst_06

Col_Aquamarine_06

Col Azurite_01
Col Azurite_02
Col Azurite_03
Col_Azurite_04

Col_Emerald_04
Col_Emerald-05
Col_Emerald_06
Col_Emerald_07
Col Fluorite 01

Col_Green_02
Col_Green_03
Col_Green_04
Col _Gypsum_01
Col_Gypsum_02

Col_Ruby-01
Col_Ruby_02
Col_Ruby_03
Col_Ruby_04
Col_Ruby_05

Col_Tourmaline_05

Col_Tourmaline_06
Col_Vicksbottle
Col Winebottle
Col_Yellow

Table 7.7: glass.inc glass colors without transparency for_éadier

7.8 glass.inc, glassld.inc 301

7.8.4 Glass interiors

I_Glassl, ..., I_Glass4
I_Glass_Fade_Sqrl (identical to1_Glass1)
I_Glass_Fade_Expl (identical to1_Glass2)
I_Glass_Fade Exp2 (identical to1_Glass3)
I_Glass_Fade Exp3 (identical toT_Glass4)
Glass interiors with various fadgower settings.

I_Glass_Dispersionl, I_Glass_Dispersion2
Glass interiors with dispersion.class_Dispersionl has an approximately natural glass dispersion.
I_Glass_Dispersion?2 iS exaggerated.

I_Glass_Causticsl, I_Glass_Caustics2
Glass interiors with caustics.

7.8.5 Glass interior macros

I_Glass_Exp (Distance) and I_Glass-Sqgr (Distance).
These macros return an interior with either exponential or_faalger 2 falloff, and a fadelistance of Distance.

7.8.6 glassold.inc

This file contains glass textures for POV-Ray versions 3.1 and earlier. These textures do not take advantage of
the new features introduced with POV-Ray 3.5 and are included for backwards compatability, you will get better
results with the materials in glass.inc.

These textures are designed to be used with fB&aks interior, also defined in this file.

Glass finishes

F_Glassl, ..., F_Glass4

Glass textures
T_Glassl
Simple clear glass.

T_Glass2
More like an acrylic plastic.

T_Glass3
An excellent lead crystal glass.

T_Glass4
T_0ld_Glass

T_Winebottle_Glass

302

Include Files

T_Beerbottle_Glass

T_Ruby_Glass

T_Green_Glass

T_Dark_Green_Glass

T_Yellow_Glass

T_Orange_Glass

Orange/amber glass.

T_Vicksbottle_Glass

7.9

math.inc

This file contains many general math functions and macros.

7.9.1 Float functions and macros

even (N). A function to test whether N is even, returns 1 when true, 0 when false.

Parameters

odd (N) . A function to test whether N is odd, returns 1 when true, 0 when false.

N = Input value

Parameters

N = Input value

Interpolate(GC, GS, GE, TS, TE, Method). Interpolation macro, interpolates between the float vatuesd

TE. The method of interpolation is cosine, linear or exponential. The position where to evaluate the interpolation

is determined by the position of in the rangess - ce. See example.
Parameters:

cc = global current, float value within the range GS - GE
Gs = global start

GE = global end

Ts = target start

TE = target end

Method = interpolation method, float value:

— Method < O : exponential, using the value of Method as exponent.

— Method = 0 : cosine interpolation.

— Method > 0 : exponential, using the value of Method as exponent.

* Method = 1 : linear interpolation,

Example:

7.9 math.inc 303

#declare A = Interpolate(0.5, 0, 1, 0, 10, 1);
#debug str(a,0,2)
// result A = 5.00

#declare A = Interpolate(0.0,-2, 2, 0, 10, 1);
#debug str(a,0,2)
// result A = 5.00

#declare A = Interpolate(0.5, 0, 1, 0, 10, 2);
#debug str(a,0,2)
// result A = 2.50

Mean (2) . A macro to compute the average of an array of values.
Parameters:

» 2 =An array of float or vector values.

std_Dev (A, M).A macro to compute the standard deviation.
Parameters:

* A =An array of float values.
» m = Mean of the floats in the array.

GetStats (ValArr). This macro declares a global array nameehtisticsarray” containing: N, Mean, Min,
Max, and Standard Deviation
Parameters:

» 2 =An array of float values.

Histogram(ValArr, Intervals). This macro declares a global, 2D array nametstogramarray”. The first
value in the array is the center of the interval/bin, the second the number of values in that interval.
Parameters:

* valarr = An array with values.

e Intervals = The desired number of intervals/bins.

sind(v), cosd(v), tand(v), asind(v), acosd(v), atan2d(a, b). These functions are versions of the
trigonometric functions using degrees, instead of radians, as the angle unit.
Parameters:

The same as for the analogous built-in trig function.

max3 (a, b, c). Afunction to find the largest of three numbers.
Parameters:

* a, b, c=Inputvalues.

min3(a, b, c). A function to find the smallest of three numbers.
Parameters:

* 3, b, c=Inputvalues.

f_sqr (v). A function to square a number.
Parameters:

e v = Input value.

304 Include Files

sgn (v). A function to show the sign of the number. Returns -1 or 1 depending on the sign of v.
Parameters:

* v = Input value.

clip(v, Min, Max). A function that limits a value to a specific range, if it goes outside that range it is "clipped”.
Input values larger thamx will return Max, those less thamin will return min.
Parameters:

» v =Input value.
* Min = Minimum of output range.
* Max = Maximum of output range.

clamp (V, Min, Max). A function that limits a value to a specific range, if it goes outside that range it is
"clamped” to this range, wrapping around. As the input increases or decreases outside the given range, the
output will repeatedly sweep through that range, making a "sawtooth” waveform.

Parameters:

* v = Input value.
* Min = Minimum of output range.
* Max = Maximum of output range.

adj_range (v, Min, Max). A function that adjusts input values in the range [0, 1] to a given range. An input
value of O will returnvin, 1 will returnmax, and values outside the [0, 1] range will be linearly extrapolated (the
graph will continue in a straight line).

Parameters:

e v =Input value.
* Min = Minimum of output range.
* Max = Maximum of output range.

adj_range2 (V, InMin, InMax, OutMin, OutMax). Like f_range (), but adjusts input values in the rangemin,
InMax] to the ranggoutMin, OutMax].
Parameters:

e v = Input value.

e InMin = Minimum of input range.

* InMax = Maximum of input range.

* outMin = Minimum of output range.

* outMax = Maximum of output range.

7.9.2 Vector functions and macros
These are all macros in the current version because functions can not take vector parameters, but this may
change in the future.

vsqr (V). Square each individual component of a vector, equivalentito
Parameters:

7.9 math.inc 305

» v = Vector to be squared.

VPow(V, P), VPow5D(V, P).Raise each individual component of a vector to a given power.
Parameters:

e v = Input vector.
* p = Power.

VEq(V1, Vv2). Tests for equal vectors, returns true if all three componentseagfual the respective components
of v2.
Parameters:

» v1, v2 = The vectors to be compared.

VEG5D (V1, v2). A 5D version ofveq (). Tests for equal vectors, returns true if all 5 components aéqual the
respective components of.
Parameters:

» v1, v2 = The vectors to be compared.

vzero (V). Tests for a< 0, 0, 0> vector.
Parameters:

* v = Input vector.

vzero5D (V). Tests for a< 0, 0, 0, 0, B> vector.
Parameters:

e v = Input vector.

VLength5D (V). Computes the length of a 5D vector.
Parameters:

* v = Input vector.

VNormalize5D (V). Normalizes a 5D vector.
Parameters:

* v = Input vector.

vDot5D (V1, v2). Computes the dot product of two 5D vectors. See vdot() for more information on dot products.
Parameters:

* v = Input vector.

VCos_Angle (V1, v2). Compute the cosine of the angle between two vectors.
Parameters:

* v1, v2 = Input vectors.

VAngle (V1, V2), VAngleD(vl, v2). Compute the angle between two vectorangle () returns the angle in
radiansyangleD () in degrees.
Parameters:

e V1, V2 = Inputvectors.

VRotation (Vl1, V2, Axis), VRotationD(Vl, V2, Axis).Compute the rotation angle from V1 to V2 around
Axis. Axis should be perpendicular to both V1 and V2. The output will be in the range between -pi and pi
radians or between -180 degrees and 180 degrees if you are using the degree version. However, if Axis is set to

306 Include Files

<0,0,0> the output will always be positive or zero, the same result you will get with the VAngle() macros.
Parameters:

* V1, V2 = Input vectors.

vDist (v1, v2). Compute the distance between two points.
Parameters:

* V1, v2 = Inputvectors.

VPerp_To_Vector (V). Find a vector perpendicular to the given vector.
Parameters:

* v = Input vector.

VPerp_To_Plane (V1, v2). Find a vector perpendicular to both given vectors. In other words, perpendicular to
the plane defined by the two input vectors
Parameters:

* v1, v2 = Input vectors.

VPerp_Adjust (V1, Axis). Find a vector perpendicular to Axis and in the plane of V1 and Axis. In other words,
the new vector is a version of V1 adjusted to be perpendicular to Axis.
Parameters:

* V1, Axis = Input vectors.

VProject_Plane (V1, Axis). Projectvector V1 onto the plane defined by Axis.
Parameters:

* V1 = Input vectors.
» axis = Normal of the plane.

VProject Axis (V1, Axis). Projectvector V1 onto the axis defined by Axis.
Parameters:

* V1, Axis = Inputvectors.

vMin (V), VMax (V). Find the smallest or largest component of a vector.
Parameters:

e v = Input vector.

VWith_Len(V, Len). Create a vector parallel to a given vector but with a given length.
Parameters:

» v = Direction vector.

* Len = Length of desired vector.

7.9.3 \Vector Analysis

SetGradientAccuracy (Value): all below macros make use of a constant name@radientFn_Accuracy’ for
numerical approximation of the derivatives. This constant can be changed with the macro, the default value is
0.001.

7.9 math.inc 307

fn_Gradient (Fn): macro calculating the gradient of a function as a function.
Parameters:

 rn = function to calculate the gradient from.
Output: the length of the gradient as a function.

fn_Gradient_Directional (Fn, Dir): macro calculating the gradient of a function in one direction as a function.
Parameters:

 rn = function to calculate the gradient from.
» pir = direction to calculate the gradient.
Output: the gradient in that direction as a function.

fn_Divergence (Fnx, Fny, Fnz): macro calculating the divergence of a (vector) function as a function.
Parameters:

* Fnx, Fny, Fnz=X,Yy and z components of a vector function.
Output: the divergence as a function.

vGradient (Fn, p0): macro calculating the gradient of a function as a vector expression.
Parameters:

 rn = function to calculate the gradient from.
* p0 = point where to calculate the gradient.
Output: the gradient as a vector expression.

vCurl (Fnx, Fny, Fnz, p0): macro calculating the curl of a (vector) function as a vector expression
Parameters:

* Fnx, Fny, Fnz =X,y and z components of a vector function.
* p0 = point where to calculate the gradient.
Output: the curl as a vector expression

Divergence (Fnx, Fny, Fnz, p0): macro calculating the divergence of a (vector) function as a float expression
Parameters:

* Fnx, Fny, Fnz =X, Yy and z components of a vector function.
* p0 = point where to calculate the gradient.
Output: the divergence as a float expression.

Gradient_Length (Fn, p0): mMacro calculating the length of the gradient of a function as a float expression.
Parameters:

 rn = function to calculate the gradient from.
* p0 = point where to calculate the gradient.
Output: the length of the gradient as a float expression.

Gradient Directional (Fn, p0, Dir): macro calculating the gradient of a function in one direction as a float
expression.
Parameters:

308 Include Files

 rn = function to calculate the gradient from.
* p0 = point where to calculate the gradient.
 pir = direction to calculate the gradient.

Output: the gradient in that direction as a float expression

7.10 metals.inc, golds.inc

These files define several metal textures. The file metals.inc contains copper, silver, chrome, and brass textures,
and golds.inc contains the gold textures.
Rendering the demo files will come in useful in using these textures.

7.10.1 metals.inc

Colors:

P_Brassl
Dark brown bronze.

P_Brass2
Somewhat lighter brown than Brass4. Old penny, in soft finishes.

P_Brass3
Used by Steve Anger’s Polishd®fass. Slightly coppery.

P_Brassd
A little yellower than Brass1.

P_Brassd
Very light bronze, ranges from med tan to almost white.

P_Copperl
Bronze-like. Best in finish #C.

P_Copper?2
Slightly brownish copper/bronze. Best in finishes #B-#D.

P_Copper3
Reddish-brown copper. Best in finishes #C-#E.

P_Copperé
Pink copper, like new tubing. Best in finishes #C-#E.

P_Copperb
Bronze in softer finishes, gold in harder finishes.

P_Chromel
20% Gray. Used in Steve Anger’s Polish€tirome.

P_Chrome2
Slightly blueish 60% gray. Good steel w/finish #A.

7.10 metals.inc, golds.inc 309

P_Chrome3
50% neutral gray.

P_Chrome4
75% neutral gray.

P_Chrome5
95% neutral gray.

P_Silverl
Yellowish silverplate. Somewhat tarnished looking.

P_Silver2
Not quite as yellowish as Silverl but more so than Silver3.

P_Silver3
Reasonably neutral silver.

P_Silverd
P_Silver5
Finishes:

F_MetalA
Very soft and dull.

F_MetalB
Fairly soft and dull.

F MetalC
Medium reflectivity. Holds color well.

F MetalD
Very hard and highly polished. High reflectivity.

F_ MetalE
Very highly polished and reflective.

Textures:
T_Brass-1A to T_Brass_5E
T_Copper-1A to T_Copper-5E
T_Chrome_l1A to T_Chrome_5E

T_Silver_1A to T_Silver_5E

7.10.2 golds.inc

This file has its own versions @fvetala throughr Metals.

The gold textures themselves areo1d_1a throught_cold_5E.

310 Include Files

7.11 rand.inc

A collection of macros for generating random numbers, as well as 4 predefined random number stigams:
RdmB, RdmC, andrdmp. There are macros for creating random numbers in a flat distribution (all numbers equally
likely) in various ranges, and a variety of other distributions.

7.11.1 Flat Distributions
SRand (Stream). "Signed rand()”, returns random numbers in the range [-1, 1].
Parameters:

* stream = Random number stream.

RRand (Min, Max, Stream). Returnsrandom numbers in the range [Min, Max].
Parameters:

» min = The lower end of the output range.
» Max = The upper end of the output range.
* Stream = Random number stream.

VRand (Stream). Returns random vectors in a box from0, 0, 0>to < 1, 1, I>
Parameters:

e stream = Random number stream.

VRand_TIn_Box (PtA, PtB, Stream). Like VRand(), this macro returns a random vector in a box, but this version
lets you specify the two corners of the box.
Parameters:

e ptA = Lower-left-bottom corner of box.
 ptB = Upper-right-top corner of box.
* stream = Random number stream.

VRand_In_Sphere (Stream). Returns a random vector in a unit-radius sphere located at the origin.
Parameters:

e stream = Random number stream.

VRand_On_Sphere (Stream). Returns a random vector on the surface of a unit-radius sphere located at the origin.
Parameters:

* Stream = Random number stream.

VRand_In_Obj (Object, Stream) This macro takes a solid object and returns a random point that is inside it. It
does this by randomly sampling the bounding box of the object, and can be quite slow if the object occupies a
small percentage of the volume of its bounding box (because it will take more attempts to find a point inside the
object). This macro is best used on finite, solid objects (non-solid objects, such as meshes and bezier patches,
do not have a defined "inside”, and will not work).

Parameters:

* Object = The object the macro chooses the points from.

7.11 rand.inc 311

* Stream = Random number stream.

7.11.2 Other Distributions
Continuous Symmetric Distributions
Rand_Cauchy (Mu, Sigma, Stream). Cauchy distribution.
Parameters:
e Mu = Mean.
* sigma = Standard deviation.

* stream = Random number stream.

Rand_Student (N, Stream). Student’s-t distribution.
Parameters:

» N = degrees of freedom.
* Stream = Random number stream.

Rand_Normal (Mu, Sigma, Stream). Normal distribution.
Parameters:

e My = Mean.
* sigma = Standard deviation.
* stream = Random number stream.

Rand_Gauss (Mu, Sigma, Stream). Gaussian distribution. Like Raridormal(), but a bit faster.
Parameters:

e Mu = Mean.
* sigma = Standard deviation.

* Stream = Random number stream.

Continuous Skewed Distributions

Rand_Spline (Spline, Stream). This macro takes a spline describing the desired distribution. The T value of
the spline is the output value, and the .y value its chance of occuring.
Parameters:

* spline = A spline determining the distribution.
* stream = Random number stream.

Rand_Gamma (Alpha, Beta, Stream). Gamma distribution.
Parameters:

* Alpha = Shape parameter 0.

* Beta = Scale parameter 0.

312

Include Files

* Stream = Random number stream.

Rand_Beta (Alpha, Beta, Stream). Beta variate.
Parameters:

* Alpha = Shape Gammal.
* Beta = Scale Gamma2.
* stream = Random number stream.

Rand_Chi_Square (N, Stream). Chi Square random variate.
Parameters:

» N = Degrees of freedom (integer).
* Stream = Random number stream.

Rand_F_Dist (N, M, Stream). F-distribution.
Parameters:

» N, M= Degrees of freedom.
* stream = Random number stream.

Rand_Tri (Min, Max, Mode, Stream). Triangular distribution
Parameters:

e Min, Max, Mode: Min < Mode < Max.
e stream = Random number stream.

Rand_Erlang (Mu, K, Stream). Erlang variate.
Parameters:

e Mu = Mean>=0.
» ¥ = Number of exponential samples.
* Stream = Random number stream.

Rand_Exp (Lambda, Stream). EXponential distribution.
Parameters:

* Lambda = rate = 1/mean.

e stream = Random number stream.

Rand_Lognormal (Mu, Sigma, Stream). Lognormal distribution.

Parameters:
e Mu = Mean.
* sigma = Standard deviation.
* Stream = Random number stream.

Rand_Pareto (Alpha, Stream). Pareto distribution.
Parameters:

e Alpha=7?

7.12 shapes.inc, shapesid.inc, shapes2.inc, shapesqg.inc 313

* Stream = Random number stream.

Rand_Weibull (Alpha, Beta, Stream). Weibull distribution.

Parameters:
* Alpha =7?
* Beta=7?

* Stream = Random number stream.

Discrete Distributions

Rand_Bernoulli (P, Stream) andprob (P, Stream). Bernoulli distribution. Output is true with probability equal
to the value of P and false with a probability of 1 - P.
Parameters:

 p = probability range (0-1).
¢ stream = Random number stream.

Rand_Binomial (N, P, Stream). Binomial distribution.
Parameters:

* N = Number of trials.
* p = Probability (0-1)
* stream = Random number stream.

Rand_Geo (P, Stream). Geometric distribution.
Parameters:

* p = Probability (0-1).
* stream = Random number stream.

Rand_Poisson (Mu, Stream). Poisson distribution.
Parameters:

e My = Mean.

* stream = Random number stream.

7.12 shapes.inc, shapesid.inc, shapes2.inc, shapesq.inc

These files contain predefined shapes and shape-generation macros.

"shapes.inc” includes "shape&dd.inc” and contains many macros for working with objects, and for creating
special objects, such as bevelled text, spherical height fields, and rounded shapes.

Many of the objects in "shapesld.inc” are not very useful in the newer versions of POV-Ray, and are kept
for backwards compatability with old scenes written for versions of POV-Ray that lacked primitives like cones,
disks, planes, etc.

314 Include Files

The file "shapes2.inc” contains some more useful shapes, including regular polyhedrons, and "shapesq.inc”
contains several quartic and cubic shape definitions.

Some of the shapes in "shapesqg.inc” would be much easier to generate, more flexible, and possibly faster ren-
dering as isosurfaces, but are still useful for two reasons: backwards compatability, and the fact that isosurfaces
are always finite.

7.12.1 shapes.inc

Isect (Pt, Dir, Obj, OPt) andIsectN(Pt, Dir, Obj, OPt, ONorm)

These macros are interfaces to the trace() function. Isect() only returns the intersection point, IsectN() returns
the surface normal as well. These macros return the point and normal information through their parameters, and
true or false depending on whether an intersection was found:

If an intersection is found, they return true and set OPt to the intersection point, and ONorm to the normal.
Otherwise they return false, and do not modify OPt or ONorm.

Parameters:

» pt = The origin (starting point) of the ray.

* pir = The direction of the ray.

* 0bj = The object to test for intersection with.

» opt = A declared variable, the macro will set this to the intersection point.

* onorm = A declared variable, the macro will set this to the surface normal at the intersection point.

Extents (Obj, Min, Max). This macro is a shortcut for calling both méxtent() and maxextent() to get the
corners of the bounding box of an object. It returns these values through the Min and Max parameters.
Parameters:

» 0bj = The object you are getting the extents of.
» Min = A declared variable, the macro will set this to the mixtent of the object.
* Max = A declared variable, the macro will set this to the nectent of the object.

Center_Object (Object, Axis). A shortcut for using the Centéirans() macro with an object.
Parameters:

* Object = The object to be centered.
* axis = See Centeffrans() in the transforms.inc documentation.

Align_Object (Object, Axis, Pt). A shortcut for using the AligiiTrans() macro with an object.
Parameters:

* Object = The object to be aligned.
» axis = See AlignTrans() in the transforms.inc documentation.
» point = The point to which to align the bounding box of the object.

Bevelled_Text (Font, String, Cuts, BevelAng, BevelDepth, Depth, Offset, UseMerge). This macro at-

tempts to "bevel” the front edges of a text object. It accomplishes this by making an intersection of multiple
copies of the text object, each sheared in a different direction. The results are no perfect, but may be entirely
acceptable for some purposes. Warning: the object generated may render considerably more slowly than an

7.12 shapes.inc, shapesid.inc, shapes2.inc, shapesqg.inc 315

ordinary text object.
Parameters:

* Font = A string specifying the font to use.
* string = The text string the object is generated from.

» cuts = The number of intersections to use in bevelling the text. More cuts give smoother results, but take
more memory and are slower rendering.

* BevelAng = The angle of the bevelled edge.
* BevelDepth = The thickness of the bevelled portion.
* Depth = The total thickness of the resulting text object.

» offset = The offset parameter for the text object. The z value of this vector will be ignored, because the
front faces of all the letters need to be coplanar for the bevelling to work.

* UseMerge = Switch between merge (1) and union (0).

Text_Space (Font, String, Size, Spacing). Computes the width of a text string, including "white space”, it
returns the advance widths of all n letters. T&tace gives the space a text, or a glyph, occupies in regard to
its surroundings.

Parameters:

* Font = A string specifying the font to use.

* string = The text string the object is generated from.

* size = A scaling value.

* spacing = The amount of space to add between the characters.

Text Width (Font, String, Size, Spacing). Computes the width of a text string, it returns the advance widths
of the first n-1 letters, plus the glyph width of the last letter. Té4tth gives the "physical” width of the text
and if you use only one letter the "fysical” width of one glyph.

Parameters:

» Font = A string specifying the font to use.
* string = The text string the object is generated from.
» size = A scaling value.
* spacing = The amount of space to add between the characters.
Align_Left, Align_Right, Align_Center. These constants are used by thecle Text () macro.

Circle_Text (Font, String, Size, Spacing, Depth, Radius, Inverted, Justification, Angle). Creates a

text object with the bottom (or top) of the character cells aligned with all or part of a circle. This macro should
be used inside atbject{. ..} block.

Parameters:

* Font = A string specifying the font to use.
* string = The text string the object is generated from.
* size = A scaling value.

* spacing = The amount of space to add between the characters.

316 Include Files

 Depth = The thickness of the text object.
* rRadius = The radius of the circle the letters are aligned to.

* Inverted = Controls what part of the text faces "outside”. If this parameter is nonzero, the tops of the
letters will point toward the center of the circle. Otherwise, the bottoms of the letters will do so.

e Justification = Align_Left, Align_Right, or Align.Center.

* Angle = The point on the circle from which rendering will begin. The +x direction is 0 and the +y direction
is 90 (i.e. the angle increases anti-clockwise).

Wedge (Angle). This macro creates an infinite wedge shape, an intersection of two planes. It is mainly useful in
CSG, for example to obtain a specific arc of a torus. The edge of the wedge is positioned along the y axis, and
one side is fixed to the zy plane, the other side rotates clockwise around the y axis.

Parameters:

* angle = The angle, in degrees, between the sides of the wedge shape.

Spheroid(Center, Radius). This macro creates an unevenly scaled sphere. Radius is a vector where each
component is the radius along that axis.
Parameters:

* center = Center of the spheroid.
* Radius = A vector specifying the radii of the spheroid.

Supertorus (MajorRadius, MinorRadius, MajorControl, MinorControl, Accuracy, MaxGradient). This

macro creates an isosurface of the torus equivalent of a superellipsoid. If you specify a MaxGradient of less
than 1, evaluate will be used. You will have to adjust MaxGradient to fit the parameters you choose, a squarer
supertorus will have a higher gradient. You may want to use the function alone in your own isosurface.
Parameters:

* MajorRadius, MinorRadius = Base radii for the torus.

* MajorControl, MinorControl = Controls for the roundness of the supertorus. Use numbers in the range
[0, 1].

* Accuracy = The accuracy parameter.
* MaxGradient = The maxgradient parameter.

Supercone (EndA, A, B, EndB, C, D). This macro creates an object similar to a cone, but where the end points
are ellipses. The actual object is an intersection of a quartic with a cylinder.
Parameters:

* Enda = Center of end A.
* 2, B = Controls for the radii of end A.
* Ends = Center of end B.
» ¢, p=Controls for the radii of end B.

Connect_Spheres (PtA, RadiusA, PtB, RadiusB). This macro creates a cone that will smoothly join two
spheres. It creates only the cone object, however, you will have to supply the spheres yourself or use the
RoundCone2() macro instead.

Parameters:

7.12 shapes.inc, shapesid.inc, shapes2.inc, shapesqg.inc 317

» pta = Center of sphere A.
» RadiusA = Radius of sphere A.
* ptB = Center of sphere B.
* radiusB = Radius of sphere B.

Wire_Box_Union (PtA, PtB, Radius),

Wire_Box_Merge (PtA, PtB, Radius),

Wire_Box (PtA, PtB, Radius, UseMerge). Creates a wire-frame box from cylinders and spheres. The resulting
object will fit entirely within a box object with the same corner points.

Parameters:

» pta = Lower-left-front corner of box.

 ptB = Upper-right-back corner of box.

 Radius = The radius of the cylinders and spheres composing the object.
* UseMerge = Whether or not to use a merge.

Round_Box_Union (PtA, PtB, EdgeRadius),

Round_Box_Merge (PtA, PtB, EdgeRadius),

Round_Box (PtA, PtB, EdgeRadius, UseMerge). Creates a box with rounded edges from boxes, cylinders and
spheres. The resulting object will fit entirely within a box object with the same corner points. The result is
slightly different from a superellipsoid, which has no truely flat areas.

Parameters:

* pta = Lower-left-front corner of box.

 ptB = Upper-right-back corner of box.

* EdgeRadius = The radius of the edges of the box.
* UseMerge = Whether or not to use a merge.

Round_Cylinder_Union (PtA, PtB, Radius, EdgeRadius),

Round_Cylinder Merge (PtA, PtB, Radius, EdgeRadius),

Round_Cylinder (PtA, PtB, Radius, EdgeRadius, UseMerge). Creates a cylinder with rounded edges from
cylinders and tori. The resulting object will fit entirely within a cylinder object with the same end points
and radius. The result is slightly different from a superellipsoid, which has no truely flat areas.

Parameters:

» pta, ptB = The end points of the cylinder.

* Radius = The radius of the cylinder.

* EdgeRadius = The radius of the edges of the cylinder.
* UseMerge = Whether or not to use a merge.

Round_Cone_Union (PtA, RadiusA, PtB, RadiusB, EdgeRadius),

Round_Cone_Merge (PtA, RadiusA, PtB, RadiusB, EdgeRadius),

Round_Cone (PtA, RadiusA, PtB, RadiusB, EdgeRadius, UseMerge) Creates a cone with rounded edges from
cones and tori. The resulting object will fit entirely within a cone object with the same end points and radii.
Parameters:

e pta, PtB = The end points of the cone.

318 Include Files

* RadiusA, RadiusB = The radii of the cone.
* EdgeRadius = The radius of the edges of the cone.
* UseMerge = Whether or not to use a merge.

Round_Cone2_Union (PtA, RadiusA, PtB, RadiusB),

Round_Cone2_Merge (PtA, RadiusA, PtB, RadiusB),

Round_Cone?2 (PtA, RadiusA, PtB, RadiusB, UseMerge). Creates a cone with rounded edges from a cone and

two spheres. The resulting object will not fit entirely within a cone object with the same end points and radii
because of the spherical caps. The end points are not used for the conical portion, but for the spheres, a suitable
cone is then generated to smoothly join them.

Parameters:

* ptA, PtB = The centers of the sphere caps.
* RadiusA, RadiusB = The radii of the sphere caps.
* UseMerge = Whether or not to use a merge.

Round_Cone3_Union (PtA, RadiusA, PtB, RadiusB),

Round_Cone3_Merge (PtA, RadiusA, PtB, RadiusB)

Round_Cone3 (PtA, RadiusA, PtB, RadiusB, UseMerge). Like RoundCone2(), this creates a cone with rounded
edges from a cone and two spheres, and the resulting object will not fit entirely within a cone object with the
same end points and radii because of the spherical caps. The difference is that this macro takes the end points
of the conical portion and moves the spheres to be flush with the surface, instead of putting the spheres at the
end points and generating a cone to join them.

Parameters:

* pta, ptB = The end points of the cone.
* RadiusA, RadiusB = The radii of the cone.
* UseMerge = Whether or not to use a merge.

Quad(a, B, C, D) and smooth_Quad(A, NA, B, NB, C, NC, D, ND). These macros create "quads”, 4-sided
polygonal objects, using triangle pairs.
Parameters:

* A, B, ¢, D= Vertices of the quad.

* NA, NB, NC, ND = Vertex normals of the quad.

The HF Macros

There are several HF macros in shapes.inc, which generate meshes in various shapes. All the HF macros have
these things in common:

» The HF macros do not directly use an image for input, but evaluate a user-defined function. The macros
deform the surface based on the function values.

» The macros can either write to a file to be included later, or create an object directly. If you want to output
to a file, simply specify a filename. If you want to create an object directly, specify ™ as the file name (an
empty string).

7.12 shapes.inc, shapesid.inc, shapes2.inc, shapesqg.inc 319

» The function values used for the heights will be taken from the square that goescBi@hd> to <1,1,
0> if UV height mapping is on. Otherwise the function values will be taken from the points where the
surface is (before the deformation).

» The texture you apply to the shape will be evaluated in the square that goes@@n®> to <1,1,0> if
UV texture mapping is on. Otherwise the texture is evaluated at the points where the surface is (after the
deformation.

The usage of the different HF macros is described below.

HF_Square (Function, UseUVheight, UseUVtexture, Res, Smooth, FileName, MnExt, MxExt). This macro
generates a mesh in the form of a square height field, similar to the built-in Hegtghprimitive. Also see the
general description of the HF macros above.

Parameters:

* runction = The function to use for deforming the height field.

 UseUVheight = A boolean value telling the macro whether or not to use UV height mapping.

* UseUVtexture = A boolean value telling the macro whether or not to use UV texture mapping.
» res = A 2D vector specifying the resolution of the generated mesh.

* smooth = A boolean value telling the macro whether or not to smooth the generated mesh.
 FileName = The name of the output file.

* vnExt = Lower-left-front corner of a box containing the height field.

» mxeExt = Upper-right-back corner of a box containing the height field.

HF _Sphere (Function, UseUVheight, UseUVtexture, Res, Smooth, FileName, Center, Radius, Depth).

This macro generates a mesh in the form of a spherical height field. When UV-mapping is used, the UV
square will be wrapped around the sphere starting at +x and going anti-clockwise around the y axis. Also see
the general description of the HF macros above. Parameters:

* runction = The function to use for deforming the height field.

* UseUVheight = A boolean value telling the macro whether or not to use UV height mapping.

* UseUVtexture = A boolean value telling the macro whether or not to use UV texture mapping.
* res = A 2D vector specifying the resolution of the generated mesh.

* smooth = A boolean value telling the macro whether or not to smooth the generated mesh.
 FileName = The name of the output file.

* center = The center of the height field before being displaced, the displacement can, and most likely will,
make the object off-center.

» Radius = The starting radius of the sphere, before being displaced.
 Depth = The depth of the height field.

HF Cylinder (Function, UseUVheight, UseUVtexture, Res, Smooth, FileName, EndA, EndB, Radius,Depth).

This macro generates a mesh in the form of an open-ended cylindrical height field. When UV-mapping is used,
the UV square will be wrapped around the cylinder. Also see the general description of the HF macros above.
Parameters:

320

Include Files

Function = The function to use for deforming the height field.

UseUVheight = A boolean value telling the macro whether or not to use UV height mapping.
UseUVtexture = A boolean value telling the macro whether or not to use UV texture mapping.
rRes = A 2D vector specifying the resolution of the generated mesh.

smooth = A boolean value telling the macro whether or not to smooth the generated mesh.
FileName = The name of the output file.

EndA, EndB = The end points of the cylinder.

Radius = The (pre-displacement) radius of the cylinder.

Depth = The depth of the height field.

HF_Torus (Function, UseUVheight, UseUVtexture, Res, Smooth, FileName, Major, Minor, Depth). This

macro generates a mesh in the form of a torus-shaped height field. When UV-mapping is used, the UV square
is wrapped around similar to spherical or cylindrical mapping. However the top and bottom edges of the map
wrap over and under the torus where they meet each other on the inner rim. Also see the general description of
the HF macros above.

Parameters:

Function = The function to use for deforming the height field.

UseUvheight = A boolean value telling the macro whether or not to use UV height mapping.
UseUvtexture = A boolean value telling the macro whether or not to use UV texture mapping.
rRes = A 2D vector specifying the resolution of the generated mesh.

smooth = A boolean value telling the macro whether or not to smooth the generated mesh.
FileName = The name of the output file.

Major = The major radius of the torus.

Minor = The minor radius of the torus.

7.12.2 shapesld.inc

Ellipsoid, Sphere

Unit-radius sphere at the origin.

Cylinder_X, Cylinder.Y, Cylinder_Z

Infinite cylinders.

QCone_X, QCone.Y, QCone_Z

Infinite cones.

Cone_X, Cone.Y, Cone_Z

Closed capped cones: unit-radius at -1 and 0 radius at +1 along each axis.

Plane_YZ, Plane_XZ, Plane XY

Infinite planes passing through the origin.

Paraboloid_X, Paraboloid.Y, Paraboloid._Z

7.12 shapes.inc, shapesid.inc, shapes2.inc, shapesqg.inc 321

y2+22-x=0
Hyperboloid, Hyperboloid-Y

y-X2+22=0
UnitBox, Cube

A cube 2 units on each side, centered on the origin.

Disk_X, Disk.Y, Disk_z
"Capped"” cylinders, with a radius of 1 unit and a length of 2 units, centered on the origin.

7.12.3 shapes2.inc

Tetrahedron

4-sided regular polyhedron.

Octahedron

8-sided regular polyhedron.

Dodecahedron

12-sided regular polyhedron.

Icosahedron

20-sided regular polyhedron.

Rhomboid
Three dimensional 4-sided diamond, basically a sheared box.

Hexagon
6-sided regular polygonal solid, axis along x.

HalfCone.Y
Convenient finite cone primitive, pointing up in the Y axis.

Pyramid
4-sided pyramid (union of triangles, can not be used in CSG).

Pyramid2
4-sided pyramid (intersection of planes, can be used in CSG).

Square_X, Square.Y, Square_Z
Finite planes stretching 1 unit along each axis. In other words, 2X2 unit squares.

7.12.4 shapesg.inc

Bicorn
This curve looks like the top part of a paraboloid, bounded from below by another paraboloid. The
basic equation is:
YV2-(X2+Z22)y2-(X2+22+2y-1)2=

Crossed_Trough
This is a surface with four pieces that sweep up from the x-z plane.
The equationis: y=x"22"2

322 Include Files

Cubic_Cylinder
A drop coming out of water? This is a curve formed by using the equation:
y=1/2x2 (x+1)
as the radius of a cylinder having the x-axis as its central axis. The final form of the equation is:
y2+22=05(X3+x72)

Cubic_Saddle_1
A cubic saddle. The equationis: z=X"3-y"3

Devils_Curve
Variant of a devil's curve in 3-space. This figure has a top and bottom part that are very similar to a
hyperboloid of one sheet, however the central region is pinched in the middle leaving two teardrop
shaped holes. The equation is:
X4+2X222-036Xx2-y4+025y2+24=0

Folium
This is a folium rotated about the x-axis. The formula is:
2X2-3xy2-3x272+y2+722=0

Glob_5
Glob - sort of like basic teardrop shape. The equation is:
y2+22=05x5+05x%x4

Twin_Glob
Variant of a lemniscate - the two lobes are much more teardrop-like.

Helix, Helix_ 1
Approximation to the helix z = arctan(y/x). The helix can be approximated with an algebraic
equation (kept to the range of a quartic) with the following steps:
tan(z) = y/x => sin(z)/cos(z) = y/x >
(1) x sin(z) - y cos(z) = 0 Using the taylor expansions for sin, cos about z = 0,
sin(z) =z -2"3/3! + 2°5/5! - ...
cos(z)=1-2"2/2! +Z°6/6! - ...
Throwing out the high order terms, the expression (1) can be written as:
X(z-Z2"3/6)-y (1+2°2/2)=0,or

(2)-1/6x2°3+xz+1/2yz°2-y=0
This helix (2) turns 90 degrees in the range 8 z <= sqrt(2)/2. By using scale?2 2 2>, the helix
defined below turns 90 degrees in the range=0z <= sqrt(2) = 1.4042.

Hyperbolic_Torus
Hyperbolic Torus having major radius sqrt(40), minor radius sqrt(12). This figure is generated by
sweeping a circle along the arms of a hyperbola. The equation is:
X4+2X2Yy2-2X222-104X2+y4-2y222+56y2+24+10422+784=0

Lemniscate
Lemniscate of Gerono. This figure looks like two teardrops with their pointed ends connected. It is
formed by rotating the Lemniscate of Gerono about the x-axis. The formula is:
X4-X2+y2+22=0

Quartic_Loop-1
This is a figure with a bumpy sheet on one side and something that looks like a paraboloid (but with
an internal bubble). The formula is:

7.13 skies.inc, stars.inc 323

X2+y2+acx)2-(X2+y2)(c-ax)2
-99*X"4+40*X"3-98*X"2*y"2-98*X"2*2"2+99*X"2+40*x*y"2
+A40*X*2"2+Y 4+2*y " 2*7"2-y"2+7"4-2"2

Monkey_Saddle
This surface has three parts that sweep up and three down. This gives a saddle that has a place for
two legs and a tail... The equation is:
z =c (x"3 -3 xy"2)
The value c gives a vertical scale to the surface - the smaller the value of c, the flatter the surface
will be (near the origin).

Parabolic_Torus_40_12
Parabolic Torus having major radius sqrt(40), minor radius sqrt(12). This figure is generated by
sweeping a circle along the arms of a parabola. The equation is:
X4+2X2y2-2Xx22-104X2+y4-2y2z2+56y2+22+104z2+784=0

Piriform
This figure looks like a hersheys kiss. It is formed by sweeping a Piriform about the x-axis. A basic
form of the equation is:
(X4-x3)+y2+722=0.

Quartic_Paraboloid
Quartic parabola - a 4th degree polynomial (has two bumps at the bottom) that has been swept
around the z axis. The equation is:
01X4-xX2-y2-272+09=0

Quartic_Cylinder
Quartic Cylinder - a Space Needle?

Steiner_Surface
Steiners quartic surface

Torus-40-12
Torus having major radius sqrt(40), minor radius sqrt(12).

Witch_Hat
Witch of Agnesi.

Sinsurf
Very rough approximation to the sin-wave surface z = sin(2 pi x y).
In order to get an approximation good to 7 decimals at a distance of 1 from the origin would require a
polynomial of degree around 60, which would require around 200,000 coefficients. For best results,
scale by something likel 1 0.2>.

7.13 skies.inc, stars.inc

These files contain some predefined skies for you to use in your scenes.

skies.inc:
There are textures and pigment definitions in this file. All pigment definitions start with &P sky_spheres
start with "S”, all textures start with "T”, and all objects start with "C.

324 Include Files

stars.inc:
This file contains predefined starfield textures. The starfields become denser and more colorful with the number,
with Starfield6 being the densest and most colorful.

7.13.1 skies.inc

Pigments:
P_Cloudl
P_Cloud2
P_Cloud3

Sky Spheres:

S_Cloudl
This sky.sphere uses_Eloud2 and ECloud3.

S_Cloud2
This sky.sphere uses_Eloud4.

S_Cloud3
This sky sphere uses_Eloud2.

S_Cloud4
This sky.sphere uses_Eloud3.

S_Cloud5
This sky.sphere uses a custom pigment.

Textures:

T_Cloudl
2-layer texture using loudl1 pigment, contains clear regions.

T_Cloud2
1-layer texture, contains clear regions.

T_Cloud3
2-layer texture, contains clear regions.

Objects:

0_Cloudl
Sphere, radius 10000 with Tloud1 texture.

0_-Cloud2
Union of 2 planes, with TCloud2 and TCloud3.

7.13.2 stars.inc

Starfieldl

Starfield?2

7.14 stones.inc, stonesl.inc, stones2.inc, stoneold.inc 325

Starfield3
Starfield4
Starfield5

Starfield6

7.14 stones.inc, stonesl.inc, stones2.inc, stoneold.inc

The two files stonesl.inc and stones2.inc contain lists of predefined stone textures.

The file "stonesl.inc” contains texture definitions faiGFnt0 to T.Grnt29, T.Grntla to TGrnt24a, and T
Stone0 to TStone24.

The T_GrntXX, T_GrntXXa, and CrackX textures are "building blocks that are used to create the final "usable”
T_StoneX textures (and other textures that *you* design, of course!)

The T_GrntXX textures generally contain no transparency, but tieriitXXa textures do contain transparency.
The CrackX textures are clear with thin opaque bands, simulating cracks.

The file "stones2.inc” provides additional stone textures, and contains texture definitionSfond25 to T-
Stone44.

The file "stones.inc” simply includes both "stones1.inc” and "stones2.inc”, and the file "stoneold.inc” provides
backwards compatability for old scenes, the user is advised to use the textures in "stonesl.inc” instead.

7.14.1 stonesl.inc

T_Grnt0

Gray/Tan with Rose.
T_Grntl

Creamy Whites with Yellow & Light Gray.
T_Grnt2

Deep Cream with Light Rose, Yellow, Orchid, & Tan.
T_Grnt3

Warm tans olive & light rose with cream.
T_Grntd

Orchid, Sand & Mauve.
T_Grnt5

Medium Mauve Med.Rose & Deep Cream.
T_Grnt6

Med. Orchid, Olive & Dark Tan "mud pie”.
T_Grnt7

Dark Orchid, Olive & Dark Pultty.

T_Grnt8

326

Include Files

T_Grnt9

T_Grnt10

T_Grntll

T_Grntl2

T_Grntl3

T_Grntl4

T_Grntl5

T_Grntlé6

T_Grntl7

T_Grntl8

T_Grntl9

T_Grnt20

T_Grnt21l

T_Grnt22

T_Grnt23

T_Grnt24

T_Grnt25

T_Grnt26

T_Grnt27

Rose & Light Cream Yellows

Light Steely Grays

Gray Creams & Lavender Tans

Creams & Grays Kahki

Tan Cream & Red Rose

Cream Rose Orange

Cream Rose & Light Moss w/Light Violet

Black with subtle chroma

White Cream & Peach

Bug Juice & Green

Rose & Creamy Yellow

Gray Marble with White feather Viens

White Marble with Gray feather Viens

Green Jade

Clear with White feather Viens (has some transparency)

Light Tan to Mauve

Light Grays

Moss Greens & Tan

Salmon with thin Green Viens

Dark Green & Browns

7.14 stones.inc, stonesl.inc, stones2.inc, stoneold.inc 327

T_Grnt28
Red Swirl

T_Grnt29
White, Tan, w/ thin Red Viens

T_Grnt0a
Translucent TGrntO

T_Grntla
Translucent TGrntl

T_Grnt2a
Translucent TGrnt2

T_Grnt3a
Translucent TGrnt3

T_Grntda
Translucent TGrnt4

T_Grntba
Translucent TGrntb

T_Grnto6a
Translucent TGrnt6

T_Grnt7a
Translucent TGrnt7

T_Grnt8a
Aqua Tints

T_Grnt9a
Transmit Creams With Cracks

T_Grntl0a
Transmit Cream Rose & light yellow

T_Grntlla
Transmit Light Grays

T_Grntl2a
Transmit Creams & Tans

T_Grntl3a
Transmit Creams & Grays

T_Grntlda
Cream Rose & light moss

T_Grntlba
Transmit Sand & light Orange

T_Grntléa
Cream Rose & light moss (again?)

T_Grntl7a

328 Include Files

??7?

T_Grntl8a
?7?7?

T_Grntl9a
Gray Marble with White feather Viens with Transmit

T_Grnt20a
White Feather Viens

T_Grnt2la
Thin White Feather Viens

T_Grnt22a
7?7

T_Grnt23a
Transparent Green Moss

T_Grnt24a
7?7

T_Crackl
T_Crack & Red Overtint

T_Crack?2
Translucent Dark TCracks

T_Crack3
Overtint Green w/ Black TCracks

T_Crack4
Overtint w/ White T.Crack

The StoneXX textures are the complete textures, ready to use.

T_Stonel
Deep Rose & Green Marble with large White Swirls

T_Stone2
Light Greenish Tan Marble with Agate style veining

T_Stone3
Rose & Yellow Marble with fog white veining

T_Stoned
Tan Marble with Rose patches

T_Stoned
White Cream Marble with Pink veining

T_Stoneb
Rose & Yellow Cream Marble

T_Stone’7
Light Coffee Marble with darker patches

T_Stone8

7.14 stones.inc, stonesl.inc, stones2.inc, stoneold.inc 329

Gray Granite with white patches

T_Stone9
White & Light Blue Marble with light violets

T_Stonel0
Dark Brown & Tan swirl Granite with gray undertones

T_Stonell
Rose & White Marble with dark tan swirl

T_Stonel?2
White & Pinkish Tan Marble

T_Stonel3
Medium Gray Blue Marble

T_Stoneld
Tan & Olive Marble with gray white veins

T_Stonelb
Deep Gray Marble with white veining

T_Stonel6
Peach & Yellow Marble with white veining

T_Stonel7
White Marble with gray veining

T_Stonel8
Green Jade with white veining

T_Stonel9
Peach Granite with white patches & green trim

T_Stone20
Brown & Olive Marble with white veining

T_Stone2l
Red Marble with gray & white veining

T_Stone22
Dark Tan Marble with gray & white veining

T_Stone23
Peach & Cream Marble with orange veining

T_Stone24
Green & Tan Moss Marble

7.14.2 stones2.inc

T_Stone25, ..., T_Stoned4

330 Include Files

7.15 stdinc.inc

This file simply includes the most commonly used include files, so you can get all of them with a single #include.
The files included are:

* colors.inc
 shapes.inc

« transforms.inc
 consts.inc

« functions.inc
* math.inc

* rand.inc

7.16 strings.inc

This include contains macros for manipulating and generating text strings.

CRGBStr(C, MinLen, Padding) andCcRrRGBFTStr (C, MinLen, Padding)

These macros convert a color to a string. The format of the output string is<'igbG, B>" or "rgbft < R, G,
B, F, T>", depending on the macro being called.

Parameters:

» c =The color to be turned into a string.
» MinLen = The minimum length of the individual components, analogous to the second parameter of str().
* Padding = The padding to use for the components, see the third parameter of the str() function for detalils.

str(A). This macro creates a string containing a float with the systems default precision. It is a shortcut for
using the str() function.
Parameters:

» A =The float to be converted to a string.

vstr2D(v), vstr(v). These macros create strings containing vectors using POV syab&y,Z>) with the
default system precision. VStr2D() works with 2D vectors, VStr() with 3D vectors. They are shortcuts for
using thevstr () function.

Parameters:

» v = The vector to be converted to a string.

Vstr2D(V,L,P), Vstr(v,L,P). These macros create strings containing vectors using POV syb&y,¢Z >)

with user specified precision. Vstr2D() works with 2D vectors, Vstr() with 3D vectors. They are shortcuts for
using the vstr() function. The function of L and P is the same astin specified in String Functions.

Parameters:

» v = The vector to be converted to a string.

» .= Minimum length of the string and the type of left padding used if the string’s representation is shorter
than the minimum.

7.17 textures.inc 331

» p = Number of digits after the decimal point.”

Triangle_Str (A, B, C) andSmooth,Triangle,Str (A, NA, B, NB, C, NC)

These macros take vertex and normal information and return a string representing a triangle in POV-Ray syntax.
They are mainly useful for generating mesh files.

Parameters:

* A, B, C=Triangle vertex points.
e N, NB, NC = Triangle vertex normals (Smoaffriangle Str() only).

Parse_String(String). This macro takes a string, writes it to a file, and then includes that file. This has the
effect of parsing that stringP4rse_string ("MyColor")” will be seen by POV-Ray asfycolor”.
Parameters:

* string = The string to be parsed.

7.17 textures.inc

This file contains many predefined textures, including wood, glass, and metal textures, and a few texture/pattern
generation macros.

7.17.1 Stones

Stone Pigments:

Jade Map, Jade
Drew Wells’ superb Jade. Color map works nicely with other textures, too.

Red-Marble_ Map, Red-Marble
Classic white marble with red veins. Over-worked, like checkers.

White Marble Map, White Marble
White marble with black veins.

Blood-Marble_Map, Blood-Marble
Light blue and black marble with a thin red vein.

Blue_Agate_Map, Blue_Agate
A grey blue agate — kind of purplish.

Sapphire_Agate_Map, Sapphire_Agate
Deep blue agate — almost glows.

Brown_Agate_Map, Brown_Agate
Brown and white agate — very pretty.

Pink_Granite_Map, Pink_Granite
Umm, well, pink granite.

Stone textures:

PinkAlabaster
Gray-pink alabaster or marble. Layers are scaled for a unit object and relative to each other.

332 Include Files

Note: This texture has very tiny dark blue specks that are often mistaken for rendering errors. They
are not errors. Just a strange texture design.

Underlying surface is very subtly mottled with bozo.

Second layer texture has some transmit values, yet a fair amount of color.

Veining is kept quite thin in color map and by the largish scale.

7.17.2 Skies

Sky pigments:

Blue_Sky_Map, Blue_Sky
Basic blue sky with clouds.

Bright_Blue_Sky
Bright blue sky with very white clouds.

Blue_Sky2
Another sky.

Blue_Sky3
Small puffs of white clouds.

Blood_Sky
Red sky with yellow clouds — very surreal.

Apocalypse
Black sky with red and purple clouds.
Try adding turbulence values from 0.1 - 5.0 — CdW

Clouds
White clouds with transparent sky.

FBM_Clouds

Shadow_Clouds
A multilayered cloud texture (a real texture, not a pigment).

7.17.3 Woods

Wood pigments:
Several wooden pigments by Tom Price:

Cherry_Wood
A light reddish wood.

Pine_Wood
A light tan wood whiteish rings.

Dark_Wood
Dark wood with a,ish hue to it.

Tan_-Wood
Light tan wood with brown rings.

7.17 textures.inc 333

White_Wood
A very pale wood with tan rings — kind of balsa-ish.

Tom_Wood
Brown wood - looks stained.

DMFWoodl, DMFWood2, DMFWood3, DMFWood4, DMFWood5
The scaling in these definitions is relative to a unit-sized object (radius 1).

Note: woods are functionally equivalent to a log lying along the z axis. For best results, think like
a woodcutter trying to extract the nicest board out of that log. A little tilt along the x axis will give
elliptical rings of grain like you would expect to find on most boards. Experiment.

Wood textures:

DMFWood6

This is a three-layer wood texture. Renders rather slowly because of the transparent layers and the
two layers of turbulence, but it looks great. Try other colors of "varnish” for simple variations.

DMFLightOak
Is this really oak? | dunno. Quite light, maybe more like spruce.

DMFDarkOak
Looks like old desk oak if used correctly.

EMBWood1l
Wood by Eric Barish

Doug Otwell woods:

Yellow_Pine
Yellow pine, close grained.

Rosewood

Sandalwood
makes a great burled maple, too

7.17.4 Glass

Glass_Finish is @ generic glass finishiass_Interior is a generic glass interior, it just adds an ior of 1.5.
Glass materials:

M_Glass
Just glass.

M_Glass2
Probably more of a "Plexiglas” than glass.

M_Glass3
An excellent lead crystal glass!

M_Green_Glass

Glass textures contributed by Norm Bowler, of Richland WA. NBglsish is used by these materials.

334 Include Files

M_NBglass
M_NBoldglass
M_NBwinebottle
M_NBbeerbottle
A few color variations on Norm'’s glass.
M_Ruby_-Glass
M_Dark_Green_Glass
M_Yellow_Glass
M_Orange_Glass

M_Vicks_Bottle_Glass

7.17.5 Metals

Metal finishes:

Metal
Generic metal finish.

SilverFinish
Basic silver finish

Metallic_Finish
Metal textures:

Chrome_Metal, Brass_Metal, Bronze Metal, Gold Metal, Silver Metal, Copper_Metal
A series of metallic textures using the Metal finish (except for Chrdesal, which has a custom
finish). There are identical textures ending Trexture instead ofMetal, but use of those names is
discouraged.

Polished_Chrome
A highly reflective Chrome texture.

Polished Brass
A highly reflective brass texture.

New_Brass
Beautiful military brass texture!

Spun_Brass
Spun Brass texture for cymbals & such

Brushed_Aluminum
Brushed aluminum (brushed along X axis)

Silverl
Silver2

Silver3

7.17 textures.inc 335

Brass_Valley
Sort of a "Black Hills Gold”, black, white, and orange specks or splotches.

Rust
Rusty_Iron
Soft_Silver
New_Penny
Tinny_Brass
Gold_Nugget
Aluminum

Bright_Bronze

7.17.6 Special textures

Candy-Cane
Red & white stripes - Looks best on a y axis Cylinder.
It "spirals” because it's gradient on two axis.

Peel
Orange and Clear stripes spiral around the texture to make an object look like it was "Peeled”. Now,
you too can be M.C. Escher!

Y_Gradient

X_Gradient

M Water
Wavy water material. Requires a sub-plane, and may require scaling to fit your scene.
WARNING: Water texture has been changed toWater material, see explanation in the "glass”
section of this file.

Cork

Lightning_CMapl, Lightningl, and Lightning_CMap2, Lightning2
These are just lightning textures, they look like arcing electricity...earlier versions misspelled them
as "Lightening”.

Starfield
A starfield texture by Jeff Burton

7.17.7 Texture and pattern macros

Irreqular Bricks_Ptrn (Mortar Thickness, X-scaling, Variation, Roundness). This function pattern cre-

ates a pattern of bricks of varying lengths on the x-y plane. This can be useful in building walls that do not look
like they were built by a computer. Note that mortar thickness between bricks can vary somewhat, too.
Parameters:

e Mortar Thickness = Thickness of the mortar (0-1).

336 Include Files

» x-scaling = The scaling of the bricks (but not the mortar) in the x direction.
 variation = The amount by which brick lengths will vary (O=none, 1=100%).
* Roundness = The roundness of the bricks (0.01=almost rectangular, 1=very round).

Tiles_Ptrn(). This macro creates a repeating box pattern on the x-y plane. It can be useful for creating grids.
The cells shade continuously from the center to the edges.
Parameters: None.

Hex_Tiles_Ptrn(). This macro creates a pattern that is a sort of cross between the hexagon pattern and a
repeating box pattern. The hexagonal cells shade continuously from the center to the edges.
Parameters: None.

Star_Ptrn (Radius, Points, Skip). This macro creates a pattern that resembles a star. The pattern is in the
x-y plane, centered around the origin.
Parameters:

 Radius = The radius of a circle drawn through the points of the star.
* Points = The number of points on the star.

e skip = The number of points to skip when drawing lines between points to form the star. A normal
5-pointed star skips 2 points. A Star of David also skips 2 points. Skip must be less than Points/2 and
greater than 0. Integers are preferred but not required. Skipping 1 point makes a regular polygon with
Points sides.

* pigment = The pigment to be applied to the star.

* Background = The pigment to be applied to the background.

7.18 transforms.inc

Several useful transformation macros. All these macros produce transformations, you can use them anywhere
you can use scale, rotate, etc. The descriptions will assume you are working with an object, but the macros will
work fine for textures, etc.

Shear_Trans (A, B, C). This macro reorients and deforms an object so its original XYZ axes point along A, B,
and C, resulting in a shearing effect when the vectors are not perpendicular. You can also use vectors of different
lengths to affect scaling, or use perpendicular vectors to reorient the object.

Parameters:

* 2, B, C=\Vectors representing the new XYZ axes for the transformation.

Matrix_Trans (A, B, C, D). Thismacro provides a way to specify a matrix transform with 4 vectors. The effects
are very similar to that of the She@rans() macro, but the fourth parameter controls translation.
Parameters:

* 3, B, ¢, D= Vectors for each row of the resulting matrix.

axial_Scale_Trans (Axis, Amt).AKkind of directional scale, this macro will "stretch” an object along a specified
axis.
Parameters:

 Axis = A vector indicating the direction to stretch along.

7.18 transforms.inc 337

* Amt = The amount to stretch.

Axis_Rotate_Trans (Axis, Angle). This is equivalent to the transformation done by the vaatate() function,
it rotates around an arbitrary axis.
Parameters:

 Axis = A vector representing the axis to rotate around.
* Angle = The amount to rotate by.

Rotate Around Trans (Rotation, Point). Ordinary rotation operates around the origin, this macro rotates
around a specific point.
Parameters:

* Rotation = The rotation vector, the same as the parameter to the rotate keyword.
* point = The point to rotate around.

Reorient_Trans (Axisl, Axis2). Thisalignsxis1 toaxis2 by rotating the object around a vector perpendicular
to both axis1 and axis2.
Parameters:

* Axisl = Vector to be rotated.
* Axis2 = Vectors to be rotated towards.

Point_At_Trans (YAxis). This macro is similar to Reorierfirans(), but it points the y axis along Axis.
Parameters:

* vaxis = The direction to point the y axis in.

Center_Trans (Object, Axis). Calculates a transformation which will center an object along a specified axis.
You indicate the axes you want to center along by adding "x”, "y”, and "z” together in the Axis parameter.

Note: this macro actually computes the transform to center the bounding box of the object, which may not be
entirely accurate. There is no way to define the "center” of an arbitrary object.

Parameters:
* Object = The object the center transform is being computed for.
 axis = The axes to center the object on.

Usage:

object {MyObj Center_Trans (MyObj, x)} //center along x axis

You can also center along multiple axes:

object {MyObj Center_Trans (MyObj, x+y)} //center along x and y axis

Align_Trans (Object, Axis, Pt). Calculates a transformation which will align the sides of the bounding box of
an object to a point. Negative values on Axis will align to the sides facing the negative ends of the coordinate
system, positive values will align to the opposite sides, 0 means not to do any alignment on that axis.
Parameters:

* Object = The object being aligned.

338 Include Files

» axis = A combination of +x, +y, +z, -x, -y, and -z, or a vector where each component is -1, 0, or +1
specifying the faces of the bounding box to align to the point.

* point = The point to which to align the bounding box of the object.
Usage:

object {
MyObj
Align_Trans (MyObj, x, Pt) //Align right side of object to be
//coplanar with Pt
Align_Trans (MyObj, -y, Pt) //Align bottom of object to be
// coplanar with Pt

vtransform(Vect, Trans) andvinv,transform(Vect, Trans).

Thevtransform() macro takes a transformation (rotate, scale, translate, etc...) and a point, and returns the result
of applying the transformation to the point. Th&wv_transform() macro is similar, but applies the inverse of

the transform, in effect "undoing” the transformation. You can combine transformations by enclosing them in a
transform block.

Parameters:

 vect = The vector to which to apply the transformation.
* Trans = The transformation to apply to Vect.

Spline_Trans(Spline, Time, SkyVector, ForeSight, Banking). This macro aligns an object to a spline for a
given time value. The Z axis of the object will point in the forward direction of the spline and the Y axis of the
object will point upwards.

Parameters:

* spline = The spline that the object is aligned to.
» Time = The time value to feed to the spline, for example clock.
* sky = The vector that is upwards in your scene, usually y.

* Foresight = A positive value that controls how much in advance the object will turn and bank. Values
close to 0 will give precise results, while higher values give smoother results. It will not affect parsing
speed, so just find the value that looks best.

* Banking = How much the object tilts when turning. The amount of tilting is equally much controlled by
the ForeSight value.

Usage:

object {MyObj Spline_Trans (MySpline, clock, y, 0.1, 0.5)}

7.19 woodmaps.inc, woods.inc

The file woodmaps.inc contains coloraps designed for use in wood textures. ThaNdodXA maps are
intended to be used in the first layer of a multilayer texture, but can be used in single-layer textures. The
M _WoodXB maps contain transparent areas, and are intended to be used in upper texture layers.

7.19 woodmaps.inc, woods.inc 339

The file woods.inc contains predefined wood textures and pigments.

The pigments are prefixed with_ Pand do not have colamaps, allowing you to specify a color map from
woodmaps.inc or create your own. There are two groups, "A” and "B”: the A series is designed to work better
on the bottom texture layer, and the B series is designed for the upper layers, with semitransparent color maps.
The pigments with the same number were designed to work well together, but you do not necessarily have to
use them that way.

The textures are prefixed with.;Tand are ready to use. They are designed with the major axis of the woodgrain
"cylinder” aligned along the Z axis. With the exception of the few of the textures which have a small amount of
rotation built-in, the textures will exhibit a very straight grain pattern unless you apply a small amount of x-axis
rotation to them (generally 2 to 4 degrees seems to work well).

7.19.1 woodmaps.inc

Color maps:
M_WoodlA, ..., M_Woodl9A
M_WoodlB, ..., M_Woodl9B

7.19.2 woods.inc

Pigments:

P_WoodGrainld, ..., P_WoodGrainA
P_WoodGrainlB, ..., P_WoodGrainB
Textures:

T_Woodl

Natural oak (light)

T_Wood2

Dark brown
T_Wood3

Bleached oak (white)
T_Wood4

Mahogany (purplish-red)
T_Woodb5

Dark yellow with reddish overgrain
T_Wood6

Cocabola (red)
T_Wood7

Yellow pine (ragged grain)
T_Wood8

Dark brown. Walnut?

340 Include Files

T_Wood9
Yellowish-brown burl (heavily turbulated)

T_Woodl0
Soft pine (light yellow, smooth grain)

T_Woodll
Spruce (yellowish, very straight, fine grain)

T_Woodl2
Another very dark brown. Walnut-stained pine, perhaps?

T_Woodl3
Very straight grained, whitish

T_Woodl4
Red, rough grain

T_Woodl5
Medium brown

T_Woodl6
Medium brown

T_Woodl7
Medium brown

T_Woodl8
Orange

T_Woodl9, ..., T_-Wood30
Golden Oak.

T_Wood31
A light tan wood - heavily grained (variable coloration)

T_Wood32
A rich dark reddish wood, like rosewood, with smooth-flowing grain

T_Wood33
Similar to TWoodB, but brighter

T_Wood34
Reddish-orange, large, smooth grain.

T_Wood35
Orangish, with a grain more like a veneer than a plank

7.20 Other files

There are various other files in the include collection, including font files, color maps, and images for use in
height fields or imagenaps, and includes that are too small to have their own section.

7.20 Other files 341

7.20.1 logo.inc

The official POV-Ray logo designed by Chris Colefax, in two versions

Povray_Logo

The POV-Ray logo object

Povray_-Logo_Prism

The POV-Ray logo as a prism

Povray-Logo_Bevel

The POV-Ray logo as a beveled prism

7.20.2 raddef.inc
This file defines a macro that sets some common radiosity settings. These settings are extremely general and
are intended for ease of use, and do not necessarily give the best results.

Usage:

#include "rad_def.inc"
global_settings {

radiosity {
Rad_Settings(Setting, Normal, Media)
}
}

Parameters:

 Setting = Quality setting. Use one of the predefined constants:

— Radiosity Default

— RadiosityDebug

— Radiosity Fast

— RadiosityNormal

— Radiosity2Bounce

— RadiosityFinal

— RadiosityOutdoorLQ
— RadiosityOutdoorHQ
— RadiosityOutdoorLight
— RadiosityIndoorLQ
— RadiosityIndoorHQ

» Normal = Boolean value, whether or not to use surface normal modifiers for radiosity samples.

342 Include Files

» Media = Boolean value, whether or not to calculate media for radiosity samples.

7.20.3 screen.inc

Screen.inc will enable you to place objects and textures right in front of the camera. When you move the camera,
the objects placed with screen.inc will follow the movement and stay in the same position on the screen. One
use of this is to place your signature or a logo in the corner of the image.

You can only use screen.inc with the perspective camera. Screen.inc will automatically create a default camera
definition for you wheniitis included. All aspects of the camera can than be changed, by invoking the appropriate
'Set Camera...” macros in your scene. After calling these setup macros you can use the macrosGlgjeszsn

and ScreerPlane.

Note: even though objects aligned using screen.inc follow the camera, they are still part of the scene. That
means that they will be affected by perspective, lighting, the surroundings etc.

For an example of use, see the screen.pov demo file.

Set_Camera_Location (Loc) Changes the position of the default camera to a new location as specifiediay the
vector.

Set_Camera_Look_At (LookAt) Changes the position the default camera looks at to a new location as specified by
theLookat vector.

Set_Camera_Aspect Ratio (Aspect) Changes the default aspect ratiepect is a float value, usually width di-
vided by the height of the image.

Set_Camera_Aspect (Width, Height) Changes the default aspect ratio of the camera.
Set_Camera_Sky (Sky) Sets a hew Sky-vector for the camera.

Set_Camera_Zoom (Zoom) The amount to zoom in or outpon is a float.
Set_Camera_Angle (Angle) Sets a new camera angle.

Set_Camera (Location, LookAt, Angle) Setlocation, look_at andangle in one go.
Reset_Camera () Resets the camera to its default values.

Screen_Object (Object, Position, Spacing, Confine, Scaling) Puts an object in front of the camera.
Parameters:

* Object = The object to place in front of the screen.

* Position = UV coordinates for the objeck0,0> is lower left corner of the screen ardL,1> is upper
right corner.

* spacing = Float describing minimum distance from object to the borders. UV vector can be used to get
different horizontal and vertical spacing.

* Confine = Set to true to confine objects to visible screen area. Set to false to allow objects to be outside
visible screen area.

* scaling = If the object intersects or interacts with the scene, try to move it closer to the camera by
decreasing Scaling.

7.20 Other files 343

Screen_Plane (Texture, Scaling, BLCorner, TRCorner) ScreenPlane is a macro that will place a texture of
your choice on a plane right in front of the camera.
Parameters:

» Texture = The texture to be displayed on the camera plan@,0,0> is lower left corner andé1,1,0>
is upper right corner.

* scaling = If the plane intersects or interacts with the scene, try to move it closer to the camera by
decreasing Scaling.

* BLCorner = The bottom left corner of the Scre¢tane.

* TRCorner = The top right corner of the Scredtane.

7.20.4 stdcam.inc

This file simply contains a camera, a lighburce, and a ground plane.

7.20.5 stagel.inc

This file simply contains a camera, a lighdurce, and a ground plane, and includes colors.inc, textures.inc, and
shapes.inc.

7.20.6 sunpos.inc

This file only contains the sunpos() macro

sunpos (Year, Month, Day, Hour, Minute, Lstm, LAT, LONG). The macro returns the position of the sun, for a
given date, time, and location on earth. The suns position is also globally declared as theaeetorsition.
Two other declared vectors are the (Azimuth) anda1 (Altitude), these can be useful for aligning an object
(media container) with the sunlight.

Assumption: in the scene north is in the +Z direction, south is -Z.

Parameters:

* Year= The year in four digits.

* Month= The month number (1-12).

* Day= The day number (1-31).

* Hour= The hour of day in 24 hour format (0-23).

» Minute= The minutes (0-59).

» Lstn= Meridian of your local time zone in degrees (+1 hour = +15 deg, east = positive, west = negative)
» 1AT= Lattitude in degrees.decimal, northern hemisphere = positive, southern = negative

 LonNG= Longitude in degrees.decimal, east = positive, west is negative

Use:

344 Include Files

#include "sunpos.inc"

light_source {
//Greenwich, noon on the longest day of 2000
SunPos (2000, 6, 21, 12, 2, 0, 51.4667, 0.00)
rgb 1

}

cylinder{
<-2,0,0»,<2,0,0>,0.1
rotate <0, Az-90, Al> //align cylinder with sun
texture {...}

7.20.7 font files (*.ttf)

The fonts cyrvetic.ttf and timrom.ttf were donated to the POV-Team by their creator, Ted Harrison
(CompuServe:70220,344) and were built using his FontLab for Windows by SoftUnion, Ltd. of St. Pe-
tersburg, Russia.

The font crystal.ttf was donated courtesy of Jerry Fitzpatrick, Red Mountain Corporation, redmtn [at] ix.netcom.
com

The font povlogo.ttf is created by Fabien Mosen and based on the POV-Ray logo design by Chris Colefax.

crystal.ttf
A fixed space programmer’s font.

cyrvetic.ttf
A proportional spaces sans-serif font.

timrom.ttf
A proportional spaces serif font.

povlogo.ttf
Only contains the POV-Ray logo.

7.20.8 colormap files (*.map)

These are 255-color colanaps, and are in individual files because of their size.
ash.map
benediti.map
bubinga.map
cedar.map
marbteal .map
orngwood.map

pinkmarb.map

7.20 Other files 345

rdgranit.map
teak.map

whiteash.map

7.20.9 image files (*.png, *.pot, *.df3)

bumpmap-.png

A color mandelbrot fractal image, presumably intended for use as a bumpmap.
fract003.png

Some kind of fractal landscape, with color for blue water, brown land, and white peaks.

maze.png
A maze.

mtmand.pot
A grayscale mandelbrot fractal.

mtmandj.png
A 2D color julia fractal.

plasma2.png, plasma3.png
"Plasma fractal” images, mainly useful for landscape height fields. The file plasma3.png is a
smoother version of plasma2.png, plasmal.png does not exist.

povmap.png
The text "Persistance of Vision” in green on a blue background, framed in black and red.

test.png
A "test image”, the image is divided into 4 areas of different colors (magenta, yellow, cyan, red)
with black text on them, and the text "POV-Ray” is centered on the image in white.

spiral.df3
A 3D bitmap density file. A spiral, "galaxy” shape.

346 Include Files

Chapter 8

Quick Reference

This is a consolidation of the entire syntax for the POV-Ray’s Scene Description Language. Note that the syntax
conventions used here are slightly different than those used in the user documentation.

The following syntax conventions are used:

ITEM
An item not in brackets indicates that it is a required item.
[ITEM]
Brackets surround an optional item. If brackets are part of the item, that is noted where applicable.
ITEM. ..
An ellipsis indicates an item that may be used one or more times.
[ITEM. ..]
An ellipsis within brackets indicates an item that may be used zero or more times.
ITEM ITEM
Two or more juxtaposed items indicates that they should be used in the given order.
ITEM | ITEM
A pipe separates two or more alternatives from which only one item should be used.
ITEM & ITEM

An ampersand separates two or more items that may be used in any order.

Juxtaposition has precedence over the pipe or ampersand. In the following example, you would select one of
the keyword and vector pairs. For that last pair, the keyword itself is optional.

rgb 3D_VECTOR —rgbf 4D_VECTOR —rgbt 4D_VECTOR — [rgbft]5D_VECTOR

Some item names are simply descriptive in nature. An indication of the item’s type is given by a prefix on the
item name, as follows:

F_
A FLOAT item

An INT item

348 Quick Reference

AVECTOR item

V4_
A 4-D VECTOR item

NOTE: this document provides only the syntax of the Scene Description Language (SDL). The intent is to
provide a single reference for all statements and keywords. It does not provide definitions for the numerous
keywords nor explain their usage.

8.1 Quick Reference Contents

The Scene Object Modifiers

Language Basics UV Mapping
Floats Material
Vectors Interior
Colors Interior Texture
User-Defined Functions Texture
Strings Plain Texture
Arrays Layered Texture
Splines Patterned Texture

Language Directives

File Inclusion
Identifier Declaration
File Input/Output
Default Texture
Version Compatibility
Conditional Directives
Message Streams
Macros

Embedded Directives

Transformations

Camera

Lights

Objects

Light Source
Light Group

Finite Solid Objects
Finite Patch Objects
Infinite Solid Objects
Isosurface
Parametric

Constructive Solid Geometry

Media

Pigment

Normal

Finish

Pattern

Pattern Modifiers

Atmospheric Effects

Background
Fog

Sky Sphere
Rainbow

Global Settings

Radiosity
Photons

Table 8.1: Quick Reference Overview

8.2 The Scene 349

8.2 The Scene

Describe a POV-Ray scene:

SCENE:
SCENE_ITEM. ..

SCENEITEM:
LANGUAGE_DIRECTIVE | CAMERA | LIGHT | OBJECT | ATMOSPHERIC_EFFECT | GLOBAL_SETTINGS

Quick Reference Contents

8.3 Language Basics

8.3.1 Floats

Float Expressions

FLOAT:
NUMERIC_TERM [SIGN NUMERIC_TERM]...

SIGN:

+ | -

NUMERIC_TERM:
NUMERIC_FACTOR [MULT NUMERIC_FACTOR]...

MULT:
*

NUMERIC_EXPRESSION:
FLOAT_LITERAL | FLOAT_IDENTIFIER | SIGN NUMERIC_EXPRESSION | FLOAT_FUNCTION | FLOAT_-
BUILT_IN_IDENT | (FULL_EXPRESSION) | ! NUMERIC_EXPRESSION | VECTOR. DOT_ITEM | FLOAT_-
FUNCTION-INVOCATION

FLOAT_LITERAL:
[DIGIT...][.)DIGIT...[EXP[SIGN]DIGIT...]

DIGIT:
011121314 1516171819

EXP:
e | E

FLOAT_FUNCTION:
abs (FLOAT) | acos (FLOAT) | acosh (FLOAT) | asc (STRING) | asin (FLOAT) | asinh
(FLOAT) | atan (FLOAT) | atanh (FLOAT) | atan2 (FLOAT,FLOAT) | ceil (FLOAT) |
cos (FLOAT) | cosh (FLOAT) | defined (IDENTIFIER) | degrees (FLOAT) | dimensions
(ARRAY_IDENTIFIER) | dimension _size (ARRAY_IDENTIFIER,INT) | div (FLOAT,FLOAT)
| exp (FLOAT) | file _exists (STRING) | floor (FLOAT) | int (FLOAT) | inside
(SOLID_OBJECT_IDENT, VECTOR) | In (FLOAT) | log (FLOAT) | max (FLOAT,FLOAT[,FLOAT]...)
| min (FLOAT,FLOAT[,FLOAT]...) | mod (FLOAT,FLOAT) | pow (FLOAT,FLOAT) | radians

350 Quick Reference

(FLOAT) | rand (FLOAT) | seed (FLOAT) | select (FLOAT,FLOAT,FLOAT, [FLOAT]) | sSin
(FLOAT) | sinh (FLOAT) | sqgrt (FLOAT) | strcmp (STRING,STRING) | strlen (STRING)
| tan (FLOAT) | tanh (FLOAT) | val (STRING) | vdot (VECTOR,VECTOR) | vlength

(VECTOR)

FLOAT_BUILT _IN_IDENT:
BOOLEAN_KEYWORD | clock | clock _delta | clock _on | final _clock | final _frame |
frame _number | image _height | image _width | initial _clock | initial _frame |
pi | version

BOOLEAN_KEYWORD:
true | yes | on | false | no | off

FULL_EXPRESSION:
LOGICAL_EXPRESSION [? FULL_EXPRESSION : FULL_EXPRESSION]

LOGICAL_EXPRESSION:
REL_TERM [LOGICAL_OPERATOR REL_TERM]...

LOGICAL _OPERATOR:
& ||

REL_TERM:
FLOAT [REL_OPERATOR FLOAT]...

REL_.OPERATOR:

<l <=l=1>1>]!=
DOT.ITEM:

X |y lz |t |Ju]|v|red | green | blue | filter | transmit | gray
INT:

FLOAT

Any fractional part is discarded.
BOOL:

BOOLEAN_KEYWORD | LOGICAL_EXPRESSION

Quick Reference Contents

8.3.2 Vectors

Vector Expressions

VECTOR:
VECTOR-TERM [SIGN VECTOR_TERM]...

VECTORTERM:
VECTOR-EXPRESSION [MULT VECTOR-EXPRESSION]...

VECTOR EXPRESSION:

8.3 Language Basics 351

VECTOR-LITERAL | VECTOR_IDENTIFIER | SIGN VECTOR_EXPRESSION | VECTOR_FUNCTION | VECTOR_-

BUILT_IN_IDENT | ! VECTOR_EXPRESSION | FLOAT | VECTOR_FUNCTION_INVOCATION | COLOR_-
FUNCTION_INVOCATION | SPLINE_INVOCATION

VECTORLITERAL:
< FLOAT, FLOAT [, FLOAT [, FLOAT [, FLOAT]]] >

VECTOR FUNCTION:
min _extent (OBJECT_IDENTIFIER) | maxextent (OBJECT_IDENTIFIER) | trace (OBJECT_IDENTIFIER,
VECTOR, VECTOR[, VECTOR_IDENTIFIER]) | vaxis _rotate (VECTOR,VECTOR,FLOAT) | VCross
(VECTOR, VECTOR) | vrotate (VECTOR,VECTOR) | vnormalize (VECTOR) | vturbulence
(FLOAT, FLOAT, FLOAT, VECTOR)

VECTORBUILT _IN_IDENT:
Xlylzl|lt]lulyv

Quick Reference Contents

8.3.3 Colors

Color Expressions

COLOR:

[color] COLOR.BODY | colour COLOR_BODY
COLORBODY:

COLOR_VECTOR | COLOR_KEYWORD_GROUP | COLOR_IDENTIFIER
COLORVECTOR:

rgb 3D_VECTOR | rgbf 4D_VECTOR | rgbt 4D_VECTOR | [rgbft] 5D_VECTOR

COLORKEYWORD_GROUP:
[COLOR-IDENTIFIER] COLOR_KEYWORD_ITEMS

COLORKEYWORD.TEMS:
[red FLOAT] & [green FLOAT] & [blue FLOAT] & [filter FLOAT] & [transmit FLOAT]

Quick Reference Contents

8.3.4 User defined Functions

User-Defined Functions

USERFUNCTION:
FLOAT_USER_FUNCTION | VECTOR.USER_FUNCTION | COLOR.USER_FUNCTION

FLOAT_USERFUNCTION:
function { FN_FLOAT } | function (IDENT_LIST) { FN_FLOAT } | function { pattern
{ PATTERN [PATTERN.MODIFIERS]} }

IDENT_LIST:
IDENT_ITEM [, IDENT_LIST]
The maximum number of parameter identifiers is 56. An identifier may not be repeated in the list.

352

Quick Reference

IDENT_ITEM:
X |y |z | u]| Vv | PARAM_IDENTIFIER
PATTERN:
MAP_PATTERN | brick [BRICK_ITEM] | checker | hexagon

VECTORUSERFUNCTION:
function { SPECIAL_VECTOR-FUNCTION }

SPECIALVECTOR FUNCTION:
TRANSFORM | SPLINE

COLORUSERFUNCTION:
function { PIGMENT }

Specify a float expression in a user-defined function:

FN_FLOAT
LOGICAND [OR LOGIC_AND]

OR:
I

LOGIC_AND:
REL_TERM [AND REL_TERM]

AND:
&

REL_TERM:
TERM [REL_OPERATOR TERM]

REL_OPERATOR:

| object

{ LIST_OBJECT }

< | <=1 =|>=1>|!=
TERM:
FACTOR [SIGN FACTOR]
SIGN:
+ | -
FACTOR:
EXPRESSION [MULT EXPRESSION]
MULT:
* ‘ /
EXPRESSION:
FLOAT_LITERAL | FLOAT_IDENTIFIER | FN_FLOAT_FUNCTION | FLOAT_BUILT_IN_IDENT | (FN_FLOAT
) | IDENT_ITEM | SIGN EXPRESSION | VECTOR_FUNCTION_INVOCATION. FN_.DOT_ITEM | COLOR_-
FUNCTION_INVOCATION. FN_.DOT_ITEM | FLOAT_FUNCTION_INVOCATION
FN_DOT_ITEM:

DOT_ITEM | hf

FN_FLOAT_FUNCTION:

8.3 Language Basics 353

abs (FN_FLOAT) | acos (FN_FLOAT) | acosh (FN_FLOAT) | asin (FN_FLOAT) | asinh
(FN_FLOAT) | atan (FN_FLOAT) | atanh (FN_FLOAT) | atan2 (FN_FLOAT,FN_FLOAT) | cell
(FN_FLOAT) | cos (FN_FLOAT) | cosh (FN_FLOAT) | degrees (FN_FLOAT) | exp (FN_-
FLOAT) | floor (FN_FLOAT) | int (FN_FLOAT) | In (FN_FLOAT) | log (FN_FLOAT) | max
(FN_FLOAT, FN_.FLOAT[,FN_FLOAT]...) | min (FN_FLOAT,FN_FLOAT[,FN_FLOAT]...) | mod

(FN_FLOAT,FN_FLOAT) | pow (FN_FLOAT,FN_FLOAT) | prod (IDENTIFIER, FN_FLOAT, FN_-
FLOAT, FN_FLOAT) | radians (FN_FLOAT) | sin (EN_FLOAT) | sinh (FN_FLOAT) | sqrt
(FN_FLOAT) | sum (IDENTIFIER, FN_FLOAT, FN_FLOAT, FN_FLOAT) |tan (FN_FLOAT) | tanh
(FN_FLOAT) | select (FN_FLOAT,FN_FLOAT,FN_FLOAT [,FN_FLOAT])

Create an identifier for a user-defined function:
USERFUNCTION_.DECLARATION:

#declare FLOAT_FUNCTION_IDENTIFIER = FLOAT_USER_FUNCTION |
#local FLOAT_FUNCTION_IDENTIFIER = FLOAT_USER_FUNCTION |
#declare VECTOR_FUNCTION_IDENTIFIER = VECTOR_USER_FUNCTION |
#local VECTOR_FUNCTION_IDENTIFIER = VECTOR_USER_FUNCTION |
#declare COLOR_FUNCTION_IDENTIFIER = COLOR_USER_FUNCTION |
#local COLOR_FUNCTION_IDENTIFIER = COLOR_USER_FUNCTION

Reference a user-defined function:
FLOAT_FUNCTION.INVOCATION:

FLOAT_FUNCTION_IDENTIFIER (FN_PARAM LIST)

VECTOR FUNCTION.INVOCATION:

VECTOR_FUNCTION_IDENTIFIER (FN_PARAM_LIST)

COLORFUNCTION.INVOCATION:

COLOR_FUNCTION_IDENTIFIER (FN_PARAM_LIST)

FN_PARAM_LIST:

FN_PARAM_ITEM [, FN_PARAM_LIST]

FN_PARAM_ITEM:

X |y |z | U]V | FLOAT

Quick Reference Contents

8.3.5 Strings

String Expressions

STRING:

STRING_FUNCTION | STRING_IDENTIFIER | STRING_LITERAL

STRING.FUNCTION:

chr (INT) | concat (STRING,STRING[,STRING]...) | str (FLOAT,INT,INT) | striwr
(STRING) | strupr (STRING) | substr (STRING,INT,INT) | vstr (INT,VECTOR, STRING,
INT, INT)

STRING.LITERAL:

QUOTE [CHARACTER...] QUOTE
Limited to 256 characters.

354 Quick Reference

QUOTE:

CHARACTER:
Any ASCII or Unicode character, depending on tarsetsetting inglobal_settings The follow-
ing escape sequences might be useful when writing to files or message streams:
\a - alarm
\b - backspace
\f - form feed
\n - new line
\r - carriage return
\t - horizontal tab
\UNNNN- unicode character four-digit code
\v - vertical tab
\\ - backslash
\' -single quote
\" - double quote

Quick Reference Contents

8.3.6 Arrays

Define an array:
ARRAY _DECLARATION:

#declare ARRAY_IDENTIFIER = array DIMENSION... [ARRAY_INITIALIZER] |
#local ~ARRAY_IDENTIFIER = array DIMENSION... [ARRAY_INITIALIZER]
Limited to five dimensions.

DIMENSION:
[INT]

The brackets here are part of the dimension specification. The integer must be greater than zero.

ARRAY _INITIALIZER:
{ ARRAY_INITIALIZER [, ARRAY_INITIALIZER]... } |
{ RVALUE [, RVALUE]... }

Place a value into an array:

ARRAY _ELEMENT_ASSIGNMENT:
#declare ARRAY_REFERENCE =RVALUE [;] |
#local ARRAY_REFERENCE = RVALUE [;]
The semicolon is required for a FLOAT, VECTOR or COLOR assignment.

Reference an array:

ARRAY _REFERENCE:
ARRAY_IDENTIFIER ELEMENT...

ELEMENT:
[INT]
The brackets here are part of the element specification.

8.4 Language Directives 355

Quick Reference Contents

8.3.7 Splines

Define a spline:

SPLINE:

spline { SPLINE_ITEMS }
SPLINEITEMS

[SPLINE_TYPE] PATH_LIST | SPLINE_IDENTIFIER [SPLINE_TYPE][PATH_LIST]
SPLINETYPE:

linear _spline | quadratic _spline | cubic _spline | natural _spline
PATH_LIST:

FLOAT, VECTOR [[,] PATH_LIST]

Reference a spline:

SPLINEINVOCATION:
SPLINE_IDENTIFIER (FLOAT [, SPLINE_TYPE])

Quick Reference Contents

8.4 Language Directives

Control the parsing of sections of the scene file:

LANGUAGE_DIRECTIVE:
INCLUDE_DIRECTIVE | IDENTIFIER_DECLARATION | UNDEF_DIRECTIVE | FOPEN_DIRECTIVE | FCLOSE_-
DIRECTIVE | READ_DIRECTIVE | WRITEDIRECTIVE | DEFAULT_DIRECTIVE | VERSION_DIRECTIVE |
IF DIRECTIVE | IFDEF_DIRECTIVE | IFNDEF_DIRECTIVE | SWITCH.DIRECTIVE | WHILE_DIRECTIVE
| TEXT_-STREAM DIRECTIVE | MACRO_DEFINITION

Quick Reference Contents

8.4.1 File Inclusion

Insert content of another scene file:

INCLUDE_DIRECTIVE:
#include FILE_NAME
File inclusion may be nested at most 10 levels deep.

FILE.NAME:
STRING

Quick Reference Contents

356 Quick Reference

8.4.2 Identifier Declaration

Create an identifier for a value, object, etc.

IDENTIFIER_DECLARATION:
#declare IDENTIFIER = RVALUE [;] |
#local IDENTIFIER = RVALUE [;]
Up to 127 characters, starting with a letter, consisting of letters, digits and/or the underscore. The
semicolon is required for a FLOAT, VECTOR or COLOR declaration.

RVALUE:
FLOAT | VECTOR | COLOR | USER-FUNCTION | STRING | ARRAY_REFERENCE | SPLINE | TRANSFORM
| CAMERA | LIGHT | OBJECT | MATERIAL | INTERIOR | TEXTURE | TEXTURE_MAP | PIGMENT |
COLORMAP | PIGMENT_MAP | NORMAL | SLOPE_MAP | NORMAL_MAP | FINISH | MEDIA | DENSITY |
DENSITY MAP | FOG | RAINBOW | SKY_SPHERE

Destroy an identifier:

UNDEF.DIRECTIVE:
#undef IDENTIFIER

Quick Reference Contents

8.4.3 File Input/Output

Open a text file:

FOPENDIRECTIVE:
#fopen FILE_HANDLE_IDENTIFIER FILE_NAME OPEN_TYPE

OPENTYPE:
read | write | append

Close a text file:

FCLOSEDIRECTIVE:
#fclose FILE_HANDLE_IDENTIFIER

Read string, float and/or vector values from a text file:

READ_DIRECTIVE:
#read (FILE_HANDLE_IDENTIFIER, DATA_IDENTIFIER [, DATA_IDENTIFIER]...)
UsedefinedFILE_HANDLE _IDENTIFIER) to detect end-of-file after a read.

DATA _IDENTIFIER:
UNDECLARED_IDENTIFIER | FLOAT_IDENTIFIER | VECTOR_IDENTIFIER | STRING_IDENTIFIER |
ARRAY_REFERENCE
May read a value into an array reference if the array element’s type has already been established.

Write string, float and/or vector values to a text file:

WRITE_DIRECTIVE:
#write (FILE_HANDLE_IDENTIFIER, DATA_ITEM [, DATA_ITEM]...)

DATA_ITEM:

8.4 Language Directives

357

FLOAT | VECTOR | STRING

Quick Reference Contents

8.4.4 Default Texture

Specify a default texture, pigment, normal or finish:

DEFAULT_DIRECTIVE:
#default ~ { DEFAULT_ITEM }

DEFAULT_ITEM:
PLAIN_TEXTURE | PIGMENT | NORMAL | FINISH

Quick Reference Contents

8.4.5 \Version ldentfier

Specify the POV-Ray compatibility version number:

VERSIONDIRECTIVE:
#version FLOAT;

Quick Reference Contents

8.4.6 Control Flow Directives

Conditionally parse a section of the scene file, depending on a boolean expression:

IF_DIRECTIVE:
#if (BOOL) TOKENS [#else TOKENS] #end

TOKENS:
Any number of POV-Ray keywords, identifiers, values and/or punctuation.

Conditionally parse a section of the scene file, depending on the existence of an identifier:

IFDEF_DIRECTIVE:
#ifdef (IDENTIFIER) TOKENS [#else TOKENS] #end

IFNDEF.DIRECTIVE:
#ifndef (IDENTIFIER) TOKENS [#else TOKENS] #end

Conditionally parse a section of the scene file, depending on the value of a float expression:

SWITCH.DIRECTIVE:
#switch (FLOAT) SWITCH.CLAUSE... [#else TOKENS] #end

SWITCH.CLAUSE:
#icase (FLOAT) TOKENS [#break] |
#range (F_LOW, F_HIGH) TOKENS [#break]

Repeat a section of the scene file while a boolean condition is true:

358 Quick Reference

WHILE DIRECTIVE:
#while (LOGICAL_EXPRESSION) TOKENS #end

Quick Reference Contents

8.4.7 Message Streams

Send a message to a text stream:

TEXT_STREAM_DIRECTIVE:
#debug STRING | #error STRING | #warning STRING

Quick Reference Contents

8.4.8 Macro

Define a macro:

MACRO_DEFINITION:
#macro VMACRO_IDENTIFIER ([PARAM_IDENTIFIER [, PARAM_IDENTIFIER]...]) TOKENS #end
A parameter identifier may not be repeated in the list.

Invoke a macro:

MACRO_INVOCATION:
MACRO_IDENTIFIER ([ACTUAL_PARAM [, ACTUAL_PARAM]...])

ACTUAL _PARAM:
IDENTIFIER | RVALUE

Quick Reference Contents

8.4.9 Embedded Directives

Some directives may be embedded in CAMERA, LIGHT, OBJECT and ATMOSPHHHEECT state-
ments. However, the directives should only include items (if any) that are valid for a given statement.
Also, they should not disrupt the required order of items, where applicable.

EMBEDDED_DIRECTIVE:
IDENTIFIER_DECLARATION | UNDEF_DIRECTIVE | READ_DIRECTIVE | WRITE_DIRECTIVE | IF_-
DIRECTIVE | IFDEF_DIRECTIVE | IFNDEF_DIRECTIVE | SWITCH.DIRECTIVE | WHILE_DIRECTIVE |
TEXT_STREAM_DIRECTIVE

Quick Reference Contents

8.5 Transformations

Rotate, resize, move, or otherwise manipulate the coordinates of an object or texture
TRANSFORMATION:

8.6 Camera 359

rotate VECTOR | scale VECTOR | translate VECTOR | TRANSFORM | MATRIX

TRANSFORM:

transform TRANSFORM_IDENTIFIER | transform { [TRANSFORM_ITEM...] }
TRANSFORMITEM:

TRANSFORM_TDENTIFIER | TRANSFORMATION | inverse
MATRIX:

matrix < F_VAL0O0O, F_VALOl, F_VAL02, F_VAL10, F_VAL1l, F_VAL12, F_VAL20, F_VAL21, F_-
VAL22, F_VAL30, F_VAL31l, F_VAL32 >

Quick Reference Contents

8.6 Camera

Describe the position, projection type and properties of the camera viewing the scene

CAMERA:
Jump to SDL
camera { [CAMERA_TYPE] [CAMERA_ITEMS] [CAMERA_MODIFIERS] } |
camera { CAMERA_IDENTIFIER [TANSFORMATIONS ...] }
CAMERA_TYPE:
perspective | orthographic | fisheye | ultra _wide _angle | omnimax | panoramic
| spherical | cylinder CYLINDER_TYPE
CYLINDER_TYPE:
1121314

CAMERAL_ITEMS:
[location VECTOR] & [right VECTOR] & [up VECTOR] & [direction VECTOR] & [Sky
VECTOR]

CAMERA_MODIFIERS:
langle [angle F_HORIZONTAL] [,F_VERTICAL]] & [look _at VECTOR] & [FOCAL_BLUR] & [NORMAL]
& [TRANSFORMATION...]

FOCAL_BLUR:
aperture FLOAT & blur _samples INT & [focal _point VECTOR] & [confidence FLOAT] &
[variance FLOAT]

Quick Reference Contents

8.7 Lights

Specify light sources for the scene or for specific objects

LIGHT:
LIGHT_SOURCE | LIGHT_GROUP

Describe the position, type and properties of a light source for the scene:

360 Quick Reference

LIGHT _SOURCE:
Jump to SDL
light _source { V_LOCATION, COLOR [LIGHT_SOURCE_ITEMS] }

LIGHT_SOURCEITEMS:
[LIGHT_-TYPE] & [AREA_LIGHT_ITEMS] & [LIGHT_MODIFIERS]

LIGHT_TYPE:
spotlight [SPOTLIGHT_ITEMS] | cylinder [SPOTLIGHT_ITEMS]

SPOTLIGHTITEMS:
[radius FLOAT] & [falloff FLOAT] & [tightness FLOAT] & [point _at VECTOR]

AREA_LIGHT_ITEMS:
area _light ~ V_AXIS1, V_AXIS2, I_SIZEl, I_SIZE2 [AREA_LIGHT_MODIFIERS]

AREA_LIGHT _MODIFIERS:
[adaptive INT] & [jitter] & [circular] & [orient]

LIGHT _MODIFIERS:
[LIGHT_PHOTONS] & [looks _like { OBJECT }] & [TRANSFORMATION...] & [fade _distance
FLOAT] & [fade _power FLOAT] & [media _attenuation [BOOL]] & [media _interaction
[BooL]] & [shadowless] & [projected _through { OBJECT_IDENTIFIER }] & [parallel
[point _at VECTOR]]

Specify how a light source should interact with photons:

LIGHT _PHOTONS:
photons { LIGHT_PHOTON_ITEMS }

LIGHT_PHOTONLITEMS:
[refraction BoOL] & [reflection BOOL] & [area _light]

Quick Reference Contents

8.7.1 Lightgroup

Assign objects to specific light sources:

LIGHT _GROUP:
Jump to SDL
light _group { LIGHT_-GROUP_ITEM... [LIGHT_-GROUP_MODIFIERS] }

LIGHT_GROURITEM:
LIGHT_SOURCE | OBJECT | LIGHT_GROUP

LIGHT _GROUPMODIFIERS:
[global _lights BOOL] & [TRANSFORMATION...]

Quick Reference Contents

8.8 Objects 361

8.8 Objects

Describe an object in the scene

OBJECT:
FINITE_SOLID_-OBJECT | FINITE_PATCH.OBJECT | INFINITE_SOLID_OBJECT | ISOSURFACE | PARAMETRIC
| CSG_OBJECT | OBJECT-STATEMENT

OBJECTSTATEMENT:
object { OBJECT_IDENTIFIER [OBJECT-MODIFIERS] }

Quick Reference Contents

8.8.1 Finite Solid Objects

Describe a solid finite shape:

FINITE_.SOLID_-OBJECT:
BLOB | BOX | CONE | CYLINDER | HEIGHT_FIELD | JULIA_FRACTAL | LATHE | PRISM | SPHERE |
SPHERE_SWEEP | SUPERELLIPSOID | SOR | TEXT | TORUS

The blob object:

BLOB:

Jump to SDL

blob { [threshold FLOAT] BLOB_ITEM... [BLOB.MODIFIERS] }
BLOB_ITEM:

sphere { V_CENTER, F_RADIUS, [strength] F_STRENGTH [COMPONENT MODIFIERS] } |
cylinder { V_END1, V_END2, F_RADIUS, [strength] F_STRENGTH [COMPONENT_MODIFIERS] }

COMPONENTMODIFIERS:
[TEXTURE] & [PIGMENT] & [NORMAL] & [FINISH] & [TRANSFORMATION...]

BLOB_MODIFIERS:
[hierarchy [BOOL]] & [Sturm [BOOL]] & [OBJECT_MODIFIERS]

The box object:

BOX:
Jump to SDL
box {V,CORNERI, V_CORNER2 [BOX_MODIFIERS] }

BOX_MODIFIERS:
[UV_MAPPING] & [OBJECT_MODIFIERS]

The cone object:

CONE:
Jump to SDL
cone { V_BASE_CENTER, F_BASE_RADIUS, V_CAP_CENTER, F_CAP_RADIUS [open] [OBJECT_MODIFIERS]

}
The cylinder object:

362 Quick Reference

CYLINDER:
Jump to SDL
cylinder { V_BASE_CENTER, V_CAP CENTER, F_RADIUS [open] [OBJECT_MODIFIERS] }

The height field object:

HEIGHT_FIELD:
Jump to SDL
height _field { HF_IMAGE [HF_MODIFIERS] }
HF_IMAGE:
FUNCTION.IMAGE | [HF_TYPE] FILE_NAME
HF_TYPE:
gif | tga | pot | png | pgm | ppm | joeg | tiff | sys
HF_MODIFIERS:
[hierarchy [BOOL]] & [smooth] & [water _level FLOAT] & [OBJECT_-MODIFIERS]

The Julia fractal object:
JULIA_FRACTAL:

Jump to SDL
julia _fractal { 4D_VECTOR [JF_ITEMS] [OBJECT_MODIFIERS] }
JEITEMS:
[ALGEBRA_ITEM] & [max.iteration INT] & [precision FLOAT] & [slice V4_NORMAL, F_-
DISTANCE]
ALGEBRAL_ITEM:
quaternion [QUATER_FUNCTION] | hypercomplex [HYPER_FUNCTION]
QUATER_FUNCTION:
sqr | cube
HYPER.FUNCTION:
sqr | cube | exp | reciprocal | sin | asin | sinh | asinh | cos | acos | cosh
| acosh | tan | atan | tanh | atanh | In | pwr (FLOAT,FLOAT)

The lathe object:

LATHE:
Jump to SDL
lathe { [LATHE_SPLINE_TYPE] I_NUM_POINTS, POINT_LIST [LATHE_MODIFIERS] }

LATHE _SPLINETYPE:
linear _spline | quadratic _spline | cubic _spline | bezier _spline

POINT_LIST:
2D_VECTOR [, 2D_VECTOR]...
The quantity of 2DVECTORSs is specified by theNUM_POINTS value.

LATHE_MODIFIERS:
[sturm [BOOL]] & [UV_MAPPING] & [OBJECTMODIFIERS]

The prism object:
PRISM:

8.8 Objects

363

Jump to SDL

prism { [PRISM_ITEMS] F_HEIGHT1, F_HEIGHT2, I_NUM_POINTS, POINT_LIST [open] [PRISM_-

MODIFIERS] }

PRISMITEMS:
[PRISM_SPLINE_TYPE] & [PRISM_SWEEP_TYPE]

PRISMLSPLINETYPE:
linear _spline | quadratic _spline | cubic _spline | bezier _spline

PRISM.SWEEPTYPE:
linear _sweep | conic _sweep

PRISMIMODIFIERS:
[sturm [BOOL]] & [OBJECT_MODIFIERS]

The sphere object:

SPHERE:
Jump to SDL
sphere { V_CENTER, F_RADIUS [SPHERE MODIFIERS] }

SPHEREMODIFIERS:
[UVMAPPING] & [OBJECTMODIFIERS]

The sphere sweep object:

SPHERESWEEP:
Jump to SDL
sphere _sweep { SWEEP_SPLINE_TYPE I_NUM_SPHERES, SPHERE_LIST [tolerance F_DEPTH_-
TOLERANCE] [OBJECT_-MODIFIERS] }

SWEERSPLINETYPE:
linear _spline | b_spline | cubic _spline

SPHERELIST:
V_CENTER, F_RADIUS [, SPHERE_LIST]

The quantity of VCENTER, ERADIUS pairs is specified by theNUM _SPHERES value.

The superquadric ellipsoid object:

SUPERELLIPSOID:
Jump to SDL
superellipsoid { < FLOAT, FLOAT > [OBJECT.MODIFIERS] }

The surface of revolution object:

SOR:
Jump to SDL
sor { I_NUM_POINTS, POINT_LIST [Oopen] [SORMODIFIERS] }

SORMODIFIERS:
[sturm [BOOL]] & [UV_MAPPING] & [OBJECT_MODIFIERS]

The text object:

TEXT:
Jump to SDL

364 Quick Reference

text { ttf FILE_NAME STRING F_THICKNESS, V_OFFSET [OBJECT_-MODIFIERS] }
The torus object:

TORUS:
Jump to SDL
torus { F_MAJOR_RADIUS, F_MINOR_RADIUS [TORUS_MODIFIERS] }

TORUSMODIFIERS:
[sturm [BOOL]] & [UV_MAPPING] & [OBJECTMODIFIERS]

Quick Reference Contents

8.8.2 Finite Patch Objects

Describe a totally thin, finite shape:

FINITE_PATCH.OBJECT:
Jump to SDL
BICUBIC_PATCH | DISC | MESH | MESH2 | POLYGON | TRIANGLE | SMOOTH-TRIANGLE

The bicubic patch object:

BICUBIC_PATCH:
Jump to SDL
bicubic ,patch {PATCH,ITEMS [PATCH_UV_VECTORS] CONTROL_POINTS [BICUBIC_PATCH_MODIFIERS]

}

PATCH.ITEMS:
type PATCH.TYPE & [u._Steps 1INT] & [v_steps INT] & [flatness FLOAT]

PATCH.TYPE:
011

PATCH.UV_VECTORS:
uv_vectors V2_CORNER1, V2_CORNER2, V2_CORNER3, V2_CORNER4

CONTROLPOINTS:
16 VECTORSs, optionally separated by commas.

BICUBIC_PATCH_.MODIFIERS:
[UV_MAPPING] & [OBJECT_MODIFIERS]

The disc object:

DISC:
Jump to SDL
disc {V,CENTER, V_NORMAL, F_RADIUS [, F_HOLE_RADIUS] [OBJECT_MODIFIERS] }

The mesh object:

MESH:
Jump to SDL
mesh { MESH_TRIANGLE... [MESH.MODIFIERS] }

MESH_TRIANGLE:

8.8 Objects

365

triangle
smooth

{ V_CORNER1, V_CORNER2, V_CORNER3 [MESH_UV_VECTORS] [MESH.TEXTURE] } |
_triangle { V_CORNER1, V_NORMALl, V_CORNER2, V_NORMAL2, V_CORNER3, V_NORMAL3

[MESH_UV_VECTORS] [MESH_TEXTURE] }

MESH.UV_VECTORS:
uv_vectors V2_CORNERL, V2_.CORNER2, V2_CORNER3

MESH.TEXTURE:

texture
texture

{ TEXTURE_IDENTIFIER } |
_list { TEXTURE_IDENTIFIER TEXTURE_IDENTIFIER TEXTURE_IDENTIFIER }

MESH_MODIFIERS:
_vector V_DIRECTION] & [hierarchy [BOOL]] & [UVMAPPING] & [OBJECT_MODIFIERS]

linside

The mesh2 object:

MESH2:

Jump to SDL

mesh2

{MESHZ,VECTORS [TEXTURE_LIST] MESH2_INDICES [MESH2_MODIFIERS] }

MESH2VECTORS:
VERTEX_VECTORS [NORMAL_VECTORS] [UV_VECTORS]

VERTEX_VECTORS:

vertex

_vectors { I_NUM_VERTICES, VECTOR [, VECTOR]... }

NORMAL_VECTORS:

normal _vectors { I_NUMNORMALS, VECTOR [, VECTOR]... }
UV_VECTORS:
uv_vectors { I_NUM_UV_VECTORS, 2D_VECTOR [, 2D_VECTOR]... }

TEXTURELLIST:

texture

Jlist { I_NUM_TEXTURES, TEXTURE [, TEXTURE]... }

MESHZ2INDICES:
FACE_INDICES [NORMAL_INDICES] [UV_INDICES]

FACE.INDICES:

face _indices { I_NUM_FACES, FACE_INDICES_ITEM [, FACE_INDICES_ITEM]... }

FACE.INDICES.ITEM:

VECTOR

[, I.TEXTURE_INDEX [, I_TEXTURE_INDEX, I_TEXTURE_INDEX]]

NORMAL_INDICES:

normal _indices { I_NUM_FACES, VECTOR [, VECTOR]... }
UV_INDICES:
uv _indices { I_NUM_FACES, VECTOR [, VECTOR]... }

MESH2MODIFIERS:

[inside

_vector V_DIRECTION] & [UV_MAPPING] & [OBJECT_MODIFIERS]

The polygon object:

POLYGON:
Jump to SDL
polygon { I_NUM_POINTS, V_POINT [, V_POINT]... [OBJECTMODIFIERS] }

366 Quick Reference

The quantity of VPOINTS is specified by theMUM _POINTS value.
The triangle object:

TRIANGLE:
Jump to SDL
triangle { V_CORNER1, V_CORNER2, V_CORNER3 [OBJECT MODIFIERS] }

The smooth triangle object:

SMOOTH.TRIANGLE:
Jump to SDL
smooth _triangle { V_CORNER1, V_NORMALl, V_CORNER2, V_NORMAL2, V_CORNER3, V_NORMAL3
[OBJECT_MODIFIERS] }

Quick Reference Contents

8.8.3 Infinite Solid Objects

Describe a solid, possibly infinite, shape:

INFINITE_SOLID_-OBJECT:
PLANE | POLY | CUBIC | QUARTIC | QUADRIC

The plane object:

PLANE:
Jump to SDL
plane { V_NORMAL, F_DISTANCE [OBJECT-MODIFIERS] }

The poly object:

POLY:
Jump to SDL
poly { ORDER, < POLY_COEFFICIENTS > [POLYMODIFIERS] }

ORDER:
An integer value between 2 and 15 inclusive.

POLY_COEFFICIENTS:
A quantityn of FLOATSs separated by commas, wheres ((ORDER+1) * (ORDER+2) * (ORDER+3)) /6.

POLY_MODIFIERS:
[sturm [BOOL]] & [OBJECT_MODIFIERS]

The cubic object:

CUBIC:
cubic { < CUBIC_COEFFICIENTS > [POLY.MODIFIERS] }

CUBIC_COEFFICIENTS:
20 FLOATSs separated by commas.

The quartic object:

QUARTIC:
quartic { < QUARTIC_COEFFICIENTS > [POLY MODIFIERS] }

8.8 Objects 367

QUARTIC_COEFFICIENTS:
35 FLOATSs separated by commas.

The quadric object:

QUADRIC:
Jump to SDL
quadric { < FLOAT, FLOAT, FLOAT >, < FLOAT, FLOAT, FLOAT >, < FLOAT, FLOAT, FLOAT
>, FLOAT [OBJECT-MODIFIERS] }

Quick Reference Contents

8.8.4 Isosurface

Describe a surface via a mathematical function:

ISOSURFACE:
Jump to SDL
isosurface { FLOAT_USER_FUNCTION [ISOSURFACE_ITEMS] [OBJECT_MODIFIERS] }

ISOSURFACEITEMS:
[contained _by { CONTAINER }] & [threshold FLOAT] & [accuracy FLOAT] & [max-
gradient ~ FLOAT [evaluate F_MIN_ESTIMATE, F_MAX ESTIMATE, F_ATTENUATION]] & [open]
& [INTERSECTION_LIMIT]

CONTAINER:
sphere { V_CENTER, F_RADIUS } | box { V_CORNERl, V_CORNER2 }

INTERSECTIONLIMIT:
max_trace INT | all _intersections

Quick Reference Contents

8.8.5 Parametric

Describe a surface using functions to locate points on the surface:

PARAMETRIC:
Jump to SDL
parametric { FLOAT_USER_FUNCTION, FLOAT_USER_FUNCTION, FLOAT_USER_FUNCTION 2D_VECTOR,
2D_VECTOR [PARAMETRIC_ITEMS] [UV_MAPPING] & [OBJECT_-MODIFIERS] }

PARAMETRIC.ITEMS:
[contained _by { CONTAINER }] & [maxgradient FLOAT] & [accuracy FLOAT] & [precompute
I_DEPTH, X, ¥, Z]

CONTAINER:
sphere { V_CENTER, F.RADIUS } | box { V_CORNER1, V_CORNER2 }

Quick Reference Contents

368 Quick Reference

8.8.6 CSG

Describe one complex shape from multiple shapes:

CSGOBJECT:
Jump to SDL
UNION | INTERSECTION | DIFFERENCE | MERGE

Combine multiple shapes into one:

UNION:
union { UNION_OBJECT UNION_OBJECT... [UNION.MODIFIERS] }

UNION_OBJECT:
OBJECT | LIGHT

UNION_MODIFIERS:
[split _union BOOL] & [OBJECT-MODIFIERS]

Create a new shape from the overlapping portions of multiple shapes:

INTERSECTION:
intersection { SOLID_OBJECT SOLID_OBJECT... [INTERSECTION_MODIFIERS] }

SOLID-OBJECT:
FINITE_SOLID_-OBJECT | INFINITE_SOLID_OBJECT | ISOSURFACE | CSG_OBJECT

INTERSECTIONMODIFIERS:
[cutaway _textures] & [OBJECT_MODIFIERS]

Subtract one or more shapes from another:

DIFFERENCE:

difference { SOLID_OBJECT SOLID_OBJECT... [DIFFERENCE_MODIFIERS] }
DIFFERENCEMODIFIERS:

[cutaway _textures] & [OBJECT_MODIFIERS]

Combine multiple shapes into one, removing internal surfaces:

MERGE:
merge { SOLID_OBJECT SOLID_OBJECT... [OBJECT-MODIFIERS] }

Quick Reference Contents

8.9 Object Modifiers

Manipulate the appearance of an object

OBJECTMODIFIERS:
[OBJECT_PHOTONS] & [CLIPPED_BY] & [BOUNDED_BY] & [MATERIAL] & [INTERIOR] & [INTERIOR.-
TEXTURE] & [TEXTURE] & [PIGMENT] & [NORMAL] & [FINISH] & [TRANSFORMATION...] & [nO_-
shadow] & [no_.image [BOOL]] & [no_reflection {BooL]] & [inverse 1 & [double _illuminate
& [hollow [BOOL]]

Specify how an object should interact with photons:

[BOOL]]

8.9 Object Modifiers

369

OBJECTPHOTONS:
Jump to SDL
photons { OBJECT_PHOTON.ITEMS }
OBJECTPHOTONITEMS:
[target [F_SPACINGMULT]] & [refraction BOOL] & [reflection

BOOL] & [pass _through [BOOL]]
Slice a portion of a shape:

CLIPPEDBY:
clipped _by { UNTEXTURED_SOLID_OBJECT... } |
clipped _by { bounded _by }

UNTEXTURED_SOLID_OBJECT:
FINITE_SOLID_OBJECT | INFINITE_SOLID_OBJECT
Note, neither with a texture applied.

Specify a bounding shape for an object:

BOUNDED_BY:
bounded _by { UNTEXTURED_SOLID_OBJECT... } |
bounded _by { clipped _by }

Quick Reference Contents

8.9.1 UV Mapping

Map a texture to an object using surface coordinates:

UV_MAPPING:
Jump to SDL

uv_mapping PIGMENT | pigment { uv_mapping PIGMENT_BODY } |

uv_mapping NORMAL | normal { uv_mapping NORMAL_BODY } |
uv_mapping TEXTURE | texture { uv_mapping TEXTURE_BODY }

Quick Reference Contents

8.9.2 Material

Group together surface textures and interior properties:

MATERIAL:
material { [MATERIAL_IDENTIFIER] [MATERIAL_ITEM ...] }

MATERIAL _ITEMS:
TEXTURE | INTERIOR-TEXTURE | INTERIOR | TRANSFORMATION

Quick Reference Contents

BOOL] & [collect

370 Quick Reference

8.9.3 Interior

Describe the interior of an object:

INTERIOR:
Jump to SDL
interior { [INTERIOR_IDENTIFIER] [INTERIOR_ITEMS] }

INTERIORLITEMS:
[ior FLOAT] & [dispersion FLOAT] & [dispersion _samples INT] & [causticS FLOAT]
&« [fade _distance FLOAT] &« [fade _power FLOAT] & [fade _color COLOR] & [MEDIA...]

Quick Reference Contents

8.9.4 Interior Texture

Describe the interior surface of an object:

INTERIOR.TEXTURE:
interior ~ _texture { TEXTURE_BODY }

Quick Reference Contents

8.10 Texture

Describe the surface of an object

TEXTURE:
PLAIN_TEXTURE | LAYERED_TEXTURE | PATTERNED_TEXTURE

Quick Reference Contents

8.10.1 Plain Texture

Describe a texture consisting of a single pigment, normal and finish:

PLAIN_TEXTURE:
texture { PLAIN_TEXTURE_BODY }

PLAIN_TEXTURE_.BODY:
[PLAIN_TEXTURE_IDENT] [PNF_IDENTIFIERS] [PNF_ITEMS]

PNF.IDENTIFIERS:
[PIGMENT_IDENTIFIER] & [NORMAL_IDENTIFIER] & [FINISH_IDENTIFIER]

PNFEITEMS:
[PIGMENT] & [NORMAL] & [FINISH] & [TRANSFORMATION...]

Quick Reference Contents

8.10 Texture 371

8.10.2 Layered Texture

Describe a texture consisting of two or more semi-transparent layers:

LAYERED_TEXTURE:
Jump to SDL
texture { LAYERED_TEXTURE_IDENT } |
PLAIN_TEXTURE PLAIN_TEXTURE...

Quick Reference Contents

8.10.3 Patterned Texture

Describe a texture using a pattern or blending function;

PATTERNED.TEXTURE:
Jump to SDL
texture { PATTERNED_TEXTURE_BODY }

PATTERNED.TEXTURE.BODY:
PATTERNED_TEXTURE_IDENT [TRANSFORMATION...] | TEXTURE_PATTERN [PATTERN_MODIFIERS] |
MATERIAL_MAP [TRANSFORMATION...]

TEXTURE.PATTERN:
TEXTURE_LIST_PATTERN | MAP_PATTERN TEXTURE_MAP

TEXTURE_LIST_PATTERN:
brick TEXTURE, TEXTURE [BRICK_ITEMS] |
checker TEXTURE, TEXTURE |
hexagon TEXTURE, TEXTURE, TEXTURE |
object { LIST_OBJECT TEXTURE, TEXTURE }

BRICK_ITEMS:

[brick _size VECTOR] & [mortar FLOAT]
LIST_OBJECT:

UNTEXTURED_SOLID_OBJECT | UNTEXTURED_SOLID_OBJECT_IDENT
TEXTURE_.MAP:

texture _map { TEXTURE_MAP _BODY } [BLEND_MAP_MODIFIERS]

TEXTURE_.MAP_BODY:
TEXTURE_MAP_IDENTIFIER | TEXTURE_MAP_ENTRY...
There may be from 2 to 256 map entries.

TEXTURE.MAP_ENTRY:
[FLOAT TEXTURE_BODY]
The brackets here are part of the map entry.

TEXTURE.BODY:
PLAIN_TEXTURE_BODY | LAYERED_TEXTURE_IDENT | PATTERNED_TEXTURE_BODY

MATERIAL -MAP:
material _map { BITMAP_IMAGE [BITMAP_MODIFIERS] TEXTURE... }

372 Quick Reference

Quick Reference Contents

8.10.4 Pigment

Describe a color or pattern of colors for a texture:

PIGMENT:
Jump to SDL
pigment { PIGMENT_BODY }

PIGMENT_BODY:
[PIGMENT_IDENTIFIER] [PIGMENT_-TYPE] [PIGMENT_MODIFIERS]

PIGMENT_TYPE:
COLOR | COLOR-LIST_PATTERN | PIGMENT_LIST_PATTERN | IMAGEMAP | MAP_PATTERN [COLOR_MAP]
| MAP_PATTERN PIGMENT_MAP

COLORLIST_PATTERN:
brick [COLOR [, COLOR]] [BRICK_ITEMS] |
checker [COLOR [, COLOR]] |
hexagon [COLOR [, COLOR [, COLOR]]] |
object { LIST_OBJECT [COLOR [, COLOR]] }

PIGMENT_LIST_PATTERN:
brick PIGMENT, PIGMENT [BRICK_ITEMS] |
checker PIGMENT, PIGMENT |
hexagon PIGMENT, PIGMENT, PIGMENT |
object { LIST_OBJECT PIGMENT, PIGMENT }

IMAGE _MAP:
image -map {BITMAP_IMAGE [IMAGE_MAP MODIFIER...] [BITMAP_MODIFIERS] }

IMAGE _MAP_MODIFIER:
filter I_PALETTE, F_AMOUNT | filter all F_AMOUNT | transmit I_PALETTE, F_AMOUNT |
transmit all F_AMOUNT

COLORMAP:
color _map { COLORMAP BODY } [BLEND_MAP MODIFIERS] |
colour _map { COLORMAP_BODY } [BLEND_MAP MODIFIERS]

COLORMAP_BODY:
COLOR_MAP_IDENTIFIER | COLOR-MAP_ENTRY...
There may be from 2 to 256 map entries.

COLORMAP_ENTRY:
[FLOAT COLOR]
The brackets here are part of the map entry.

PIGMENT_MAP:
pigment _map { PIGMENT_MAP_BODY } [BLEND_MAP_MODIFIERS]

PIGMENT_MAP_BODY:
PIGMENT_MAP_IDENTIFIER | PIGMENT_MAP_ENTRY...
There may be from 2 to 256 map entries.

8.10 Texture 373

PIGMENT_MAP_ENTRY:
[FLOAT PIGMENT_BODY]
The brackets here are part of the map entry.

PIGMENT_MODIFIERS:
[QUICK_COLOR] & [PATTERN_MODIFIERS]

QUICK_COLOR:
quick _color COLOR | quick _colour COLOR

Quick Reference Contents

8.10.5 Normal

Simulate the visual or tactile surface characteristics of a texture:

NORMAL:
Jump to SDL
normal { NORMAL_BODY }

NORMAL _BODY:
[NORMAL_IDENTIFIER] [NORMAL_TYPE] [NORMAL_MODIFIERS]

NORMAL_TYPE:
NORMAL_PATTERN | BUMP_MAP

NORMAL_PATTERN:
NORMAL_LIST_PATTERN |
MAP_PATTERN [F_DEPTH] [SLOPEMAP] |
MAP_PATTERN NORMAL_MAP

NORMAL _LIST_PATTERN:
brick NORMAL, NORMAL [BRICK_ITEMS] | brick [F_DEPTH] [BRICK_ITEMS] |
checker NORMAL, NORMAL | checker [F_DEPTH] |
hexagon NORMAL, NORMAL, NORMAL | hexagon [F_DEPTH] |
object { LIST_OBJECT NORMAL, NORMAL } | object { LIST_OBJECT } [F.DEPTH]

NORMAL_MAP:
normal _map { NORMAL_MAP BODY } [BLEND_MAP MODIFIERS]

NORMAL_MAP_BODY:
NORMAL MAP_IDENTIFIER | NORMAL_MAP_ENTRY...
There may be from 2 to 256 map entries.

NORMAL_MAP_ENTRY:
[FLOAT NORMAL_BODY]
The brackets here are part of the map entry.

SLOPEMAP:
slope _map { SLOPE_MAP_BODY } [BLEND_MAP MODIFIERS]

SLOPEMAP_BODY:
SLOPE_MAP_IDENTIFIER | SLOPE_MAP_ENTRY...
There may be from 2 to 256 map entries.

374 Quick Reference

SLOPEMAP_ENTRY:
[FLOAT, < F_HEIGHT, F_SLOPE >]
The brackets here are part of the map entry.

BUMP_MAP:
bump.map { BITMAP_IMAGE [BUMP _MAP MODIFIERS] }

BUMP_MAP_MODIFIERS:
[BITMAP_MODIFIERS] & [BUMP_METHOD] & [bump.size FLOAT]

BUMP_METHOD:
use _index | use _color | use _colour

NORMAL_MODIFIERS:
[PATTERN.MODIFIERS] & [bump.size FLOAT] & [no_-bump.scale [BOOL]] & [accuracy FLOAT]

Quick Reference Contents

8.10.6 Finish

Describe the reflective properties of a surface:

FINISH:

Jump to SDL

finish { [FINISH_IDENTIFIER] [FINISH_ITEMS] }
FINISH_ITEMS:

[ambient COLOR] & [diffuse FLOAT] & [brilliance FLOAT] & [PHONG] & [SPECULAR] &

[REFLECTION] & [IRID] & [crand FLOAT] & [conserve _energy [BOOL]]
PHONG:

phong FLOAT & [phong _size FLOAT] & [metallic [FLOAT]]
SPECULAR:

specular FLOAT & [roughness FLOAT] & [metallic [FLOAT]]
REFLECTION:

reflection COLOR [reflection _exponent FLOAT] |

reflection { [COLOR,] COLOR [REFLECTION._ITEMS] }

REFLECTIONITEMS:
[fresnel BooL] & [falloff FLOAT] & [exponent FLOAT] & [metallic [FLOAT]]
Must also usénterior {ior FLOAT} in the object wheifresnel is used.

IRID:
iid ~ { F_AMOUNT [IRID_ITEMS] }

IRID_ITEMS:
[thickness FLOAT] & [turbulence FLOAT]

Quick Reference Contents

8.10 Texture 375

8.10.7 Pattern

Specify a pattern function for a texture, pigment, normal or density:

MAP_PATTERN:

Jump to SDL

AGATE | average | boxed | bozo | bumps | cells | CRACKLE | cylindrical | DENSITY -
FILE | dents | FACETS | FRACTAL | function { FN_FLOAT } | gradient VECTOR | granite

| IMAGE_PATTERN | leopard | marble | onion | pigment _pattern { PIGMENT_BODY } |
planar | QUILTED | radial | ripples | SLOPE | spherical | spirall I_NUM_ARMS |
spiral2 I_NUMARMS | spotted | waves | wood | wrinkles

AGATE:
agate [agate _turb FLOAT]

CRACKLE:
crackle [CRACKLE_TYPES]

CRACKLE_TYPES:
[form VECTOR] & [metric FLOAT] & [offset FLOAT] & [solid]

DENSITY_FILE:
density _file df3 FILE_NAME [interpolate DENSITY_INTERPOLATE]

DENSITY_INTERPOLATE:
0112

FACETS:
facets FACETS_TYPE
Note,facets can only be used asr@rmal pattern.

FACETSTYPE:
coords F_SCALE | size F_SIZE_FACTOR

FRACTAL:
MANDELBROT_FRACTAL | JULIA_FRACTAL | MAGNET_MANDEL_FRACTAL | MAGNET_JULIA_FRACTAL

MANDELBROT_FRACTAL:
mandel I_ITERATIONS [exponent INT] [exterior EXTERIOR_TYPE, F_FACTOR] [interior
INTERIOR_TYPE, F_FACTOR]

JULIA_FRACTAL.:
julia V2_COMPLEX, I_ITERATIONS [exponent INT] [exterior EXTERIOR_TYPE, F_FACTOR]
[interior INTERIOR_TYPE, F_FACTOR]

MAGNET_MANDEL _FRACTAL.:
magnet MAGNET_TYPE mandel I_ITERATIONS [exterior EXTERIOR_TYPE, F_FACTOR] [interior
INTERIOR_TYPE, F_FACTOR]

MAGNET_TYPE:
112

MAGNET_JULIA_FRACTAL:
magnet MAGNET_TYPE julia V2_COMPLEX, I_ITERATIONS [exterior EXTERIOR_TYPE, F_FACTOR]
linterior INTERIOR_TYPE, F_FACTOR]

376 Quick Reference

EXTERIORTYPE:
011121314516

INTERIOR.TYPE:
0111213141516

IMAGE _PATTERN:
image _pattern ~ {BITMAP_IMAGE [IMAGE_PATTERN.MODIFIERS] }

IMAGE _PATTERN.MODIFIERS:
[BITMAP_MODIFIERS] & [use _alpha]

QUILTED:
quilted [control0 FLOAT] [controll FLOAT]

SLOPE:
slope { V.DIRECTION [, F_LOW.SLOPE, F_HIGH_SLOPE] [altitude VECTOR [, F_LOW.ALT, F_-
HIGHALT 1] }
Theslope pattern does not work in media densities.

Quick Reference Contents

8.10.8 Pattern Modifiers

Modify the evaluation of a pattern function:

PATTERN.MODIFIERS:
Jump to SDL
[TURBULENCE] & [WARP...] & [TRANSFORMATION...] & [noise _generator NG_TYPE]

NG_TYPE:
1123

TURBULENCE:
turbulence VECTOR & [octaves INT] & [omega FLOAT] & [lambda FLOAT]

WARP:
warp { WARP_ITEM }

WARP_ITEM:
REPEAT WARP | BLACK_HOLE_WARP | TURBULENCE | CYLINDRICAL WARP | SPHERICAL_WARP | TOROIDAL_-
WARP | PLANAR_WARP

REPEATWARP:
repeat VECTOR [offset VECTOR] [flip VECTOR]

BLACK_HOLE_WARP:
black _hole V_LOCATION, F_RADIUS [BLACK_HOLE_ITEMS]

BLACK _HOLE_ITEMS:
[strength FLOAT] & [falloff FLOAT] & [inverse] & [repeat VECTOR [turbulence
VECTOR]]

CYLINDRICAL WARP:
cylindrical [orientation VECTOR] [dist _exp FLOAT]

8.10 Texture 377

SPHERICALWARP:
spherical [orientation VECTOR] [dist _exp FLOAT]

TOROIDAL_WARP:
toroidal [orientation VECTOR] [dist _exp FLOAT] [major _radius FLOAT]

PLANAR_WARP:
planar [V_NORMAL, F_DISTANCE]

Modify the usage of a blend map:

BLEND_MAP_MODIFIERS:
Jump to SDL
frequency FLOAT & [phaseFLOAT] & [WAVEFORM]

WAVEFORM:
Jump to SDL
ramp wave | triangle _wave | sine _wave | scallop _wave | cubic _wave | poly _wave
[F_EXPONENT]

Specify a two-dimensional bitmap image for a pattern:

BITMAP_IMAGE:
FUNCTION_IMAGE | BITMAP_TYPE FILE_NAME

FUNCTIONLIMAGE:
Jump to SDL
function I_WIDTH, I_-HEIGHT { FUNCTION.IMAGE_BODY }

FUNCTION.IMAGE_BODY:
PIGMENT | FN_FLOAT | pattern { PATTERN [PATTERN.MODIFIERS] }

PATTERN:
MAP_PATTERN | brick [BRICK_.ITEMS] | checker | hexagon | object { LIST_OBJECT }

BITMAP_TYPE:
Jump to SDL
gif | tga | iff | ppm | pgm | png | jpeg | tiff | sys

Modify how a 2-D bitmap is to be applied to a 3-D surface:

BITMAP_MODIFIERS:
Jump to SDL
[once] & [maptype MAP_TYPE] & [interpolate INTERPOLATE_TYPE]

MAP_TYPE:
0111215

INTERPOLATETYPE:
214

Quick Reference Contents

378 Quick Reference

8.11 Media

Describe particulate matter

MEDIA:

Jump to SDL

media { [MEDIA_IDENTIFIER] [MEDIA_ITEMS] }
MEDIA_ITEMS:

[method METHOD_TYPE] & [intervals INT] & [samples I_MIN, I_MAX] & [confidence
FLOAT] & [variance FLOAT] & [ratio FLOAT] & [absorption COLOR] & [emission COLOR]

& [aa_threshold FLOAT] & [aa_level INT] & [SCATTERING] & [DENSITY...] & [TRANSFORMATION...

& [collect BOOL]

METHOD_TYPE:
1123

SCATTERING:
scattering { SCATTERING_TYPE, COLOR [eccentricity FLOAT] [extinction FLOAT] }

SCATTERING.TYPE:
112131415

DENSITY:
density { DENSITY_BODY }

DENSITY_BODY:
[DENSITY_IDENTIFIER] [DENSITY_TYPE] [PATTERN_MODIFIERS]

DENSITY_TYPE:
COLOR | COLOR-LIST_PATTERN | DENSITY_LIST_PATTERN | MAP_PATTERN [COLORMAP] | MAP_-
PATTERN DENSITY_MAP

DENSITY_LIST_PATTERN:
brick DENSITY, DENSITY [BRICK_ITEMS] |
checker DENSITY, DENSITY |
hexagon DENSITY, DENSITY, DENSITY |
object { LIST_OBJECT DENSITY, DENSITY }

DENSITY_MAP:
density _map { DENSITY_MAP_BODY } [BLEND_.MAP_MODIFIERS]

DENSITY_MAP_BODY:
DENSITY_MAP_IDENTIFIER | DENSITY_MAP_ENTRY...
There may be from 2 to 256 map entries.

DENSITY_MAP_ENTRY:
[FLOAT DENSITY_BODY]
The brackets here are part of the map entry.

Quick Reference Contents

8.12 Atmospheric Effects

379

8.12 Atmospheric Effects

Describe various background and atmospheric features

ATMOSPHERICEFFECT:
MEDIA | BACKGROUND | FOG | SKY_SPHERE | RAINBOW

Quick Reference Contents

8.12.1 Background

Specify a background color for the scene:

BACKGROUND:
background { coLoR }

Quick Reference Contents

8.12.2 Fog

Simulate a hazy or foggy atmosphere:

FOG:

Jump to SDL

CONSTANT.-FOG | GROUND_-FOG
CONSTANT.FOG:

fog { [FOG_IDENTIFIER] [fog _type 1] FOG_ITEMS }
FOGITEMS:

distance FLOAT & COLOR & [TURBULENCE [turb _depth FLOAT]]
GROUND_FOG:

fog { [FOG_IDENTIFIER] fog type 2 GROUND_FOG_ITEMS }

GROUND_FOG.ITEMS:

FOG_ITEMS & fog _offset FLOAT &« fog ._alt FLOAT & [up VECTOR [TRANSFORMATION...]]

Quick Reference Contents

8.12.3 Sky Sphere

Specify a sky pigment:

SKY_SPHERE:
sky _sphere { [SKY_SPHERE_IDENTIFIER] [SKY_SPHERE_ITEM...]

SKY_SPHEREITEM:
PIGMENT | TRANSFORMATION

Quick Reference Contents

380 Quick Reference

8.12.4 Rainbow

Specify a rainbow arc:

RAINBOW:
Jump to SDL
rainbow { [RAINBOW_IDENTIFIER] [RAINBOW.ITEMS] }

RAINBOW_ITEMS:

direction

VECTOR & angle FLOAT & width FLOAT & distance FLOAT & COLORMAP & [jitter
FLOAT] & [Up VECTOR] & [arc _angle FLOAT] & [falloff

_angle FLOAT]

Quick Reference Contents

8.13 Global Settings

Specify various settings that apply to the entire scene

GLOBAL_SETTINGS:
Jump to SDL
global _settings { GLOBAL_SETTING_ITEMS }

GLOBAL_SETTING.ITEMS:
[adc _bailout FLOAT] & [ambient _light
16 [BoOL]] & [irid _wavelength COLOR] & [charset
INT] & [maxtrace _level INT] &« [number _of .waves INT] & [noise _generator

& [RADIOSITY] & [PHOTONS]

GLOBAL_CHARSET:

COLOR] & [assumed_gammaFLOAT] & [hf gray _-
GLOBAL_CHARSET] & [max.intersections
NG_TYPE]

ascii | utf8 | sys
NG_TYPE:
11213

Quick Reference Contents

8.13.1 Radiosity

Enable radiosity to compute diffuse inter-reflection of light:

RADIOSITY:
Jump to SDL
radiosity { [RADIOSITY_ITEMS] }

RADIOSITY_ITEMS:
[adc _bailout FLOAT] & [always _sample B0OL] & [brightness FLOAT] & [count INT]
& [error _bound FLOAT] & [gray _threshold FLOAT] & [load file FILENAME] & [low _-
error _factor FLOAT] & [maxsample FLOAT] & [media BOOL] & [minimum _reuse FLOAT]
& [nearest _count INT] & [normal BOOL] & [pretrace _end FLOAT] & [pretrace _start
FLOAT] & [recursion _limit INT] & [save _file FILE_NAME]

Quick Reference Contents

8.13 Global Settings 381

8.13.2 Photons

Enable photon mapping to render reflective and refractive caustics:

PHOTONS:
Jump to SDL
photons { PHOTON_QUANTITY [PHOTON_ITEMS] }

PHOTONQUANTITY:
spacing FLOAT | count INT

PHOTONLITEMS:
[gather I.MIN, I.MAX] & [media I_MAX_STEPS [, F_FACTOR]] & [jitter FLOAT] & [max-
trace _level INT] & [adc_bailout FLOAT] & [save _file FILENAME] & [load _file FILE_-
NAME] & [autostop FLOAT] & [expand _thresholds F_INCREASE, F_MIN] & [radius [FLOAT,
FLOAT, FLOAT, FLOAT]]

Quick Reference Contents

382 Quick Reference

Index

+a, 27 +l, 17
+am, 27 +mb, 26
+b, 14 +mv, 17
+c, 8 +0, 13
+d, 9 +p, 11
+ec, 7 +q, 25
+ef, 5 +r, 27
+ep, 11 +sc, 7
+er, 7 +sf, 5
+f, 12 +sp, 11
+fc, 12 +sr, 7
+fn, 12 +su, 27
+fp, 12 +ua, 12
+fs, 12 +ud, 11
+ft, 12 +uf, 6
+ga, 23 +ul, 26
+gd, 23 +U0, 6
+gf, 23 +ur, 27
+gi, 8 +uv, 26
+gr, 23 +v, 11
+gs, 23 +w, 6
+gw, 23 +wl, 24
+h, 6 +X, 7
+hi, 17 -a, 27
+hn, 15 -b, 14
+hs, 15 -c, 8
+ht, 14 -d, 9
+htc, 14 -f, 12
+htn, 14 -ga, 23
+htp, 14 -gd, 23
+hts, 14 -gf, 23
+htt, 14 -gr, 23
+htx, 14 -gs, 23
+i, 16 -gw, 23
+j, 27 -h, 25
+k, 3 -, 27
+kc, 5 -kec, 5
+kff, 4 -mb, 26
+kfi, 4 -p, 11

+ki, 4 -su, 27

384

INDEX

-ua, 12

-ud, 11

-uf, 6

-ul, 26

-uo, 6

-ur, 27

-uv, 26

-v, 11

=X, 7
#break, 79
#case, 79
#debug, 80
#declare, 70
#default, 75
#else, 77
#end, 77
#error, 80
#fclose, 74
#fopen, 73
#if, 77
#ifdef, 78
#ifndef, 78
#include, 69
#local, 70
#macro, 82
#range, 79
#read, 74
#render, 80
#statistics, 80
#switch, 79
#undef, 73
#version, 76
#warning, 80
#while, 80
#write, 75

aalevel, 258
media, 254
aathreshold, 258
media, 254
abs, 41
absorption, 255
media, 254
accuracy, 146
isosurface, 145
normal, 183
normals, 186

parametric, 147, 148

acos, 41

julia, 124
julia_fractal, 121
acosd, 303
acosh, 41
julia, 124
julia_fractal, 121
adaptive, 160
light_source, 153
adcbailout, 102

globalsettings, 101, 102

photons, 265
radiosity, 109
adjrange, 304
adjrange2, 304
agate, 207
keyword, 207
pattern, 207
agateturb, 231
agate, 207

pattern modifier, 231

Align_Object, 314
Align_Trans, 337
all, 181
All _Console

ini-option, 23
All _File

ini-option, 24
all_intersections, 147

isosurface, 145
alpha, 182
altitude, 227

slope, 227
alwayssample, 109
ambient, 190

finish, 190
ambientlight, 102

globalsettings, 101, 102

angle, 89
camera, 87, 89
rainbow, 100
Animation
cyclic, 5
external loop, 3
field rendering, 6
internal loop, 3
options, 3

subsets of frames, 5

Antialias
ini-option, 27

INDEX

385

Antialias Depth
ini-option, 27
Antialias Threshold
ini-option, 27
aperture, 95
camera, 87
append, 73
arcangle, 100
rainbow, 100
arealight, 158
light_source, 153, 158
Array
declaring, 65
identifiers, 65
initialization, 66
array, 65
quickref, 354
arrays
quickref, 354
asc, 41
ascii, 106
globalsettings, 101
asin, 41
julia, 124
julia_fractal, 121
asind, 303
asinh, 41
julia, 124
julia_fractal, 121
assumedyamma, 103
globalsettings, 101, 103
atan, 124
julia_fractal, 121
atan2, 41
atan2d, 303
atanh, 41
julia, 124
julia_fractal, 121
atmosphere, 253
atmospheric effects
quickref, 379
autostop, 265
average, 208
keyword, 208
pattern, 208
Axial _ScaleTrans, 336
Axis_RotateTrans, 337

b_spline, 128

spheresweep, 128
background, 97
keyword, 97
quickref, 379
BevelledText, 314
bezier, 134
Bezier Patch, 134
bezierspline, 125
lathe, 124
prism, 126
bicubic patch, 134
keyword, 134
Bits_Per.Color
ini-option, 12
black hole, 236
warp, 235, 236
blob, 114
component, 115
component, cylinder, 115
component, sphere, 115
keyword, 114
Blobs, 114
blue, 54
Blur, 95
blur_samples, 95
camera, 87
BMP output, 12
boolean, 44
boundedby, 167
object modifier, 167

Bounding
ini-option, 26
Bounding Threshold
ini-option, 26
box, 117
keyword, 117
boxed, 209
keyword, 209
pattern, 209
bozo, 209
keyword, 209
pattern, 209
break, 79
brick, 209

keyword, 209

pattern, 209
brick_size, 231

brick, 209

pattern modifier, 231

386 INDEX

brightness, 109 clockon, 45
brilliance, 192 collect, 266
finish, 190 Color
Buffer_Output, 14 common pitfalls, 55
Buffer_Size, 14 functions, user-defined, 61
bumpmap, 188 identifiers, 55
normal, 183 keywords, 54
bumpsize, 189 operators, 55
normal, 183 specifying, 52
bumps, 210 vectors, 54
keyword, 210 color, 52
pattern, 210 quickref, 351
color-map, 177
Camera density, 259
coordinate system, 91 pigment, 175
focal blur, 95 rainbow, 100
placing, 88 colors
types of, 93 quickref, 351
camera, 87 colour, 52
keyword, 87 quickref, 351
case, 79 colourmap, 177
caustics, 252 pigment, 175
interior, 247 comment, 37
simulated, 252 component, 115
ceil, 41 blob, 114
cells, 210 composite, 150
keyword, 210 concat, 64
pattern, 210 conditional directives
CenterObiject, 314 quickref, 357
CenterTrans, 337 cone, 117
charset keyword, 117
globalsettings, 101, 106 confidence, 95
checker, 210 camera, 87
keyword, 210 focal blur, 95
pattern, 210 media, 254, 258
chr, 64 conic.sweep, 127
CHSL2RGB, 276 prism, 126
CHSV2RGB, 276 ConnectSpheres, 316
Circle_Text, 315 conserveenergy, 195
circular, 160 finish, 190
light_source, 153 constant fog, 98
clamp, 304 Constructive Solid Geometry
clip, 304 quickref, 368
clippedby, 166 containedby, 146
object modifier, 166 isosurface, 145, 146
Clock parametric, 147, 148
ini-option, 3 contents
clock, 44 quickref, 348

clock delta, 45 ContinueTrace

INDEX

387

ini-option, 8
control0, 231

pattern modifier, 231

quilted, 225
controll, 231

pattern modifier, 231

quilted, 225
ConvertColor, 276
Coordinate system

camera, 91
coords, 214

facets, 214
cos, 41

julia, 124

julia_fractal, 121
cosd, 303
cosh, 41

julia, 124

julia_fractal, 121
count, 110
crackle, 211

keyword, 211

pattern, 211
crand, 192

finish, 190
Createlni

ini-option, 8
CRGB2HSL, 276
CRGB2HSV, 276
CRGBStr, 330
Cross Section Type, 284
CSG, 149

difference, 152

intersection, 151

merge, 152

union, 150
cube, 123

julia_fractal, 121
cubic, 143

keyword, 143
cubicspline, 125

lathe, 124

prism, 126

spheresweep, 128
cubicwave, 231

pattern modifier, 231, 234
cutawaytextures, 206
Cyclic_Animation, 5
cylinder, 118

blob, 114

blob component, 115

camera, 87

keyword, 118

light_source, 153, 157
cylindrical, 213

keyword, 213

pattern, 213

projection, 94

warp, 235, 242

debug, 80
debug.inc, 282
DebugConsole
ini-option, 23
DebugFile
ini-option, 24
Declare
ini-option, 15
declare, 70
Declaring
arrays, 65
default, 75
Default Output Directory, 13
default texture
quickref, 357
Default values
bicubic patch, 134
blob, 115
camera, 87
disc, 136
fog, 97
global settings, 101
heightfield, 119
interior, 247
isosurface, 146
julia fractal, 122
lathe, 124
light_source, 154
media, 254
mesh, 137
parametric, 148
pattern modifiers, 232
photons, 264
poly, 142
prism, 126
rainbow, 100
sor, 130
spheresweep, 129

388 INDEX

torus, 133 language, #switch, 79
defined, 42 language, #undef, 73
degrees, 42 language, #version, 76
density language, #warning, 80

media, 254 language, #while, 80
densityfile, 213 language, #write, 75

keyword, 213 language, conditional, 77

pattern, 213 language, default texture, 75
densitymap, 260 language, file 1/0, 73
dents, 214 language, identifiers, 70

keyword, 214 language, identifiers, destroying, 73

pattern, 214 language, user messages, 80
Depth of field, 95 name collisions, 72
df3, 213 Directory

densityfile, 213 default output, 13
difference, 152 disc, 136

keyword, 152 keyword, 136
diffuse dispersion, 251

finish, 190 interior, 247
dimensionsize, 42 photons, 271
dimensions, 42 dispersionsamples, 251
direction, 90 interior, 247

camera, 87 Display

rainbow, 100 ini-option, 9
Directives Display. Gamma, 9

#language, #declare vs. #local, 71 for your display, 10

language, 68 ini-option, 9

language, #banner, 81 distexp, 242

language, #break, 79 warp, 235

language, #case, 79 distance, 98

language, #debug, 80, 81 fog, 97, 98

language, #declare, 70 rainbow, 100

language, #default, 75 div, 42

language, #else, 77 Divergence, 307

language, #end, 77, 80 doubleilluminate, 171

language, #error, 80 object modifier, 171

language, #fclose, 74 Draw._Vistas

language, #fopen, 73 ini-option, 11

language, #if, 77 dynamic maxgradient, 146

language, #ifdef, 78

language, #ifndef, 78 eccentricity, 256

language, #include, 69 media, 254

language, #local, 70 else, 77

language, #macro, 82 emission, 255

language, #range, 79 media, 254

language, #read, 74 end, 77

language, #render, 81 End.Column

language, #statistics, 81 ini-option, 7

language, #status, 81 EndRow, 7

INDEX 389
ini-option, 7 f_folium_surface2d, 288
error, 80 f_glob, 289
debug.inc, 282 f_heart, 289
errorbound, 111 f_helicaltorus, 289
evalpigment, 298 f_helix1, 289
evaluate, 146 f_helix2, 289
isosurface, 145 f_heteramf, 290
even, 302 f_hexx, 290
exp, 42 f_hexy, 290
julia, 124 f_huntsurface, 290

julia_fractal, 121
expandthresholds, 270
exponent, 195

finish, 190

julia, 215

mandel, 215

reflection, 195
Expressions

float, 38

vector, 47
Extents, 314
exterior, 215

julia, 215

magnet, 215

mandel, 215
extinction, 255

media, 254

f_algbrcyll, 285
f_algbrcyl2, 285
f_algbrcyl3, 286
f_algbrcyl4, 286
f_bicorn, 286
f_bifolia, 286

f_blob, 286

f_blob2, 286
f_boy_surface, 287
f_comma, 287
f_crossellipsoids, 287
f_crossedrough, 287
f_cubicsaddle, 287
f_cushion, 287
f_devils curve, 287
f_devils.curve 2d, 287
f_dupincyclid, 288
f_ellipsoid, 288
f_enneper, 288
f_flangecover, 288
f_folium_surface, 288

f_hyperbolictorus, 291
f_isectellipsoids, 291
f_kampyleof_eudoxus, 291
f_kampyleof_eudoxus2d, 291
f_klein_bottle, 291
f_kummersurfacevl, 291
f_kummersurfacev2, 291
f_lemniscateof_gerono, 292
f_lemniscateof_gerona2d, 292
f_-meshl, 292

f_mitre, 292

f_nodalcubic, 292
f_noise3d, 292
f_noisegenerator, 292
f_odd, 293

f_ovals of_cassini, 293
f_parabolictorus, 293
f_paraboloid, 293

f_ph, 293

f_pillow, 293

f_piriform, 293
f_piriform_2d, 293

f_poly4, 293

f_polytubes, 294
f_quantum, 294
f_quarticcylinder, 294
f_quarticparaboloid, 294
f_quarticsaddle, 294

fr, 294

f_ridge, 294

f_ridgedmf, 295
f_roundedbox, 295
f_scallopwave, 298
f_sinewave, 298
f_snoise3d, 298

f_sphere, 295

f_spikes, 295

f_spikes2d, 296

f_spiral, 296

390

f_sqr, 303
f_steinersroman, 296
f_strophoid, 296
f_strophoid2d, 296
f_superellipsoid, 297
f_th, 297
f_torus, 297
f_torus2, 297
f_torusgumdrop, 297
f_umbrella, 297
f_witch_of_agnesi, 297
f_witch_of_agnesi2d, 297
faceindices, 137
mesh2, 137
facets, 214
keyword, 214
pattern, 214
fadecolor, 252
interior, 247
fadecolour, 252
fadedistance, 163
interior, 247, 252
light_source, 153, 163
fade power, 163
interior, 247, 252
light_source, 153, 163
falloff, 155
finish, 190
light_source, 153, 155
reflection, 195
warp, 235, 236
falloff _angle, 100
rainbow, 100
false, 44
FatalConsole
ini-option, 23
FatalError.Command
ini-option, 18
FatalError_Return, 20
FatalFile
ini-option, 24
fclose, 74
Field_.Render, 6
file ilo
quickref, 356
file inclusion
quickref, 355
file_exists, 42
filter, 52

bitmap modfier, 181
Final_Clock

ini-option, 4
final_clock, 45
FinalLFrame

ini-option, 4
final_frame, 46
Finding include files, 17
finish, 190

keyword, 190

quickref, 374
fisheye, 93

camera, 87
flatness, 134

bicubic patch, 134
flip, 239

warp, 235
Float

boolean, 44

built-in constants, 44

built-in variables, 44

expressions, 38

functions, 41

functions, user-defined, 60

identifiers, 39

literals, 39

operators, 40
float

quickref, 349
float expressions

quickref, 349
floats

quickref, 349
floor, 42
fn_Divergence, 307
fn_Gradient, 306
fn_GradientDirectional, 307
focal point, 95

camera, 87
fog, 97

keyword, 97

quickref, 379
fog_alt, 98

fog, 97
fog_offset, 98

fog, 97
fog_type, 98

fog, 97
fopen, 73

INDEX 391
form, 211 pattern, 219

crackle, 211 GradientDirectional, 307
fractal, 121 GradientLength, 307

Fractal Object, 121
frame.number, 45
frequency, 231
pattern modifier, 231, 233
radial, 227
fresnel, 195
finish, 190
function, 57
as pattern, 217
heightfield, 119
internal bitmap, 218
isosurface, 145
parametric, 147
pattern, 217
function image
pattern, 218
Functions, 57
float, 41
internal, 62
string, 63
user-defined, 57
user-defined, color, 61
user-defined, float, 60
user-defined, vector, 61
vector, 49
VS. macros, 59

Gamma
image file, 104
monitor, 103
scene file, 104
gamma
determining your display, 10
test image, 10
gather, 265
GetStats, 303
gif, 180
heightfield, 119
global settings
quickref, 380
globallights, 164
light_group, 164
globalsettings, 101
keyword, 101
gradient, 219
keyword, 219

granite, 219
keyword, 219
pattern, 219

gray, 55

gray.threshold, 110

green, 54

ground fog, 98

halo, 196
keyword, 196
Height
ini-option, 6
heightfield, 119
keyword, 119
Hex Tiles_Ptrn, 336
hexagon, 220
keyword, 220
pattern, 220
HF_Cylinder, 319
hf_gray 16, 105
globalsettings, 101, 105
HF_Sphere, 319
HF_Square, 319
HF_Torus, 320
hierarchy, 116
blob, 114, 116
heightfield, 119, 121
mesh, 136, 137
Histogram, 303
HistogramGrid_Size
ini-option, 15
HistogramName
ini-option, 15
HistogramType
ini-option, 14
hollow, 169
object modifier, 169
hypercomplex, 122
julia_fractal, 121

identifier, 32

declaration, quickref, 356
Identifiers, 32

array, 65

color, 55

declaring, 70

392

INDEX

destroying, 73
float, 39
string, 63
vector, 48
if, 77
ifdef, 78
iff, 180
ifndef, 78
imageheight, 46
imagemap, 180
pigment, 175
imagepattern, 221
keyword, 221
pattern, 221
imagewidth, 46
include, 69
standard files, 273
Include Files
finding, 17
Include Path, 17
Include Header
ini-option, 17
ini files
constant, 15
Initial _Clock
ini-option, 4
initial _clock, 45
Initial_Frame
ini-option, 4
initial_frame, 45
Initialization
arrays, 66
Input_File_Name
ini-option, 16
inside, 42
inside vector, 137
mesh, 136
mesh2, 137
int, 42
interior, 247
fadedistance, 252
fade power, 252
julia, 215
keyword, 247
magnet, 215
mandel, 215
quickref, 370
interior texture, 370
interior_texture, 205

keyword, 205
internal, 62
functions.inc, 283
Interpolate
macro, 302
interpolate, 231
densityfile, 213
imagepattern, 221
pattern modifier, 231, 245
intersection, 151
keyword, 151
intervals, 258
media, 254
inverse, 169
object modifier, 169
warp, 235
ior, 251
interior, 247
irid, 196
finish, 190
irid_wavelength, 105
globalsettings, 101, 105
Irregular Bricks_Ptrn, 335
Isect, 314
isosurface, 145
default values, 146
keyword, 145

Jitter
ini-option, 27
jitter, 159
anti-aliasing, 27
arealight, 159
light_source, 153
photons, 265
rainbow, 100
Jitter Amount
ini.option, 27
jpeg, 180
heightfield, 119
julia, 215
keyword, 215
pattern, 215
julia_fractal, 121

keyword, 121
Keyword
aalevel, 254

aathreshold, 254

INDEX

393

absorption, 254
accuracy, 145, 147, 183
acos, 121

acosh, 121
adaptive, 153
adcbailout, 101
agate, 207
agateturb, 207
all_intersections, 145
altitude, 227
ambient, 190
ambientlight, 101
angle, 87, 100
aperture, 87
arcangle, 100
arealight, 153
ascii, 101

asin, 121

asinh, 121
assumedyamma, 101
atan, 121

atanh, 121
average, 208
b_spline, 128
background, 97
bezierspline, 124, 126
bicubic patch, 134
black hole, 235
blob, 114
blur_samples, 87
box, 117

boxed, 209

bozo, 209

brick, 209
brick_size, 209
brilliance, 190
bumpmap, 183
bumpsize, 183
bumps, 210
camera, 87
caustics, 247
cells, 210
charset, 101
checker, 210
circular, 153
colormap, 175
colourmap, 175
component, 114
cone, 117

confidence, 87, 254
conicsweep, 126
conserveenergy, 190
containedby, 145, 147
control0, 225
controll, 225

coords, 214

cos, 121

cosh, 121

crackle, 211

crand, 190

cube, 121

cubic, 143
cubicspline, 124, 126, 128
cylinder, 87, 114, 118, 153
cylindrical, 213, 235
density, 254
densityfile, 213
dents, 214

df3, 213

difference, 152
diffuse, 190

direction, 87, 100
disc, 136

dispersion, 247
dispersionsamples, 247
distexp, 235
distance, 97, 100
eccentricity, 254
emission, 254
evaluate, 145

exp, 121

exponent, 190, 215
exterior, 215
extinction, 254
faceindices, 137
facets, 214
fadecolor, 247
fadedistance, 153, 247
fade power, 153, 247
falloff, 153, 190, 235
falloff _angle, 100
finish, 190
fisheye, 87

flatness, 134

flip, 235

focal point, 87

fog, 97

fog_alt, 97

INDEX

fog_offset, 97
fog_type, 97

form, 211

frequency, 227
fresnel, 190

function, 119, 145, 147
gif, 119

globallights, 164
globalsettings, 101
gradient, 219

granite, 219

halo, 196

heightfield, 119
hexagon, 220
hf_gray. 16, 101
hierarchy, 114, 119, 136
hypercomplex, 121
imagemap, 175
imagepattern, 221
inside vector, 136, 137
interior, 215, 247
interior_texture, 205
interpolate, 213, 221
intersection, 151
intervals, 254
inverse, 235

ior, 247

irid, 190
irid_wavelength, 101
isosurface, 145

jitter, 100, 153

jpeg, 119

julia, 215

julia_fractal, 121
lambda, 97, 235
lathe, 124

leopard, 222
light_group, 164
light_source, 153, 164
linearspline, 124, 126, 128
linearsweep, 126

In, 121

location, 87

look_ at, 87

looks like, 153
magnet, 215

mandel, 215
maptype, 221
marble, 222

materialmap, 173
maxgradient, 145, 147
max.intersections, 101
max.iteration, 121
maxtrace, 145

max tracelevel, 101
media, 254
mediaattenuation, 153
mediainteraction, 153
merge, 152

mesh, 136

mesh2, 137

metallic, 190

method, 254

metric, 211

mortar, 209
no_bumpscale, 183
noisegenerator, 101
normal, 183
normalindices, 137
normalmap, 183
normalvectors, 137
numberof_waves, 101
object, 223

octaves, 97, 235
offset, 211, 235
omega, 97, 235
omnimax, 87

once, 221

onion, 223

open, 117, 118, 126, 130, 145

orient, 153
orientation, 235
orthographic, 87
panoramic, 87
parallel, 153
parametric, 147
perspective, 87
pgm, 119

phong, 190
phongsize, 190
photon, 101
pigment, 175
pigmentmap, 175, 208
pigmentpattern, 223
planar, 224, 235
plane, 141

png, 119

pointat, 153

INDEX 395

poly, 142 strength, 114, 235
polygon, 139 sturm, 114, 124, 126, 130, 133, 142
pot, 119 superellipsoid, 129
precision, 121 sys, 101, 119
precompute, 147 tan, 121

prism, 126 tanh, 121
projectedthrough, 153 text, 131

pwr, 121 texture, 173
quadraticspline, 124, 126 texturelist, 136, 137, 205
quadric, 145 texturemap, 173
quartic, 143 tga, 119

guaternion, 121 thickness, 190

quick color, 175 threshold, 114, 145
quick colour, 175 tiff, 119

quilted, 225 tightness, 153
radial, 227 tolerance, 128
radiosity, 101 toroidal, 235

radius, 153 torus, 133

rainbow, 100 triangle, 136, 140
ratio, 254 ttf, 131

reciprocal, 121 turb_depth, 97
repeat, 235 turbulence, 97, 190, 235
right, 87 type, 134

ripples, 227 u_steps, 134
roughness, 190 ultrawide_angle, 87
samples, 254 union, 150
scattering, 254 up, 87, 97, 100
shadowless, 153 usealpha, 221

sin, 121 utfg, 101

sinh, 121 uv_indices, 137
size, 214 uv_vectors, 136, 137
sky, 87 v_steps, 134
sky_sphere, 99 variance, 87, 254
slope, 227 vertexvectors, 137
slopemap, 183 warp, 235

smooth, 119 waterlevel, 119
smoothtriangle, 136, 141 waves, 230

solid, 211 width, 100

sor, 130 wood, 231

specular, 190 wrinkles, 231
sphere, 114, 128 keyword, 32
spheresweep, 128 Keywords

spherical, 87, 229, 235 color, 54

spirall, 229 keywords, 32

spiral2, 229

split.union, 150 lambda, 231

spotlight, 153 fog, 97

spotted, 230 pattern modifier, 231, 242

sgr, 121 warp, 235

396

Language
directives, 68
identifiers, camera, 96
language
basics, quickref, 349
directives, quickref, 355
language basics
quickref, 349
language directives
quickref, 355
lathe, 124
keyword, 124
layered texture
quickref, 371
leopard, 222
keyword, 222
pattern, 222
Library_Path
ini-option, 17
Light Sources
and photons, 266
Light_Buffer
ini-option, 26
light_group, 164
keyword, 164
light_source, 153
arealight, 158
arealight, adaptive, 160
arealight, circular, 160
arealight, jitter, 159
arealight, orient, 161
cylinder, 157
fade distance, 163
fade power, 163
keyword, 153
light_group, 164
looks like, 162
mediaattenuation, 164
mediainteraction, 163
parallel, 158
point light, 154
projectedthrough, 163
shadowless, 162
spotlight, 155
spotlight, falloff, 155
spotlight, radius, 155
spotlight, tightness, 155
lightgroup
quickref, 360

lights
quickref, 359
linearspline, 124
lathe, 124
prism, 126
spheresweep, 128
linearsweep, 126
prism, 126
Literals
float, 39
string, 62
literals
vector, 48
In, 42
julia, 124
julia_fractal, 121
load file, 112
photons, 265
radiosity, 112
local, 70
location, 88
camera, 87
log, 42
look_at, 88
camera, 87
looks like
light_source, 153, 162
low_error_factor, 110

macro, 82
quickref, 358

Macros, 82
declaring, 82
invoking, 82

return values in parameters, 85

returning values from, 84

vs. functions, 59

vs. splines, 68
macros

quickref, 358
magnet, 215

keyword, 215

pattern, 215
major_radius, 242
mandel, 215

keyword, 215

pattern, 215
maptype, 244

imagepattern, 221

INDEX

397

marble, 222
keyword, 222
pattern, 222
material, 168
object modifier, 168
quickref, 369
materialmap, 199
texture, 173
matrix, 358
Matrix_Trans, 336
max, 42
max3, 303
maxextent, 49
maxgradient, 146
isosurface, 145, 146
parametric, 147, 148
max.intersections, 107

globalsettings, 101, 107

max.teration, 122
julia_fractal, 121
maxsample, 111
maxtrace, 147
isosurface, 145
max tracelevel, 106

globalsettings, 101, 106

photons, 265
Mean, 303
Media
and photons, 267
media, 254
atmospheric, 96
density, 258
keyword, 254
object, 253
photons, 265
quickref, 378
reference, 253
types, 255
mediaattenuation, 164
light_source, 153
mediainteraction, 163

light_source, 153, 163

merge, 152
keyword, 152
mesh, 136
keyword, 136
mesh2, 137
keyword, 137
message streams

quickref, 358
metallic, 193

finish, 190

highlight, 193

reflection, 195
method, 258

media, 254
metric, 211

crackle, 211
min, 42
min3, 303
min_extent, 49
minimum.reuse, 111
mod, 42
mortar, 231

brick, 209

pattern modifier, 231
Mountains

generating with a height field, 119

Moving
camera, 88

naturalspline, 67
nearesfcount, 111
no, 44
no image, 170
no reflection, 170
no_bumpscale, 189
normal, 183
no.image, 170
object modifier, 170
no_reflection, 170
object modifier, 170
no_shadow, 170
object modifier, 170
noise generator
pattern modifier, 235
noisegenerator, 231

globalsettings, 101, 107

pattern modifier, 231
normal, 183

keyword, 183

quickref, 373
normalindices, 137

mesh2, 137
normalmap, 187

normal, 183
normalvectors, 137

mesh2, 137

398

INDEX

numberof_waves, 107
globalsettings, 101, 107

object, 223
keyword, 223
modifiers, quickref, 368
pattern, 223

object media, 253

Object modifiers
boundedby, 167
clippedby, 166
doubleilluminate, 171
hollow, 169
inverse, 169
material, 168
no.image, 170
no_reflection, 170
no_shadow, 170
sturm, 171

object modifiers
quickref, 368

Objects
empty and solid, 248

objects, 113
€sg, quickref, 368
finite patch, quickref, 364
finite solid, quickref, 361
infinite solid, quickref, 366
isosurface, quickref, 367
parametric, quickref, 367
quickref, 361

octaves, 231
fog, 97
pattern modifier, 231, 242
warp, 235

odd, 302

OddField, 6

off, 44

offset, 239
crackle, 211
repeat warp, 239
warp, 235

omega, 231
fog, 97
pattern modifier, 231, 242
warp, 235

omnimax, 94
camera, 87

on, 44

once, 244
imagepattern, 221
onion, 223
keyword, 223
pattern, 223
open, 247
cone, 117
cylinder, 118
isosurface, 145, 147
prism, 126
sor, 130
Operators
color, 55
float, 40
promotion, 49
vector, 49
Options
animation, 3
anti-aliasing, 27
bounding, automatic, 25
bounding, manual, 27
display, 9
general output, 6
height and width, 6
help screen, 25
interruption, 7
parsing, 15
partial output, 6
rendering, 25
resuming, 8
text output, 21
tracing, 25
orient, 161
light_source, 153
orientation, 242
warp, 235
orthographic, 93
camera, 87
Output
BMP, 12
PNG, 12
PPM, 12
system-specific, 12
Targa, compressed, 12
Targa, uncompressed, 12
output
streams, 22
Output File
placing in a default directory, 13

INDEX

399

output formats, 12
OutputAlpha
ini-option, 12
OutputFile_ZName
ini-option, 13
OutputFile_Type
ini-option, 12
Outputto_File, 12
ini-option, 12

Palette
ini-option, 9

panoramic, 94
camera, 87

parallel, 158

light_source, 153, 158

parametric, 147
keyword, 147
ParseString, 331
passthrough, 266
Path
includ files, 17
Pattern
agate, 207
average, 208
boxed, 209
bozo, 209
brick, 209
bumps, 210
cells, 210
checker, 210
crackle, 211
cylindrical, 213
densityfile, 213
dents, 214
facets, 214
function, 217
function image, 218
gradient, 219
granite, 219
hexagon, 220
imagepattern, 221
julia, 215
leopard, 222
magnet, 215
mandel, 215
marble, 222
object, 223
onion, 223

pigmentpattern, 223
planar, 224
quilted, 225
radial, 227
ripples, 227
slope, 227
spherical, 229
spirall, 229
spiral2, 229
spotted, 230
waves, 230
wood, 231
wrinkles, 231
pattern, 60
quickref, 375
Pattern modifier
warp, 235
Pattern modifiers
agateturb, 231
brick_size, 231
control0, 231
controll, 231
cubicwave, 231
frequency, 231
interpolate, 231
lambda, 231
mortar, 231
noisegenerator, 231
octaves, 231
omega, 231
phase, 231
poly_wave, 231
rampwave, 231
scallopwave, 231
sinewave, 231
trianglewave, 231
turbulence, 231
warp, 231
pattern modifiers
quickref, 376
patterned texture
quickref, 371
PausewhenDone
ini-option, 11
perspective, 93
camera, 87
Perturbation
camera ray, 95
pgm, 180

400

heightfield, 119
phase, 231

pattern modifier, 231, 233

phong, 193
finish, 190
phongsize, 193
finish, 190
photon

globalsettings, 101

photons, 263
dispersion, 271
media, 265
quickref, 381

pi, 44

pigment, 175
keyword, 175
quickref, 372

pigmentmap, 179
average, 208
pigment, 175

pigmentpattern, 223
keyword, 223
pattern, 223

Pigments
color list, 176
color maps, 177
pigment list, 179
solid color, 176

Pitfalls
color, 55

plain texture
quickref, 370

planar, 224
keyword, 224
pattern, 224
warp, 235, 242

plane, 141
keyword, 141

png, 180
heightfield, 119

PNG output, 12

point light
light_source, 154

pointat, 155
light_source, 153
parallel, 158
spotlight, 155

PointAt_Trans, 337

poly, 142

keyword, 142
poly_wave, 231

pattern modifier, 231, 234

polygon, 139
keyword, 139
PostFrameCommand
ini-option, 18
PostFrameReturn, 20
PostSceneCommand
ini-option, 18
PostSceneReturn, 20

pot, 120
heightfield, 119
pow, 42
ppm, 180
PPM output, 12
Pre FrameCommand
ini-option, 18
Pre FrameReturn, 20
Pre SceneCommand
ini-option, 18
Pre.SceneReturn, 20
precision, 122
julia_fractal, 121
precompute, 148
parametric, 147
pretraceend, 112
pretracestart, 112
PreviewEnd Size
ini-option, 11
PreviewStartSize
ini-option, 11
prism, 126
keyword, 126
prod, 58
projectedthrough, 163

light_source, 153, 163

projection
cylindrical, 94
fisheye, 93
omnimax, 94
orthographic, 93
panoramic, 94
perspective, 93
spherical, 94
ultrawide_angle, 93

pwr, 124
julia_fractal, 121

INDEX 401
Quad, 318 lights, 359
quadraticspline, 125 list_object, 371
lathe, 124 logical_expression, 350
prism, 126 macros, 358
quadric, 145 material, 369
keyword, 145 media, 378
Quiality message streams, 358
ini-option, 25 normal, 373
quartic, 143 object modifiers, 368
keyword, 143 objects, 361

quaternion, 122
julia_fractal, 121

quick color, 182
pigment, 175

quick colour, 182
pigment, 175

quickref, 347
arrays, 354
atmospheric effects, 379
background, 379
bitmap, 377
blend mapmodifiers, 377
brick_item, 371
camera, 359
colors, 351
conditional directives, 357
contents, 348
csg objects, 368
default texture, 357
dotitem, 350
embedded directives, 358
file ifo, 356
file inclusion, 355
finish, 374
finite patch objects, 364
finite solid objects, 361
floats, 349
fog, 379
function.invocation, 353
global settings, 380
identifier declaration, 356
infinite solid objects, 366
interior, 370
interior texture, 370
isosurface objects, 367
language basics, 349
language directives, 355
layered texture, 371
lightgroup, 360

parametric objects, 367
pattern, 375
pattern modifiers, 376
patterned texture, 371
photons, 381
pigment, 372
plain texture, 370
radiosity, 380
rainbow, 380
scene, 349
sky sphere, 379
splines, 355
strings, 353
texture, 370
transformations, 358
user-defined functions, 351
uv_mapping, 369
vectors, 350
version, 357

quilted, 225
keyword, 225
pattern, 225

radial, 227
keyword, 227
pattern, 227
radians, 42
Radiosity
adjusting, 109
how it works, 108
reference, 108
tips, 112
radiosity, 108
globalsettings, 101
quickref, 380
radius, 155
light_source, 153, 155
photons, 265
rainbow, 100

402

INDEX

keyword, 100
quickref, 380
rampwave, 231
pattern modifier, 231, 234
rand, 42
RandArray_ltem, 273
RandBernoulli, 313
RandBeta, 312
RandBinomial, 313
RandCauchy, 311
RandChi_Square, 312
RandErlang, 312
RandExp, 312
RandF_Dist, 312
RandGamma, 311
RandGauss, 311
RandGeo, 313
RandLognormal, 312
RandNormal, 311
RandPareto, 312
RandPoisson, 313
RandSpline, 311
RandStudent, 311
RandTri, 312
RandWeibull, 313
range, 79
ratio, 258
media, 254
read, 74
reciprocal, 124
julia_fractal, 121
recursionlimit, 112
red, 54
redirecting stream output, 23
refelection
metallic, 195
reflection, 194
exponent, 195
falloff, 195
reflectionexponent, 195
refraction, 263
RemoveBounds
ini-option, 27
render, 80
RenderConsole
ini-option, 23
RenderFile
ini-option, 24
ReorientTrans, 337

repeat, 238

warp, 235
ResizeArray, 273
Resolution, 6
ReverseArray, 273
rgb, 54
rgbf, 54
rgbft, 54
rgbt, 54
right, 90

camera, 87
ripples, 227

keyword, 227

pattern, 227
rotate, 358
RotateAround Trans, 337
roughness, 193

finish, 190
RoundBox_Union, 317
RoundCone2Union, 318
RoundCone3Union, 318
RoundConeUnion, 317
RoundCylinder.Union, 317
RRand, 310

samples, 258
media, 254
SamplingMethod
ini-option, 27
savefile, 112
photons, 265
radiosity, 112
scale, 358
scallopwave, 231
pattern modifier, 231, 234
scattering, 255
media, 254
scene
description language, 31
quickref, 349
Scene Description Language, 31
Search Path, 17
seed, 42
select, 43
SetGradientAccuracy, 306
Settings
global, 101
sgn, 304
shadowless, 162

INDEX 403

light_source, 153, 162 spherical, 229
ShearTrans, 336 camera, 87
sin, 43 keyword, 229

julia, 124 pattern, 229

julia_fractal, 121 projection, 94
sind, 303 warp, 235, 242
sinewave, 231 Spheroid, 316

pattern modifier, 231, 234 spiral, 229
sinh, 43 spirall, 229

julia, 124 keyword, 229

julia_fractal, 121 pattern, 229
size, 214 spiral2, 229

facets, 214 keyword, 229
sky, 89 pattern, 229

camera, 87 spline, 66
sky sphere quickref, 355

quickref, 379 splinetrans, 338
sky_sphere, 99 Splines

keyword, 99 VS. macros, 68
slice, 122 splines
slope, 227 quickref, 355

keyword, 227 split.union

pattern, 227 union, 150
slopemap, 184 Split. Unions

normal, 183 ini-option, 27
smooth, 121 spotlight

heightfield, 119 light_source, 153, 155
smoothtriangle, 141 spotted, 230

keyword, 141 keyword, 230

mesh, 136 pattern, 230
solid, 211 sgr, 123

crackle, 211 julia_fractal, 121
solid triangle mesh, 137 sqrt, 43
sor, 130 SRand, 310

keyword, 130 Star Ptrn, 336
SortArray, 274 StartColumn
SortCompare, 273 ini-option, 7
Sort Partial Array, 274 StartRow
SortSwapData, 274 ini-option, 7
spacing, 264 StatisticConsole
spacingmultiplier, 266 ini-option, 23
specular, 193 StatisticFile

finish, 190 ini-option, 24
sphere, 128 statistics, 80

blob, 114 Std Dev, 303

blob component, 115 Str

keyword, 128 strings.inc, 330
spheresweep, 128 str, 64

keyword, 128 strcmp, 43

404

INDEX

streams, 22
redirecting, 23
strength, 115
black hole warp, 236
blob, 114, 115
warp, 235
String
functions, 63
identifiers, 63
literals, 62
string
quickref, 353
String Literals, 62
Strings, 62
strings
quickref, 353
strlen, 43
strlwr, 64
strupr, 64
sturm, 171
blob, 114
lathe, 124, 125
object modifier, 171
poly, 142
prism, 126, 128
sor, 130, 131
torus, 133
SubsetEnd Frame, 5
ini-option, 5
SubsetStartFrame, 5
ini-option, 5
substr, 64
sum, 58
sunpos, 343
Supercone, 316
superellipsoid, 129
keyword, 129
superquadric, 129
Supertorus, 316
switch, 79
sys, 106
globalsettings, 101
heightfield, 119
imagemap, 180
System-specific output, 12

t, 49
tan, 43
julia, 124

julia_fractal, 121
tand, 303
tanh, 43
julia, 124
julia_fractal, 121
Targa output
compressed, 12
uncompressed, 12
target, 266
TestAbort
ini-option, 7
TestAbort_ Count
ini-option, 7
text, 131
keyword, 131
text streams, 22
Text Space, 315
Text Width, 315
texture, 173
keyword, 173
layered, quickref, 371
patterned, quickref, 371
plain, quickref, 370
quickref, 370
texture-list, 137
texturelist, 205
keyword, 205
mesh, 136
mesh2, 137
texturemap, 198
texture, 173
Textures
default, 75
tga, 180
heightfield, 119
The scene
quickref, 349
thickness, 196
finish, 190
threshold, 115
blob, 114
isosurface, 145, 146
tiff, 180
heightfield, 119
tightness, 155
light_source, 153
tile2, 199
tiles, 199
Tiles_Ptrn, 336

INDEX

405

tolerance, 128

spheresweep, 128
toroidal, 242

warp, 235, 242
torus, 133

keyword, 133
trace, 50
transform, 358
transformations

quickref, 358
translate, 358
transmit, 52

bitmap modifier, 181
triangle, 140

keyword, 140

mesh, 136
Triangle Str, 331
trianglewave, 231

pattern modifier, 231
true, 44
ttf, 131

text, 131
turb_depth, 98

fog, 97
turbulence, 231

finish, 190

fog, 97, 98

irid, 196

pattern modifier, 231

warp, 235, 239
type, 134

bicubic patch, 134

u, 49
u_steps, 134
bicubic patch, 134
ultrawide_angle, 93
camera, 87
undef, 73
union, 150
keyword, 150
up, 90
camera, 87
fog, 97
rainbow, 100
usealpha, 221
imagepattern, 221
usecolor, 189
usecolour, 189

useindex, 189
user-defined functions
quickref, 351
UserAbort. Command
ini-option, 18
UserAbort_Return, 20

utf8, 106

globalsettings, 101
uv_indices, 137

mesh2, 137
uv_mapping, 203

quickref, 369
uv_vectors, 137

mesh, 136

mesh2, 137

v, 49
v_steps, 134
bicubic patch, 134
val, 43
VAngle, 305
variable reflection, 195
variance, 95
camera, 87
focal blur, 95
media, 254, 258
vaxis rotate, 50
VCos Angle, 305
VCross, 51
vCurl, 307
VDist, 306
vdot, 43
VDot5D, 305
Vector, 47
built-in identifiers, 51
color, 54
expressions, 47
functions, 49

functions, user-defined, 61

identifiers, 48
literals, 48
operators, 49
Vectors
direction, 90
sky, 89
VEq, 305
VEQ5D, 305
\Verbose
ini-option, 11

406

INDEX

\Version

ini-option, 17
version, 76

quickref, 357
version identfier

quickref, 357
vertexvectors, 137

mesh2, 137
vGradient, 307
Video_Mode

ini-option, 9
Vista_Buffer

ini-option, 26
vlength, 43
VLength5D, 305
VMin, 306
vnormalize, 51
VNormalize5D, 305
VPerpAdjust, 306
VPerpTo_Plane, 306
VPerpTo_Vector, 306
VPow, 305
VPow5D, 305
VProjectAxis, 306
VProjectPlane, 306
VRand, 310
VRandlIn_Box, 310
VRandIn_Obj, 310
VRandlIn_Sphere, 310
VRand On_Sphere, 310
vrotate, 51
VRotation, 305
VSqr, 304
Vstr

strings.inc, 330
vstr, 64
VStr2D

short form, 330
Vstr2D

long form, 330
vtransform, 338
vturbulence, 51
VWith_Len, 306
VZero, 305
VZero5D, 305

warning, 80
debug.inc, 282
Warning Console

ini-option, 23
WarningFile
ini-option, 24
Warning Level
ini-option, 24
warp, 231
cylindrical, 242
falloff, 236
keyword, 235
pattern modifier, 231, 235
planar, 242
spherical, 242
toroidal, 242
waterlevel, 121
heightfield, 119
waves, 230
keyword, 230
pattern, 230
Wedge, 316
while, 80
Width
ini-option, 6
width, 100
rainbow, 100
Wire_Box_Union, 317
wood, 231
keyword, 231
pattern, 231
wrinkles, 231
keyword, 231
pattern, 231
write, 75

